RRRRRRRRRRRRRRRRRRRRRRRRR

Intersection, Union, Dependent
Types and SubType Systems

Why after more than 40 yy the topic is still alive ...

Luigi Liquori, Inria, Sophia Antipolis Méditerranée

Intersection Types for pure \-calculus [0 (7]

» Ad hoc polymorphism for the pure A-calculus

40 years history: characterization of strongly normalizing A-terms,
A-models, object-oriented programming, automatic type inference,
type inhabitation, type unification, software product lines, etc

« Type inference is undecidable, subtyping is decidable

B-M:¢6 B-M:r B-FM:ocnr
NE,
BEM onr (D BEM. o (resp.) E)

BEM:o o<s71
BEM: 7

X.oce€B
(<) Brx:o (Var)

B, xokFM:T
BEMXM:oc—T1

B-M:0—-7 BFN:o
=0 BFMN:7 (—E)

I &zu’a,- Luigi Liquori, Inria, Sophia Antipolis | n, Dependent Types and SubType Systems

Intersection Types as a Theoretical Swiss Knife

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Examples
« Polymorphic identity

XokFX:o XTHX:T
FAMXX:0—=0 FMXX:T—T
FAX.Xx:(c—=o)N(r—1)

» Self-application A\x.x x

X(c—=w71)Nokx:(c—7)No x(oc—=717)Nokx:(c —>7)No
X(c—=1T)NokXx:0—71 X(c—=T1)Nokx:0
X(c—=1)NokFxx:T
FXxxx:((c—=71)No)—T

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée ection, Union, Dependent Types and SubType Systems

Examples (continued)

6 N AS A CONNECTIVE

It was remarked in section 1 that N behaves quite differently from &. This will now be made
apparent.

A is a theorem iff, for some ¢, - t: A is derivable. This amounts to saying that A is a
theorem iff A is realized by a closed member of TERM.

Given theorem 4.12 and 5.5, it is easy to show that the following formulas are not
theorems: p —.q—pnNg, p—qg —.p—=r —.p—=qNnr, pNng—r —.p —.4—r. On the other
hand, the following sequents are derivable.

F Axxx:An(A—B)—B

F AxAy.xy: (A—-B)n(A—C)—.A—BnC

F AxAy,xy: A—»BNC—.(A—=B)N(A—C)

FAxAyxy: A=-C—.ANB—=C

FAxAyx:ANB—.A—B

F AxAy,xyy: A—(B—C) ».AnB—C

FAxx:ANB—A

FAxx: A= ANA

FAxx:ANB—BNA

F Ax.x: AN(BNC)—(ANB)NC

I &L’&{IQ/— Luigi Liquori, Inria, Sophia Antipolis Médite ion, Dependent Types and SubType Systems

The Reference Book: part 3 is dedicated to
Intersection Types

PERSPECTIVES IN LOGIC

LAMBDA CALCULUS
WITH TYPES

ion, Dependent Types and SubType Systems

Taxonomy of 13 ()-systems, pp. 601 [BDS13]

DHM CcDV Add U BCD
‘)\ ~ —_—)\
CDZ HR Scott

Extend < Extend <

[4 historical systems [\, [T |
Coppo-Dezani '78 AT CD
Coppo-Dezani-Sallé '79 AL CDS
Coppo-Dezani-Venneri '81 PV Ccbv
Barendregt-Coppo-Dezani 83 | AL~ | BCD

-
I &L’ZM,— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Intersection Type Theories 7
Minimal type theory <q»

(refl) o <o (incl) onN7<o oN7T<T

(glb) p<o&p<T=p<onr (trans) o< 7&T<p=>0<p

Axiom schemes
(Uwp) o < U [Universal type] (V) ULKo—U

(=n) (c—=7)N(c—=p)<o—=(TNp)
Rule scheme
(=) o< &n<m=0—>m<o—>n

| 4 historical systems | A\ | T | <min plus [u? |
Coppo-Dezani ‘78 AP CD — No
Coppo-Dezani-Sallé '79 An7" | CDS | (Utp) Yes
Coppo-Dezani-Venneri ‘81 A7V | CDV | (=), (—N) No
Barendregt-Coppo-Dezani’83 | A"~ | BCD | (=), (=N), (Uwp), (U—) | Yes

I &L’Z&Ia/— Luigi Liquori, Inria, Sophia Antipolis Méditerran lion, Union, Dependent Types and SubType Systems

Subtyping in programming languages 1/3

» Subtyping, denoted by <, is a form of implicit polymorphism
(aka implicit type conversion or implicit type coercion)

-
I &L’ZM,- Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Subtyping in programming languages 1/3

» Subtyping, denoted by <, is a form of implicit polymorphism
(aka implicit type conversion or implicit type coercion)

» Subtyping allows us to implicitly and safely promote some variable
of some type into another type

int x = 3; X is an integer
float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the resultis 7.0

-
I &L’ZM/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée tion, Union, Dependent Types and SubType Systems

Subtyping in programming languages 1/3

» Subtyping, denoted by <, is a form of implicit polymorphism
(aka implicit type conversion or implicit type coercion)

» Subtyping allows us to implicitly and safely promote some variable
of some type into another type

int x = 3; X is an integer
float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the resultis 7.0

» Subtyping is not an explicit type conversion (aka type casting)

float x = 3.0; x is an integer
float y = 4.0; y is an double
int z =(int)x + (int)y; x and y are casted into integers

// theresultis 7

-
I &L’&m/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Subtyping in programming languages 2/3
Subtyping hierarchy in C long double
double
float
unsigned long long
long long
unsigned long
long

unsigned int

int

-
I &L’ZM,- Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Subtyping in OO programming languages 3/3
» Subtyping lurks also in object-oriented programming

“An object of class T may be substituted with any object of a
subclass S” (©Barbara Liskov)

« Inheritance as subtyping

» Subtyping hierarchy in Java

Class Point {int x = 0; int y = 0}
Class ColPoint extends Point with {string col = red}

Point p = new Point();
ColPoint q = new ColPoint()

p=q accept
q =7 reject
q = (ColPoint) p accept (explicit cast)

-
I &L’&m/— Luigi Liquori, Inria, Sophia Antipolis Médite ion, Dependent Types and SubType Systems

Parametric vs. ad hoc polymorphism (1/2)

e Parametric (ML)
> fun x -> x : ’a ->’a ‘a is a type variable

e Ad hoc (C)
int a, b;
float x, y;
printf (¢ ‘%d %f’’, atb, x+y);
» The type of the operator + is
+ : (dnt -> int) N (float -> float)

» Girard’s parametric polymorphism (System F) is "equivalent” to
ad hoc polymorphism

conj
ﬂ/ 1..

Va.ao — o~ (int — int)ﬂ(nat — nat)n(real — real)N

I &L’Z&IQ/— Luigi Liquori, Inria, Sophia Antipolis Médite lion, Union, Dependent Types and SubType Systems

Parametric vs. ad hoc (2/2)

Intersection types can type every strongly normalizing term of the
A-calculus... which is not the case in System F (or Fomega) ... this

"monster” A-term is strongly normalizing

M.z (x (M ufu))(x(Av.ag.gv)(Ay.yyy)

is not typable in Girard’s Fomega bUt it is in Coppo-Dezani A\5” (rank 3)
[Urzvczvn. MSCS’971

3 Strongly normalizable but untypable

The aim of this section is to show our first main result: the type inference rules of F,, do not suffice

to type all strongly normalizable terms. Our counter-example is the following term:
(%) M = (Aa.z(21)(21)(Ay. yyy)

where 1 = Afu. fu and 1’ = Avg. gv. Clearly, M is strongly normalizable, and it is an easy exercise

to see that it becomes typable in F, after just one reduction step.

Theorem 3.1 The above term M cannot be typed in F,, and thus the class of typable terms is a

proper subclass of the class of all strongly normalizable terms.

-
I &L?m/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Many attempts to adopt Intersection Types,
Programming and Proof Languages

» Languages a la ML (Type Inference): Failure because of the HUGE
literature on the difficulty to find a Principal Type System, see
Damas-Milner seminal algorithm W [POPL82]

-------- Arich lineage

~=Agda—»
SASL—— — Il

~ Miranda —
‘/ » LazyML - Haskell —— Haskell98 —»
[
RN ‘ = Alice
LeFmML =3 e shis0 swio7
SR

~ MoscowML

2
Lisp~ / ‘ —
/ =
Prolog”’ \ / ~Reason
|
AN CAML > Caml Light = OCaml —=

i

» Languages a la Algol, C, Java (Type Checking): Failure because of
the HUGE literature to find expressive Fully Typed presentation

with Decidable Type Checking. A small "galleria” follows...
I &&”/»,d/- Luigi Liquori, Inria, Sophia An ent Types and SubType Systems 14

Why a typed calculus with () is so
complicated?

Intersection (and union types) were defined as type assignment
systems (for pure A-terms)

Very elegant presentation but undecidability of type inference

Many attempts of finding decidable and typed A-calculi with
intersection (and union types) preserving all the good properties of
type assignment

The usual approach (adding types to binders) is problematic

I &zu&,- Luigi Liquori, Inria, Sophia Antipolis Médif nion, Dependent Types and SubType Systems

GOAL: find a suitable Intersection type
systems a /a Church

» with DECIDABILITY of Type Checking while preserving
expressivity of the Type Assignment characterising ALL
STRONGLY NORMALISING TERMS

XobaX:0o XThFaX:T
FA AX.X:0— 0 |—m)\X.XlT—>T(mI)
FadAx.x: (o —o)N (T —7)

XokFX:o XTEX:T
FAMXoX:0—0 I—)\X:T.X:T—M'(ml)
FAX7?7.x (0= o) (T = T)

-
I &L’Zm/— Luigi Liquori, Inria, Sophia Antipolis Médite lion, Union, Dependent Types and SubType Systems

Reynolds’ FORSYTHE ’88

Reynolds annotates a A-abstraction with types as in

B.xoitM:7 iel1...n
BF \x:ot|---|lop.M :0j — T

However, we cannot type a typed term, whose type erasure is the
combinator

K= Ax\y.x

with the intersection type

(0 0 —=0o)N(T—>7—>71)

I &L’Z&Ia/— Luigi Liquori, Inria, Sophia Antipolis Méditerran lion, Union, Dependent Types and SubType Systems

Pierce’s PhD ’91

Pierce improves Forsythe by using a for construct to build ad hoc
polymorphic typing, as in

BI—M[U,'/O{]ZT,' iel...n
Bt forae{oy...0n}.M: 7

However, we cannot type a typed term, whose type erasure is

AXAYAZ.(XY ,X2Z)

with the intersection type

((c—=p)N(T—=p)—>0—=>7—=px/))
N
(0 wo)N(c —0) > 0—0—0Xo0)

I &L’&J’a/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Pfenning&Friedman: Refinement Types 91

Refinement types are subtypes of standard types
We can only intersect types which are refinements of the same ML type
Subtype ground refine the ML type boolexp: variables cannot be of
type ground
ground C boolexp
Var : boolexp
True, False : ground N boolexp
Not : ground N boolexp — ground N boolexp

And : (boolexp x boolexp — boolexp)
N
(ground x ground — ground)

I &zu&,- Luigi Liquori, Inria, Sophia Antipolis Médif nion, Dependent Types and SubType Systems

Miquel’s Implicit Constructions PhD 01
Extends Coquand-Huet’s CC with the ternary operator

b?M; N of type Nb:bool.c; T

true?M:N —,c M false?’M; N —,c N

Unfortunately, not all terms typed by intersection types have an
equivalent in ICC, for instance Ax.x : ((c N 7) = &) N (p — p)) appears
to be problematic

I &L’tl’a/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Wells et al. - Aa.\b.\c.c(\d.dab): T No

JFP ’02. Explicitly Typed Intermediate Languages (TILs) facilitate the
safe and efficient compilation of proarammina lanauaaes

/A\

Aa:i—b Aa:r

| I

b Ao (r—7r)A(b—b)
| I

Ae: 7€ Ae:o® —b T=(@{—b—i—=7"=0
l =4 =b)—b

/app\ /app\ 7 =(—b)—i—b

c)\di'rd c//\\ o=r—=(r—=r)ANb—10)—(c°—=b) —=b

¢ =((0f{ =b)A(cf —b

app A :of M :of Jd_((glﬁ) (02 =)
/ \ | | 0'17’7‘—?(7"—>7")—>b

ol =r—=(b—=b) —b

Wells & Haak -* a.\b.\c.c(\d.dab):TNo
ESOP '02. The first system with the power of A5"

A(join{f = x,g = *})
|

Aa:{f=i—bg=r}
|
o {f =ig=0"}
|
Ae:{f=7%g=0" —b}

T=(G{—b—i—7"—=Db

| TC=(Td—>b)—>b
app

/ \ sz(i—>b)—>i—>b
Mf=xg=join{fh =x1=x}} p=V(oin{f=xg=x}){f=79=0}
I 09 =r—0 = (0% -b)—b
M:{f=r%g={h=0l1=08} b0 _\(ioin{j— s,k = +}).{j =1 —r.k = b b}

| 09 =V(join{h = *,l = %}). {h = 0 = b,l = 0§ — b}
app

\
app [{f =%g= {h = (.7’ *)’l = (k7 *)}}]
/ \ |

. d a b
-
I &L’ZM,— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Frisch, Castagna, Benzaken, JSL 08

» Types as sets and subtyping as subsets

coNT < oisinterpreted as [o] N [7] C [o]
(el NI Nlel =9
t= M\ (ti—’si)/\[I\ "(t}—’sé)} t 0

i=1l..n Jj=1..m

Vi=1.nI,(f:t),(z:t;)Fe:s;
CFupf(ti—s1;...5tp—sp). Az t

(abstr)

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Many attempts to find an INTUITIONISTIC
LOGIC corresponding to Intersection

A “scientific consensus” on the existence of a
Curry-Howard Isomorphism for
is stillan OPEN PROBLEM

uigi Liquori, Inria, Sophia Antipolis Méditerran lion, Union, Dependent Types and SubType Systems

Curry-Howard Isomorphism

Types as

Logical Propositions
(Formulas)

and

Typed \-terms as
Logical Proofs

-
I &Z”M/- Luigi Liquori, Inria,

Logic vs Intersection (and Union) Types

N IS not A

The dual type of intersection is Union:

U IS not Vv

Since the méarﬁng of Niis réasonably clear (to claim that ANB is to claim that one has
a reason for asserting A which is also a reason for asserting B), it would obviously be of

interest to figure out how to add N to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

NB: Usual intuitionistic logics do not apply for intersection and union

I &tu&,- Luigi Liquori, Inria, Sophia Antipolis Médi ion, Dependent Types and SubType Systems

Proof-functional logics for INTERSECTION

Pottinger 80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A A Bis to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert AN B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1 P P P
Y Y Y Y
A B A B
ANB ANB

ion, Dependent Types and SubType Systems

Many attempts to find a LOGIC corresponding
to Intersection

As the time the existence of a
Curry-Howard Isomorphism
is still an OPEN PROBLEM

uigi Liquori, Inria, Sophia Antipolis Méditerranée —In ction, Union, Dependent Types and SubType Systems

Curry-Howard Isomorphism

Types as

Logical Propositions
(Formulas)

and

Typed \-terms as
Logical Proofs

-
I &Z”M/- Luigi Liquori, Inria,

Logic vs Intersection (and Union) Types

N IS not A

The dual type of intersection is Union:

U IS not Vv

Since the méarﬁng of Niis réasonably clear (to claim that ANB is to claim that one has
a reason for asserting A which is also a reason for asserting B), it would obviously be of

interest to figure out how to add N to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

NB: Usual intuitionistic logics do not apply for intersection and union

I &tu&,- Luigi Liquori, Inria, Sophia Antipolis Médi ion, Dependent Types and SubType Systems

Proof-functional logics for INTERSECTION

Pottinger 80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A A Bis to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert AN B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1 P P P
Y Y Y Y
A B A B
ANB ANB

ion, Dependent Types and SubType Systems

A proposal of a Church-style calculus with
Intersection Types

The A-calculus: Syntax and Types

Luigi Liquori Claude Stolze !
Université Cote d’Azur, Inria, France
[Luigi.Liquori,Claude.Stolze] @inria.fr

iquori, Inria, Sophia Antipolis Méditerranée —In ction, Union, Dependent Types and SubType Systems

Syntax of the Generic A-calculus

o = ¢|lo—o|oNa|U types
A = X| Mo A]AA| typed A-calculus
VASWAVE strong pairs
pri A | pr, A projections
A7 | explicit coercions
un indexed constants

A strong pair (A, A) is a kind of cartesian pair
An explicit coercion is A’ is a A-term annotated with a type

ua is an infinite set of constants indexed by A-terms

I &L’Z&IQ/— Luigi Liquori, Inria, Sophia Antipolis Médite lion, Union, Dependent Types and SubType Systems

Typed A vs. Untyped)\: the essence function

» Essence is an erasing function transforming a typed A-term into an
untyped A-term.

Xt = X
VAo AL = AXLAY
VA1 A0 = 1A NARN
VA% = 1A
tupl = 1A
LAY = 1A

VAT, A2)0 = 1A

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Reduction semantics

¢ (Substitution) Substitution on A-terms is defined as usual, with
the additional rules:

def
Un[B2/X] = Uaiayx)

Af[Az/x] E (Ai[Az/x]))
« (One-step reduction) Reduction rules:
(Mo D) Dy —5 A[A2/X]
pri(Ay,Az) —p A, forie {1,2}
Ao AX —, A if x ¢ FV(A)

-
I &L’&m/— Luigi Liquori, Inria, Sophia Antipolis Médite ion, Dependent Types and SubType Systems

2 NB and 1 EX

« NB.1: (AX:0.A4)" Ao is not a redex

* NB2: U)x.o.n)0, is not a redex

- EX: (AX:0—0. u(xx)) (Ax:0.X) —3 U((\x:0.x) (Ax:0.x))

-
I &L’ZM,— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Synchronization in reductions

Desynchronization inside a strong pair can produce “exotic” A-terms

ooy oy | OXOXIPRY PRI N
e g oy, (xox)pryy) 78 T

Synchronicity in operational semantics

Ay —" Ay Do —' Ay 1A =100
(D1, Do) — (A7, D)

(Sync)

I &L’Z&,a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée tion, Union, Dependent Types and SubType Systems

Church-Rosser property

¢ Reduction is confluent

« Synchronous reduction is also confluent

Ay
VN
2 A

N 7
N I,

N W

Ay

A 3

-
I &L’ZM,— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

The Generic A-calculus type system -7,

The Type Checker depends on 2 parameters:
1. The subtyping relation <, in T € {CD,CDV,CDS, BCD}
2. The synchronicity relation R on pure A-terms, R € {=,=3,=3,}

Xoel (Var)

Fl—%x:a
MR Ao 0 k% Ao 0<TT(<)
MFT Ua:U e am:r
ML Ay:o
TR Do 1AL R 1A (" Tl A:oyNog ic{1,2} (E)
FTET Ay, Dg)ionT MR priA o ’
I’|—77—3A1:0—>T FI—%AZ:U(_)E) F,X:al—%A:T (=)
F|—77'3A1A2:T FI—%)\X:U.A:U—M'

on, Union, Dependent Types and SubType Systems

.
I V227 | . | iquori, Inria, Sophia Antipolis Méditerran

Examples

Auto-application (Ax.x x) a la Curry can be typed a la Church as follows:

xX(oc—=w71)Nokx(c—-71)No x:(c >7)NokFXx:(c >T)N0o
X(c—=1)NokFprXx:o—T1 X(oc—=T)NokpLXx:o
X(c = T1)Nok(pryx)(prXx):T
Fx:(c = 71)no(pr X)(prx): ((c = 17)No) =71

iquori, Inria, Sophia Antipolis Méditerranée —In ction, Union, Dependent Types and SubType Systems

Examples

For A%® and A" :
Fixpoint combinator Y ® A.(AX.F(x X)) (Ax.f (X X))

fU=0o,xUFf:U=0 fU—=0,XUF Uyyx:U
fU— o, XUFfUyy:o
fU— ok)\X:U.fU(XX) U—o0o fU— otk U()\X;U.fu(”)) U
fU—=ok ()\XZU.fU(XX)) Ux:ufuy,) = O
F AU — J.()\XZU.fU(XX)) UOxu.f ugy) - (U — 0’) — 0

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Replay

Taxonomy of 13 (-systems, pp. 601 [BDS13]
DHM /\gDV Add U /\.E,CD
CDZ HR Scott
Engeler
Extend < Extend <
[
HL @)\CD ACDS
B R
[4 historical systems AL T <min plus u? |
Coppo-Dezani '78 AL CD - No
Coppo-Dezani-Sallé '79 Ao | CDS | (Ukp) Yes
Coppo-Dezani-Venneri '81 S CDV | (=), (—=N) No
Barendregt-Coppo-Dezani 83 | A | BCD | (=), (—N), (Uwp), (U—) | Yes

(22X | ;i icuori, inia - Wy reduct d U) typed lambda-calculi
.

-
I &I/ZM,- Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

The A-chair ASZ - AB:C;:

CDhV Add U BCD
)\ﬂ)\ﬂ

ACDV ABCD

=B =B

/ /

CD CDS CD CDS

Extend < Extend <

A;DV AB:CD

R €{==p=p} pa P -

A N

-
I &L’ZM,- Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Isomorphism property of A”,
(Soundness) (A% >)\;) r l—;rz A:o=T I—Z Ao
(Completeness) (A% <)\;) r F%— M:oc— 3A. M =Mand T |—77—3 Ao

(Isomorphism) (Az;z ~)\;) A% > /\I: and A% <1>\g

-
I &L’ZM,- Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Isomorphism property of A”,
(Soundness) (A% >)\;) r I—;rz A:o=T I—Z Ao
(Completeness) (A% <)\;) r |_r71— M:oc— 3A. M =Mand T |—77—3 Ao

(Isomorphism) (Az;z ~)\;) A% > /\; and A% <1>\g

AT —— AZD AT, [AR oM [AR <AL |

ASP
] A

A§Ds
ACDV ABCD ABZCD \\? v

=B =B =

7 / AT
ACP T ACPS AESV * \/
R adbs | y
ASDV N N AB_CD ABZgD \/ \/

= = =5
/ /! ;E’ X Vv
A —— AP N X J

Counter-example for ASDB: and AZ;?,
- Letin AV
pry (Ay:o.(pry X) y , pry X)

We have that

)

x:(0 = 7) N p EEYIEP pry, (\ya(pry X) y . pry X) -

e The essence is

Ay Xy
o ...butin ASPY AP
CDV/BCD
x:(o = 7)Nphs / AYXy:p

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Inte tion, Union, Dependent Types and SubType Systems

Counter-example for AS; and AS;V

.S AX Ay Az.xz(y z)

K% AXAY.X
SKS =5 Ax.x

« In AZY/°"Y, you can construct a term A such that

(A =SKS

We have that
|-CD/CDV
=B

pry (A AX:0.X) 0 =0

the essence is

SKS

o ...butin ASP APV

VﬁD/CDVSKS:a—m

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Decidability of type checking/reconstruction

ACPV A\ECP
=Bn n
l |A% [TC/TR |
AT J
AczDv
ACPY ABCP AEDS y
=8 =8 AECD \/
aer’ | qevd N Y
=5 =5 ACSV \/
Acgs %
ACDV N N ABCD BgD
= = X
—3
/ % AT
AL —— A At

Why? (Ua, , Ua,) is typable if and only if 1 Ay =5 g, 1 A2

-
I &L’ZM,— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Union Types

UNION TYPES

Invented by Mc Queen, Plotkin and Sethi et al. in 86
Dual to Intersection Types

» Same features and drawbacks of Intersection Types
» Conjectures with its relation with Intuitionistic Logic
» Not clear Curry-Howard isomorphism

« Relation with Pottinger’s Proof Functional Logic

I &zu’a,- Luigi Liquori, Inria, Sophia Antipolis | n, Dependent Types and SubType Systems

Type Assignment Rules for Union and
Intersection all together

Xo€B B xob-M:1 B-M:0—717 BEFEN:o
Brxio N BrwMoor D BFMN: 7 (—E)
BEM:0 o<1 BrM:o BFM:7
Brm.r (Y BrM.onr ()
BEM:onrt BEM:ont
BEM:co (NE) B-M:+ (NEr)
_BEM:o BFM:7
BFM:UUT(UII) BI—M:OUT(Ulr)

B, xo-M:p Bxt+-M:p BFN:ocUT
BEM[N/x]:p

(UE)

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Subtyping rules (= subtype theory in [BDdL])

(1)o<ono (8)o1 <o, <m=01Un <02Um
(2)oUo <o Qo< T<p=>0<p
B)onrt<oonrt<t (10)on(rUp)<(ecnT)U(enp)
A)o<oUr,r<oUr (M)(c—=7)N(c—=p)<o—(tNp)
(5)o<vU (12) (e = p)N(r = p) <(cUT) = p
(6)oc <o (13) uU<U—U

(7)o1 <o, <= (14) o< o, <2 =

orNT < 02NTo 01— T1 < 02— To

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Subtyping rules 1/4

A subtyping relation is a preorder, ie. a reflexive and transitive order
with U is a universal type, corresponding to the T constant in the lattice
of types (with U as LU and N as M)

o < o Reflexivity
o< 7, T p=0 < P Transitivity
g < U Universal type
U<U—U Universal type is also a function

on, Union, Dependent Types and SubType Systems

Subtyping rules 2/4

Main rules for intersection:

oc<oNo
cNT<o
cN7T<T

01 <X 02,71 X T2 = 01Ty < 02 T2 Inter. compositionality
Main rules for union:

cUo <o
oc<LoUJrT
T<oUT

01 KX 02,71 < To= 01UTy < 02U To Union compositionality

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Subtyping rules 3/4

A
o/

on (7’ U ,0) < (O' N 7') U (O’ N ,0) Distr. of inter over union

(0 > 71)N(0c— p) <o —(TNp) Codomain factorization

(c—=p)N(tr—=p)<(cUT)—p Domain factorization

Distributivity of union over intersection can be inferred, so there is no
need for another distributivity axiom

-
I &Z’Z{d/— Luigi Liquori, Inria, Sophia Antipolis Médif nion, Dependent Types and SubType Systems

Subtyping rules 4/4

Domain contravariance and codomain variance

01 <02, T ST2=> 02 —>T1 <01~ T2

ori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Union types as a dual of intersection types

» Union types | J [MacQueen-Plotkin-Sethi '85] are considered as a
dual of intersection types

[xoFM:p T'xtTEM:p THEN:cUT
FEM[N/X]:p

(UE)

» Union corresponds “roughly” to OCaml Sum types (via match)
type ’a or = Inl of ’a | In2 of ’a ;; ‘a is a type variable

let £ x = match x with case analysis on the shape of x
| Inl y -> "case 1" first case

| In2 y -> "case 2" second case

EI)

» The big difference between Sum and Union types is that, for Union
types, all cases should have the same structure and “set” disjoint

I Crzia— [

n, Dependent Types and SubType Systems

Intersection and union are super expressive
The Forsythe code [by Pierce 91]

Is.0 = An.if n=0 then frue else false : o
o = (Zero— True) N (Neg — False) N (Pos — False)
Not.0 = An.ifn#0then1 else —1: Num — (Pos U Neg)
Is 0 (Not0 n) : False

Without union types the best information we can get for Is.0 (Not.0 n)
is a Bool type

So intersection and union types allow a restricted form of ABSTRACT
INTERPRETATION

I &tu&,- Luigi Liquori, Inria, Sophia Antipolis Mé ion, Dependent Types and SubType Systems

REPETITA JUVANT: Propositional Logic vs
Intersection (and Union) Types

N IS not A

The dual type of intersection is Union:

U IS not Vv

Since the méarﬁng of N is réasonably clear (to claim that ANB is to claim that one has
a reason for asserting A which is also a reason for asserting B), it would obviously be of
interest to figure out how to add N to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

NB: Usual intuitionistic logics do not apply for intersection and union

I &zu&,- Luigi Liquori, Inria, Sophia Antipolis Médi ion, Dependent Types and SubType Systems

Proof-functional logics for UNION

We can extend the Pottinger ‘80 "logical” interpretation of union as an
intuitionistic connective, by stating that:

DISJUNCTION: “If one has a reason for asserting A — C and another
reason for asserting B — C and another reason to assert AV B then
one can assert C”

... (while) ...

UNION: “If one has a reason for asserting both A — C and B — C and
another reason to assert AU B then one can assert C”

P4 Po Ps P P Po
Y Y Y Y Y Y
A—-C B—-C AVB A—-C B—-C AUB
C C

I &L’tl’a/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Extending the A-calculus with UNION

o = ¢lo—o|oNoloUc|U

A = x| Ao A|AA| typed A-calculus
(ALA) | pry A | pr, A | strong pairs and projections
[AA] | strong sums
inTA | ingA | injections for strong sum
A7 | explicit coercions

Un indexed constants

lion, Union, Dependent Types and SubType Systems

Reconstructing the essence M from a A-term

« Fix the relation between pure \-terms and typed A-terms
» Consider the following “erasing” partial function : —2

oA E)

V(A1 , Ag) A0

infAy £

LPxcoAg A A0 Mgt B VA Ag /X

» Example:
LAXioinpx , Ax:T.inix]yr =y

I &L’Z&,a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée tion, Union, Dependent Types and SubType Systems

Semantics and properties of the A-calculus

Standard S-reduction
(/\XZG.A1)A2 —8 A1[A2/X]

Projection rules
pri(Aq,D2) —rpr, A
pry (A1, D2) —pr, Az

Injection rules
[)\XZO'.A1 ,)\X:T.AZ] in?A(; —iny Aq [A3/X]

[)\XZU.A1 ,)\XIT.AQ] I.n;Ag —in, AQ[A3/X]

The usual properties hold: isomorphism wrt the Curry-style system,
Church-Rosser, subject reduction for parallel reduction, unicity of
typing, decidability of type checking, and type reconstruction

I &L’&J’a/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Extending the typing rules of A-calculus with
Union

A0
F=Ao:7 1A= 100 r'EA:o01N ie{1,2

2 1- 2 () o1 Noy . .{, }(DE,-)
(A, Dg)ionT [FprA:o

Mxob Ay :p A= 1A0
M= A:o; i€{1’2}(ul-) MxtHEMAo:p THEAz:0UT
[inlA: oy Uop YUT R Mo Ay AT AR Ag - p

(UE)

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Subtyping rules of theory = from [BDdL]

The subtyping relation from [BDdL] defines a lattice with U as the top, U
as the join operator and N as the meet operator

c<oNo c1<ocand < =>01Umn <ooUm
cUoc <o <Ttand7T<p=0<p
cNt<ocandeoN7 <7 N(rUp) < (enT)U(cnp)
c<oUrand T <oUT (c—=71)N(c—=p)<o—=(TNp)
oc<U (c—=p)N(r—=p)<(cUT)—=p
o< o U<U—T

o1 <ocand i < =

o1 N7 <02NTo

.
I V227 | . | iquori, Inria, Sophia Antipolis Méditerran

oo<Loyand i < » =

01— T <02 =T

on, Union, Dependent Types and SubType Systems

Raising the A-calculus to a A-framework

Adding union types as dual types to intersection types

Adding dependent types a /a LF and found a Curry-Howard
Isomorphism

States a Curry-Howard isomorphism for Union and Intersection

Proof as A-terms and Intersection/Union types as Logical
Formulae

NB: usual Intuitionistic Logics do not apply to Union and
Intersection

I &L’&J’a/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

The A-framework (a la Edinburgh LF)

Kinds K := Type|Nx:c.K asinLF

Families o,7 == a|Mxwor|cA] asinLF
o—="1| relevant arrow
onNT]| intersection
ocuUr union

Objects A == c|x| o A|AA| asinlLF
ANXxoA|ATA relevant A
(A A) | pairs for intersection
[A,A]] pairs for union
pri A | pr, A | projections
in]A | ing A injections

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerran lion, Union, Dependent Types and SubType Systems

The Bull software

 Bull is an interactive software which implements the A-framework
» Developed from scratch in OCaml

« It contains
- a Read-Eval-Print Loop

- a typechecker with refinement types
- an evaluator

- a decidable and Coq proved and code extracted algorithm for
subtyping

- a higher-order unifier

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerran ion, Union, Dependent Types and SubType Systems

The language of Bull

Ao = s|c|x|-|2x[A;...;A] | let x:o :=Ain A |Nx:0.A |
Mo A|AS|oNo|loUo | (A,A) | pry Al pnA|
smatch A return o with [x:c = A | x:0 = A] |
infoAlingo A | coeo A

» Applications use spines, as in [Cervesato-Pfenning], i.e. lists of

arguments
S:=(1(8:4)
» Meta-variables ?x[A;...; A] use suspended substitutions: if we
know that
ZobR?ly:T
¢ We have

(Mo?y[z:=x])A —p ?y[z:=A]:7[z:= 4]

I &L’&J’a/— Luigi Liquori, Inria, Sophia Antipolis Médite nion, Dependent Types and SubType Systems

Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definitionid:(s —>s) & (s >s —>s —>s8) =
let idl x ;= x in let id2 x := x in <idil, id2>.

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —Intersection, Union, Dependent Types and SubType Systems

Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definitionid:(s —>s) & (s >s —>s —>s8) =
let idl x ;= x in let id2 x := x in <idil, id2>.

Definitionid:(s —>s) & (s >s-—>s —>s8) =
let idl x '= x in let id2 x ;= x in <id1l, id2>.

AAA

Error: the term "id2" has type "?t[]1 — 7t[1"
while it is expected to have type "s —>s —>s —> s".

-
I &L’ZM/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —In lion, Union, Dependent Types and SubType Systems

Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s @ Type.
s is assumed.

> Definitionid:(s —>s) & ((s —>s) >s —>s) =

let idl x '= x in let id2 x := x in <id1l, id2>.
id is defined.

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée e tion, Union, Dependent Types and SubType Systems

Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s @ Type.
s is assumed.

> Definitionid:(s —>s) & ((s —>s) >s —>s) =
let idl x '= x in let id2 x := x in <id1l, id2>.
id is defined.

> Definition auto_app (f : (s — s) & ((s — s) — s —> s)) :=proj_r f proj_1 f.
auto_app is defined.

> Compute (auto_app id).

funx: s =>x!s —>s
essence=funx=x:s —>s

-
I &L’ZM/— Luigi Liquori, Inria, Sophia Antipolis Méditerranée —In lion, Union, Dependent Types and SubType Systems

Reduction rules of Bull

o B-reduction: ()\X:O‘.A1)A2 —3 A1[A2/X]
e n-reduction: Ax:o.Ax —, Aif x & FV(A)

» smatch-reduction:
smatch in; Az return o with [x:7 = A4 | x:1p = Ap] —in, Aj[As/X]

« pr;-reduction: pr; (Aq , o) —p, A

o-reduction: if ¢ is defined as A, then ¢ —s A

o {-reduction: let x:0 := Aqin Ao —¢ AQ[A1 /X]

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerran lion, Union, Dependent Types and SubType Systems

Easing the work of the programmer

¢ In this example, the types of id1 and id2 are inferred:

> Definitionid:(s —>s) & ((s >s8) >s —>s8) =
let idl x '= x in let id2 x ;= x in <id1l, id2>.
id is defined.

« Also, error reports focus precisely on the culprit:
Definitionid:(s >s) & (s >s -—>s —>s) =

let idl x = x in let id2 x ;= x in <id1l, id2>.

AAA

Error: the term "id2" has type "?7t[1 — 7t[1"
while it is expected to have type "s —>s —>s —> s".

» The algorithms we use in order to achieve this are a unifier and a
refiner

I &L’Z&IQ/— Luigi Liquori, Inria, Sophia Antipolis Médite lion, Union, Dependent Types and SubType Systems

Unification and refinement

e There is a meta-environment for meta-variables and their

instanciation

o = | d,sort(?x) | P, ?x:=5| P, (TH?x:0) |

S (MEX=A:0)| P, VEIX|OVEI2Xx:=M
» We use Higher-Order Pattern Unification. Judgments are

ST T AL LA % by
« Refinement is done the same way as in Matita. Judgments are

;T
;LT
[OFED A}
(OFED N
(OFED N

.
I V22T I | . | iquori, Inria, Sophia Antipolis Médite

l_

T T T T

A1 «TI%AQZO';(DQ
f
g1 WO'QZT;(DQ
A1 20’«£A2;¢2
gﬂ
A~ M, o,
4
M@A = &,

hion, Dependent Types and SubType Systems

Conclusion and future work

» We have presented different Church-style A-calculi with
intersection, union, relevant arrow, and dependent types

« We have studied their meta-properties

« We have developed Bull, a proof-of-concept logical framework

Future: logical interpretation of intersection and union

Future: enhance the A-framework with inductive types

CcDV BCD
AT — AZ
=Bn —=Bn

I &zu&,- Luigi Liquori, Inria, Sophia Antipolis Médif nion, Dependent Types and SubType Systems

Thank you for listening
ACDV N AECD

=Bn =B8n

|

ASPY — AZCP
; —TB ; =B
A% oy
AEDV N AB_CD

| o e
AL — A"

The A-calculus: syntax and types

https://arxiv.org/abs/1803.09660

Joint works with Claude Stolze, Dan Dougherty, Furio Honsell,
Ugo de’ Liguoro, lvan Scagnetto

Proudly supported by COST EUTYPES and, hopefully supported by COST EuroProofNet

-
I &L’Z&a/— Luigi Liquori, Inria, Sophia Antipolis Méditerran lion, Union, Dependent Types and SubType Systems

https://arxiv.org/abs/1803.09660

	Proof-of-concept: the Bull software
	Conclusion and future work

