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Abstract 

 
In the present work, first order accuracy implicit difference schemes for the numerical solution of the 
nonlinear generalized Charney-Obukhov equation with scalar nonlinearity is constructed. On the basis of 
numerical calculations accomplished by means of these schemes, the dynamics of a two-dimensional 
nonlinear solitary Rossby vortex structure is studied. In addition, for the considered equation the theorem of 
uniqueness of the solution in case of periodic boundary conditions is proved.  
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Introduction 

Numerical investigation of Charney-Obukhov (CO) nonlinear equation describing Rossby 
wave in geophysical streams and its analogous Hasegava-Mima (HM) nonlinear equation 
describing propagation of drift wave in laboratory plasma immersed in magnetic field intensively 
began in the eighties of the last century (see e.g. [1-7]) and owing to its urgency is being continued 
up to now (see the special issue of the journal Chaos, Vol. 4, No. 2, 1994 devoted to the coherent 
nonlinear structures in planetary atmospheres and oceans and numerous literature cited there). It 
should be noted that from the mathematical point of view there is no difference between these 
equations except for CO equation is written for a stream function but HM equation (obtained 
independently 30 years later) for perturbed plasma potential. Questions of stability of Rossby 
waves were investigated in [8-10]. But in the works known to us difference schemes of numerical 
calculation used for the above-mentioned equations are explicit ones, among them is Lax-Wendroff 
scheme (see [11], §12.6) very often used in mentioned papers. It is known that the stability factor 
of explicit schemes for nonlinear equations is low. For this reason it is efficient to use implicit 
schemes, the stability factor of which is significantly higher.  

In the present work the first order accuracy implicit difference schemes for numerical solution 
of the generalized Charney-Obukhov (correspondingly of the generalized Hasegava-Mima) 
equation with scalar nonlinearity are constructed. On the basis of numerical calculations 
accomplished by means of these schemes dynamics of two-dimensional nonlinear solitary Rossby 
vortical structure is studied.  
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1. Statement of the problem  

Nonlinear dimensionless generalized Charney-Obukhov equation containing scalar 
nonlinearity of the Korteweg - de Vries (KdV) type, in the frame of reference moving with velocity 
v  along the axis OX  can be written in the following form [1-5]:  
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where β  and γ  are positive constants defined through physical characteristics of the medium; In 

case of drift waves the coefficient of scalar KdV nonlinearity 0>α , while in case of Rossby 
waves 0<α . ψ is the streamfunction, ( )ψψ ∆,J  is the Jacobian  
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describing a contribution of the so called vectorial nonlinearity.  
It is well-known that equation (2.1) in the absence of KdV nonlinearity describes the propagation 
of solitary dipole vortical structure consisting of cyclone and anticyclone. But the presence of KdV 
scalar nonlinearity should lead to formation of monopole vortical structure. So the final dynamics 
depends on the competition of these two nonlinearities.  

If we introduce the generalized vorticity  
 ,yW βγψψ +−∆=  

the equation (2.1) deduces to the following system with respect to ψ  and W :   
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 .yW βγψψ −=−∆                                                                                          (2.3) 

Our aim is to solve system (2.2), (2.3) numerically in the cylindrical domain ] [,,0 TQT ×Ω=  

where Ω  is the rectangle, ] [ ] [2211 ,, aaaa −×−=Ω  (space variables yx,  vary in the domain Ω  

and the variable t  - in the interval ] [T,0 ). As an initial condition at the moment 0=t  we take well 

known solitary solution ( ) ( )yxyx ,0,, 0ψψ =  (see [12]):  
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where ,22 yxr +=  0r  and λ  are parameters. In addition the magnitude 0rλ  lies in the interval 

100 γλγ << r where 0γ  is the first zero of the function ( ) ( )rJr λλ 1
1−

 and 1γ  is its minimum [see 

13]. Then the value 0r  may be defined from the following dispersive equation:  
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In the mentioned expressions ( )zJ n  is the Bessel function of the first kind and ( )zK n  are the 

modified Bessel functions of the second kind. As to the boundary conditions, they will be given 
after the passage to the system of difference equations (see Sec.3) 
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        2.  The theorem of uniqueness for system (2.2)-(2.3) 

Due to physical character of the problem (we mean e.g. the propagation of a Rossby solitary 
wave) we consider it quite natural to put for system (2.2)-(2.3) periodic boundary conditions of the 
following type (without loss of generality we assume that ] [ ] [1,01,0 × ):   

( ) ( ) ( ) ( ),,1,,0,,,,1,,0 txWtxWtyWtyW ==                                    (3.1) 

( ) ( ) ( ) ( ),,1,,0,,,,1,,0 txtxtyty ψψψψ ==                                      (3.2) 
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It is obvious that an initial condition should be added to the boundary conditions (3.1)-(3.3): 
( ) ( ),,0,, 0 yxWyxW =                                                               (3.4) 

where ( )yxW ,0  is a sufficiently smooth function.  

The following theorem is valid:  

Theorem: If the solution to problem (2.2),(2.3),(3.1)-(3.4) ( ) ( ) ( )TT QCQCW 0,31,1; ×∈ψ , 

then it is unique.  

Here ( )T
ml QC ,  ( l  and m  are natural numbers) is a set of functions continuous in TQ , which 

have all derivatives including order l  with respect to spatial variables, all derivatives including 

order m  with respect to time variable, and these derivatives are continuous in ( )T
l QC 0,  ( l  is a 

natural number) is a set of functions continuous in TQ , which have all derivatives including order 

l  with respect to spatial variables, and these derivatives are continuous in TQ .  

Proof: Assume that problem (2.2),(2.3),(3.1)-(3.4) has two solutions ( )ψ,W  and ( )ψ~,
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Multiplying both sides of equation (3.5) on u and integrating it on the domain Ω , we obtain:  
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The following inequality holds:  
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From (3.7), taking into account (3.8) and (3.9) equalities, we obtain:  

 ( ) ∫∫∫∫
ΩΩΩΩ

=
∂
∂−

∂
∂−+

∂
∂

.0
~

,
2

1 2

udxdy
x

udxdy
x

udxdyWJdxdy
t

u ζψαζψαζ  



52                                Kaladze T., Rogava J., Tsamalashvili L., Tsiklauri M. 

Obviously from here follows the inequality:  
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As well-known, if we multiply both sides of equation (3.6) on ζ  and integrate it on domain 

Ω , then we use the formula of partial integration, and take into account that function ζ  satisfies 
periodic boundary conditions, we obtain:  
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According to Schwarz inequality and ε -inequality we have:  
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Let us choose ε  so that the condition 0
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Let us estimate the right-hand side of inequality (3.10), we obtain:  
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From (3.14), according to Schwarz inequality, it follows:  
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From (3.15), in view of (3.13), it follows:  
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Let us estimate the expression placed in the brackets in the right hand-side of inequality (3.10). By 
the Schwarz inequality we have:   
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From (3.17), with account of inequalities (3.13), we obtain:  
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From (3.10), (3.16) and (3.18), it follows:  
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3. The first order accuracy implicit scheme with respect to time step  

Let us introduce a time step ( )1/ >= mmTτ  and approximate equation (2.2) at the point 

( )ktyx ,, , where ( ),,...2,1== kktk τ  by the following semi-discrete scheme:  
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We assume that ( )yxtW ,,  and ( )yxt ,,ψ  are sufficiently smooth functions. Equation (4.1) 

approximates equation (2.2) at the point ( )ktyx ,,  with accuracy ( )τO .  

Let us cover area Ω  by a grid and denote by 1h  the grid spacing in the x -direction and by 
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where ( )11 >N  and ( )12 >N  are the number of grid points in the x  and y  directions 
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respectively.  
If in equation (4.1) we replace the first order derivatives with respect to space variables by 

central differences, we obtain the following difference equation:  
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It is obvious that difference equation (4.2) approximates equation (2.2) with accuracy 

( )2
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2
1 hhO ++τ  at the point ( )kji tyx ,, .  

Reconstruction of the stream function field by means of vortex field can be accomplished from 
the following standard difference equation corresponding to equation (2.3):  
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where .1,...,2,1,...,2 21 −=−= NjNi   

The difference equation (4.3) approximates equation (2.3) with accuracy ( )2
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We choose the initial conditions for the system of difference equations (4.2) and (4.3) 
according to the function ( )yx,0ψ , while the boundary conditions are chosen following from the 

consistency constraint according to the initial conditions.  
We solve the system of difference equations (4.2), (4.3) by the following iteration (In order to 
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where n  is an iteration index ( )
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which represents a sufficient condition of convergence of iteration process (4.4), (4.5). 
We solve the system of difference equations (4.3) with respect to the variable x  by means of 

factorization method, and with respect to the variable y  - by means of iteration (In order to 

simplify writing we omit the index k  in k
ji,ψ ) 
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where 1,...,2 1 −= Ni  and 1,...,2 2 −= Nj ; n  is an iteration index ( ),...2,1=n , 
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Let us make the following remark:  
Remark 2 : The convergence rate of the iteration process (4.6) is high, which is conditioned 

by the fact that the diagonal domination of matrix of the system is significantly high. Another 
important factor is that in the iterations (4.4) and (4.6) we take the value of the streamfunction at 
the preceding time level as a first approximation.  

4. Results of numerical experiment and their analysis 

 On the basis of scheme (4.2),(4.3), numerical calculations are accomplished for the following 
values of parameters: 4.0,6.0,837.00 === βγr  and 1±=a . Here we took the Rossby 

solitary wave as the initial condition (see (2.4) formula) and observed its evolution. The action of 
scalar nonlinearity is notable from 5=t  and gradually intensifies. this action manifests itself in 
destruction of the initial dipole structure and in tending to form only monopole structure. At 7=t  
(more obviously at moment 10=t , see Fig.1) it can be already seen the following scene: 
Anticyclone or cyclone dominates with much more advantage according to whether we take the 
scalar nonlinearity with plus or minus (We consider both cases, see Fig.2). Fig.2 b)) corresponds to 
the case 1=a , in this case dominates anticyclone, while Fig.2. a)) corresponds to the case 1−=a , 
and in this case dominates a cyclone. It is clearly seen that Fig.2 a)) and Fig.2 b)) are symmetric to 
each other. It can be obviously seen from the numerical experiment that the wave moves, and for 
this reason, in order to catch the process of intensifying of anticyclone and cyclone, it is necessary 
to take a domain of integration as large as possible. In one case we took 51 =a  (see Fig.1), while 

in the other case 101 =a  (see Fig.2). In the other case, even for such rough values of parameters as 

1.0=h  and 01.0=τ , an action of scalar nonlinearity can be obviously seen at moment 10=t . 
Let us note that, for convergence of iterative process, it is necessary to keep a certain relation 
between the steps τ  and h .  
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