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It is known that the equation of balance and stress-strain relations (Hook s Law) has the
following form in any System of curve linear coordinates [1]
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where g is the discriminant of the metric tensor of the space, &' are contravariant

stress vectors, @ is an external force, R are contra variant base vectors of the space, T
is the displacement vector, A and x are Lame'sconstants.
We introduce at the sphere the isometric coordinates system, where
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are the isometric coordinates on the shell mid surface, with respect to which the metric
quadratic formis
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L et suppose that the displacement vector is independent from the thickness
coordinate X,
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Using the notation

5“(x1,x2,x3):
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where p isaradius of sphere, we can rewrite complete system of equation of balance and
Hook s Law as[3]
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The general representations of this system are given in the form:
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where ¢(z) and y(z) are holomorphic functionsof z and x(z,z) issolution of equation
0% +-2x =0, whichis expressed with the help of holomorphic functions f(z) by

formula
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The combinations of the stress vectors are
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Let’s consider the boundary value problem for the non-shallow spherical shell. We
have to find the elasticity balance, when the displacements are marked on the boundary
points.
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The boundary conditions for the components of the displacement vector have the form
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Let’s consider that the boundary conditions have the form
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where A_,=A,, B_,=B,, M_, =M,
If the functions ¢() () f(2) elntroduced by series
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then from (6) well have the following system

Upy +iU :i(lﬂz i 1+ 2 h 2 1g c i _
() (s) n=0 °Nn+1 (n+2)(n+3)(1+r02)2 n+21+|’02 n

2 r0n+3 i(n+2)p _ lo i -ing _ o nin o-i(n+l)g (| —
— b —
(n+2)(n+2)(n+3) (1+ 2 )2 C,€ 1+12 2 a€ ro b, (7)

= S(AriB)e®,  r=r,

n=—co



12 ChokoraiaD.

n+3+(n+1r2 (

3:§{(n+1)(n+z)(n+s)1+r; C,

o2 4 Cne—i(n+2)¢)+

8)
A+3u

n ing —-ing = — ing -
+—4(/]+21u)r0 (ane +a.e )} > M, e, r=r,.

n=-co

The solutions of this system (7)-(8) have the following form:

1~ =
a = _r_(Ao _'50)1
0
:34(/”2#)M
r, A+3u Y
_ L AA+au)3+rs o,
az_roz /]+3,U |: 2I’0 (A2+|Bz)+M2 >
_ 2
n=in4(/l +2u){Mn+n+1+(n 1) (A]JriBn)} n>3,
ry, A+3u 2r,
R I %)
% 1+r;{'51 ATl g, M)

_ 1 [3+30+r) 2 +2u) 3417 . 41 +2u) L, ol
o2 ST A i) M0 2y (s )
1+r2 e n+2 2(0+2u)n+2+nr] .

b, =- n+1jn+2 + { +iB .. )-

o e DRI g )
1 . (/]+2,u) 1

- —-iB,.)- M., nz2,

W(Aﬁl I n+1) /1+3,U I’On_l(1+ r02) n+l

(I 3(1+r )[A2+B]

0

c, = -(n° +6n° +11n+6)12 n+3(A1+2 B.) n=1,

where
A+3u 1
=- B
o= voua AR
Therefore, it solves three-dimensional problem for the non-shallow spherical shell for

the components of the displacement vector, when the displacement vector is independent
from the thickness coordinate x, .
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