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Abstract 

 
In the present work there is considered the four-layer implicit semi-discrete scheme for an abstract parabolic 
equation. There is obtained an explicit presentation for the solution of the corresponding discrete problem 
using operator polynomials. On the basis of this presentation, there is obtained a priori estimates in natural 
classes for the solution of the discrete problem, when the spatial operator is self-adjoint and positive definite. 
From these estimates follow the stability and convergence of the considered scheme. 

 
Introduction 
In the present work for the investigation of the multi layer semi-discrete schemes we 

are guided by the following conception: To each semi-discrete scheme, which gives an 
approximate solution of an evolution problem, there correspond polynomials of certain 
classes. These polynomials we call as polynomials associated to the scheme.  

In case of equation with constant operator, the corresponding semi-discrete scheme 
generates polynomials, which represent a generalization of Chebischev polynomials of the 
second kind. According to this polynomials there is constructed the implicit representation 
of the difference problem and on the basis of this polynomials there is made a conclusion 
about stability of the difference scheme. The a priori estimates also are obtained 
([1],[2],[3]). 

To the investigation of multi-layer semi-discrete schemes for an abstract parabolic 
equation there are dedicated works of M. Crouzeix [4], M. Crouzeix, A. Raviart [5], M.N. 
Le Roux [6], M. Zlamal [7], [8]. 

In the work of M. Crouzeix, A. Raviart [5] attention is paid to the fact that stability of 
the abstract scheme with maximum accretive operator A follows from the stability of the 
corresponding scalar scheme with parameter Z, with .0)Re( ≥Z  

Results, presented in this work, are included in the Ph.D. dissertation paper of one of 
the coauthors (see [9]) and it is written in Georgian. 
 

1. Statement of the problem and main results 
Let us consider Cauchy abstract problem in Hilbert space H 

                 ( ) ( ) ( ) ( ) ,0,0, ϕ=>=+′ uttftAutu                                          (1.1) 
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where A is a selfadjoint positive definite operator with definition domain D(A); f(t) is an 
abstract function with values from H; H∈ϕ , u(t) is a searched function. 

Let )(tf  be a continuous function by Gelder in .0≥t  As it is clear that the operator 
)( A−  is a generator of the analytic semi-group )exp( tA− , the function )t(u  is defined by 

the following formula for any H∈ϕ  (see for example К. Като [10 ] p. 609) 

                                            ∫ −+=
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(1.2) 
where )exp()( tAtU −=  is continuous when 0≥t , continuously differentiable at 0>t  and 
represents the solution of problem (1.1). 

We search the solution of problem (1.1) by the following four-layer semi-discrete 
scheme:  
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where τ >0  is a step of the mesh according to t, ku  is an approximate solution of problem 

(1.1) at point t = t k = kτ ; 210 ,, uuu  - are given initial vectors from H. 

The following theorem is valid: 
Theorem: For scheme (1.3), the following a priori estimates are valid: 
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where ⋅>=<α< ,constc, 010 - is a norm in H. 

 
Proof: Let us define 1+ku  from (1.3), we obtain:  
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Let us introduce the following denotations: 
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then (2.1) can be written as follows: 
          .1231211 +−−+ +++= kkkkk guLuLuLu  

from here, by induction, we obtain (see. [3], p. 59):  
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where operator polynomials ),,( 321 LLLUk  are defined by the following recurrent relation: 

                           =),,( 321 LLLUk ,332211 −−− ++ kkk ULULUL                                           (2.3) 

                                          ,0 IU =    .021 == −− UU  

Let us apply the operator )10( <<ααA  to both sides of equality (2.2) and pass to 
norms, we obtain: 
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   Let us estimate kLUAα . For this purpose we need the following formula (see. [3], p. 

66): 
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According to this formula we obtain:   
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(2.5) 
As well-known, the norm of operator-polynomial, when argument is a self-adjoint bounded 
operator, is equal to C-norm of the corresponding scalar polynomial on spectrum (see [11], 
p. 346). Due to this result we have:  
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Here and above we have used the fact that ]1,0[)( ∈LSp .  
Obviously, according to (2.3), polynomials 
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satisfy the following recurrent relation: 

     ,PxPPx)x(P kkkk 321
2

11

2

11

9

11

18
−−− +−=                                         (2.7)  

.PP,P 01 210 ≡≡≡ −−  

    The characteristic equation, corresponding to difference equation (2.7), is of the 
following form: 
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Let us show that there exists 


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characteristic equation (2.8) is placed in the interval 
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for any [1,0[∈x . Therefore the real root of the characteristic equation (2.8) 
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Below we will show that other two roots 2λ and 3λ  of the equation (2.8) are complex, 

23 λλ = . Then, from (2.8) according to Vieta theorem, we have:  
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Thus, absolute values of complex roots of the characteristic equation (2.8), for any 
]1,0[∈x ,  are not more than a number less than one, which does not depend on x , and the 

real root belongs to unit circle. From here it follows that polynomials )(xPk  are uniformly 

bounded in ]1,0[ .  
From this fact and (2.6), we can obtain: 
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It is left to show that the characteristic equation (2.8) has complex roots. 
As well-known, a cubic equation has complex roots, if its discriminant is less than 

zero. In our case the discriminant of the equation (2.8) is: 
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For any ]1,0[∈x , the equalities are valid:  
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According to these estimates, we have: 
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Let us return to the equality (2.5). According to the estimate (2.9) we have:  
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Thus, the following estimate is valid: 
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From (2.4), taking into account (2.10) the a priori estimate (1.5) is obtained.  
The estimate (1.4) is proved analogously. 
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