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Intersection, Union, Dependent
Types and SubType Systems

Why after more than 40 yy the topic is still alive ...

Luigi Liquori, Inria, Sophia Antipolis Méditerranée



Intersection Types for pure \-calculus [0 (7]

» Ad hoc polymorphism for the pure A-calculus

40 years history: characterization of strongly normalizing A-terms,
A-models, object-oriented programming, automatic type inference,
type inhabitation, type unification, software product lines, etc

« Type inference is undecidable, subtyping is decidable

B-M:¢6 B-M:r B-FM:ocnr
NE,
BEM onr (D BEM. o (resp. ) E)

BEM:o o<s71
BEM: 7

X.oce€B
(<) Brx:o (Var)

B, xokFM:T
BEMXM:oc—T1

B-M:0—-7 BFN:o
=0 BFMN:7 (—E)
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Intersection Types as a Theoretical Swiss Knife

-
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Examples
« Polymorphic identity

XokFX:o XTHX:T
FAMXX:0—=0 FMXX:T—T
FAX.Xx:(c—=o)N(r—1)

» Self-application A\x.x x

X(c—=w71)Nokx:(c—7)No x(oc—=717)Nokx:(c —>7)No
X(c—=1T)NokXx:0—71 X(c—=T1)Nokx:0
X(c—=1)NokFxx:T
FXxxx:((c—=71)No)—T
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Examples (continued)

6 N AS A CONNECTIVE

It was remarked in section 1 that N behaves quite differently from &. This will now be made
apparent.

A is a theorem iff, for some ¢, - t: A is derivable. This amounts to saying that A is a
theorem iff A is realized by a closed member of TERM.

Given theorem 4.12 and 5.5, it is easy to show that the following formulas are not
theorems: p —.q—pnNg, p—qg —.p—=r —.p—=qNnr, pNng—r —.p —.4—r. On the other
hand, the following sequents are derivable.

F Axxx:An(A—B)—B

F AxAy.xy: (A—-B)n(A—C)—.A—BnC

F AxAy,xy: A—»BNC—.(A—=B)N(A—C)

FAxAyxy: A=-C—.ANB—=C

FAxAyx:ANB—.A—B

F AxAy,xyy: A—(B—C) ».AnB—C

FAxx:ANB—A

FAxx: A= ANA

FAxx:ANB—BNA

F Ax.x: AN(BNC)—(ANB)NC
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The Reference Book: part 3 is dedicated to
Intersection Types

PERSPECTIVES IN LOGIC

LAMBDA CALCULUS
WITH TYPES
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Taxonomy of 13 ()-systems, pp. 601 [BDS13]

DHM CcDV Add U BCD
‘ )\ ~ —_— )\
CDZ HR Scott

Extend < Extend <

[ 4 historical systems [\, [T |
Coppo-Dezani '78 AT CD
Coppo-Dezani-Sallé '79 AL CDS
Coppo-Dezani-Venneri '81 PV Ccbv
Barendregt-Coppo-Dezani 83 | AL~ | BCD

-
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Intersection Type Theories 7
Minimal type theory <q»

(refl) o <o (incl) onN7<o oN7T<T

(glb) p<o&p<T=p<onr (trans) o< 7&T<p=>0<p

Axiom schemes
(Uwp) o < U [Universal type] (V) ULKo—U

(=n) (c—=7)N(c—=p)<o—=(TNp)
Rule scheme
(=) o< &n<m=0—>m<o—>n

| 4 historical systems | A\ | T | <min plus [u? |
Coppo-Dezani ‘78 AP CD — No
Coppo-Dezani-Sallé '79 An7" | CDS | (Utp) Yes
Coppo-Dezani-Venneri ‘81 A7V | CDV | (=), (—N) No
Barendregt-Coppo-Dezani’83 | A"~ | BCD | (=), (=N), (Uwp), (U—) | Yes
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Subtyping in programming languages 1/3

» Subtyping, denoted by <, is a form of implicit polymorphism
(aka implicit type conversion or implicit type coercion)

-
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Subtyping in programming languages 1/3

» Subtyping, denoted by <, is a form of implicit polymorphism
(aka implicit type conversion or implicit type coercion)

» Subtyping allows us to implicitly and safely promote some variable
of some type into another type

int x = 3; X is an integer
float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the resultis 7.0

-
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Subtyping in programming languages 1/3

» Subtyping, denoted by <, is a form of implicit polymorphism
(aka implicit type conversion or implicit type coercion)

» Subtyping allows us to implicitly and safely promote some variable
of some type into another type

int x = 3; X is an integer
float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the resultis 7.0

» Subtyping is not an explicit type conversion (aka type casting)

float x = 3.0; x is an integer
float y = 4.0; y is an double
int z =(int)x + (int)y; x and y are casted into integers

// theresultis 7
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Subtyping in programming languages 2/3
Subtyping hierarchy in C long double
double
float
unsigned long long
long long
unsigned long
long

unsigned int

int

-
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Subtyping in OO programming languages 3/3
» Subtyping lurks also in object-oriented programming

“An object of class T may be substituted with any object of a
subclass S” (©Barbara Liskov)

« Inheritance as subtyping

» Subtyping hierarchy in Java

Class Point {int x = 0; int y = 0}
Class ColPoint extends Point with {string col = red}

Point p = new Point();
ColPoint q = new ColPoint()

p=q accept
q =7 reject
q = (ColPoint) p accept (explicit cast)

-
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Parametric vs. ad hoc polymorphism (1/2)

e Parametric (ML)
> fun x -> x : ’a ->’a ‘a is a type variable

e Ad hoc (C)
int a, b;
float x, y;
printf (¢ ‘%d %f’’, atb, x+y);
» The type of the operator + is
+ : (dnt -> int) N (float -> float)

» Girard’s parametric polymorphism (System F) is "equivalent” to
ad hoc polymorphism

conj
ﬂ/ 1..

Va.ao — o~ (int — int)ﬂ(nat — nat)n(real — real)N
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Parametric vs. ad hoc (2/2)

Intersection types can type every strongly normalizing term of the
A-calculus... which is not the case in System F (or Fomega) ... this

"monster” A-term is strongly normalizing

M.z (x (M ufu))(x(Av.ag.gv)(Ay.yyy)

is not typable in Girard’s Fomega bUt it is in Coppo-Dezani A\5” (rank 3)
[Urzvczvn. MSCS’971

3 Strongly normalizable but untypable

The aim of this section is to show our first main result: the type inference rules of F,, do not suffice

to type all strongly normalizable terms. Our counter-example is the following term:
(%) M = (Aa.z(21)(21)(Ay. yyy)

where 1 = Afu. fu and 1’ = Avg. gv. Clearly, M is strongly normalizable, and it is an easy exercise

to see that it becomes typable in F, after just one reduction step.

Theorem 3.1 The above term M cannot be typed in F,, and thus the class of typable terms is a

proper subclass of the class of all strongly normalizable terms.

-
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Many attempts to adopt Intersection Types,
Programming and Proof Languages

» Languages a la ML (Type Inference): Failure because of the HUGE
literature on the difficulty to find a Principal Type System, see
Damas-Milner seminal algorithm W [POPL82]

-------- Arich lineage

~=Agda—»
SASL—— — Il

~ Miranda —
‘/ » LazyML - Haskell —— Haskell98 —»
[
RN ‘ = Alice
LeFmML =3 e shis0 swio7
SR

~ MoscowML

2
Lisp~ / ‘ —
/ =
Prolog”’ \ / ~Reason
|
AN CAML > Caml Light = OCaml —=

i

» Languages a la Algol, C, Java (Type Checking): Failure because of
the HUGE literature to find expressive Fully Typed presentation

with Decidable Type Checking. A small "galleria” follows...
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Why a typed calculus with () is so
complicated?

Intersection (and union types) were defined as type assignment
systems (for pure A-terms)

Very elegant presentation but undecidability of type inference

Many attempts of finding decidable and typed A-calculi with
intersection (and union types) preserving all the good properties of
type assignment

The usual approach (adding types to binders) is problematic
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GOAL: find a suitable Intersection type
systems a /a Church

» with DECIDABILITY of Type Checking while preserving
expressivity of the Type Assignment characterising ALL
STRONGLY NORMALISING TERMS

XobaX:0o XThFaX:T
FA AX.X:0— 0 |—m)\X.XlT—>T(mI)
FadAx.x: (o —o)N (T —7)

XokFX:o XTEX:T
FAMXoX:0—0 I—)\X:T.X:T—M'(ml)
FAX7?7.x (0= o) (T = T)

-
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Reynolds’ FORSYTHE ’88

Reynolds annotates a A-abstraction with types as in

B.xoitM:7 iel1...n
BF \x:ot|---|lop.M :0j — T

However, we cannot type a typed term, whose type erasure is the
combinator

K= Ax\y.x

with the intersection type

(0 0 —=0o)N(T—>7—>71)
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Pierce’s PhD ’91

Pierce improves Forsythe by using a for construct to build ad hoc
polymorphic typing, as in

BI—M[U,'/O{]ZT,' iel...n
Bt forae{oy...0n}.M: 7

However, we cannot type a typed term, whose type erasure is

AXAYAZ.(XY ,X2Z)

with the intersection type

((c—=p)N(T—=p)—>0—=>7—=px/))
N
(0 wo)N(c —0) > 0—0—0Xo0)
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Pfenning&Friedman: Refinement Types 91

Refinement types are subtypes of standard types
We can only intersect types which are refinements of the same ML type
Subtype ground refine the ML type boolexp: variables cannot be of
type ground
ground C  boolexp
Var : boolexp
True, False : ground N boolexp
Not : ground N boolexp — ground N boolexp

And : (boolexp x boolexp — boolexp)
N
(ground x ground — ground)
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Miquel’s Implicit Constructions PhD 01
Extends Coquand-Huet’s CC with the ternary operator

b?M; N of type Nb:bool.c; T

true?M:N —,c M false?’M; N —,c N

Unfortunately, not all terms typed by intersection types have an
equivalent in ICC, for instance Ax.x : ((c N 7) = &) N (p — p)) appears
to be problematic
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Wells et al. - Aa.\b.\c.c(\d.dab): T No

JFP ’02. Explicitly Typed Intermediate Languages (TILs) facilitate the
safe and efficient compilation of proarammina lanauaaes

/A\

Aa:i—b Aa:r

| I

b Ao (r—7r)A(b—b)
| I

Ae: 7€ Ae:o® —b T=(@{—b—i—=7"=0
l =4 =b)—b

/app\ /app\ 7 =( —b)—i—b

c )\di'rd c//\\ o=r—=(r—=r)ANb—10)—(c°—=b) —=b

¢ =((0f{ =b)A(cf —b

app A :of M :of Jd_((glﬁ) (02 =)
/ \ | | 0'17’7‘—?(7"—>7")—>b

ol =r—=(b—=b) —b




Wells & Haak -* a.\b.\c.c(\d.dab):TNo
ESOP '02. The first system with the power of A5"

A(join{f = x,g = *})
|

Aa:{f=i—bg=r}
|
o {f =ig=0"}
|
Ae:{f=7%g=0" —b}

T=(G{—b—i—7"—=Db

| TC=(Td—>b)—>b
app

/ \ sz(i—>b)—>i—>b
Mf=xg=join{fh =x1=x}}  p=V(oin{f=xg=x}){f=79=0}
I 09 =r—0 = (0% -b)—b
M:{f=r%g={h=0l1=08} b0 _\(ioin{j— s,k = +}).{j =1 —r.k = b b}

| 09 =V(join{h = *,l = %}). {h = 0 = b,l = 0§ — b}
app

\
app [{f =%g= {h = (.7’ *)’l = (k7 *)}}]
/ \ |

. d a b
-
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Frisch, Castagna, Benzaken, JSL 08

» Types as sets and subtyping as subsets

coNT < oisinterpreted as [o] N [7] C [o]
(el NI Nlel =9
t= M\ (ti—’si)/\[ I\ "(t}—’sé)} t 0

i=1l..n Jj=1..m

Vi=1.nI,(f:t),(z:t;)Fe:s;
CFupf(ti—s1;...5tp—sp). Az t

(abstr)

-
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Many attempts to find an INTUITIONISTIC
LOGIC corresponding to Intersection

A “scientific consensus” on the existence of a
Curry-Howard Isomorphism for
is stillan OPEN PROBLEM
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Curry-Howard Isomorphism

Types as

Logical Propositions
(Formulas)

and

Typed \-terms as
Logical Proofs

-
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Logic vs Intersection (and Union) Types

N IS not A

The dual type of intersection is Union:

U IS not Vv

Since the méarﬁng of Niis réasonably clear (to claim that ANB is to claim that one has
a reason for asserting A which is also a reason for asserting B), it would obviously be of

interest to figure out how to add N to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

NB: Usual intuitionistic logics do not apply for intersection and union
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Proof-functional logics for INTERSECTION

Pottinger 80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A A Bis to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert AN B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1 P P P
Y Y Y Y
A B A B
ANB ANB
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Many attempts to find a LOGIC corresponding
to Intersection

As the time the existence of a
Curry-Howard Isomorphism
is still an OPEN PROBLEM
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Curry-Howard Isomorphism

Types as

Logical Propositions
(Formulas)

and

Typed \-terms as
Logical Proofs
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Logic vs Intersection (and Union) Types

N IS not A

The dual type of intersection is Union:

U IS not Vv

Since the méarﬁng of Niis réasonably clear (to claim that ANB is to claim that one has
a reason for asserting A which is also a reason for asserting B), it would obviously be of

interest to figure out how to add N to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

NB: Usual intuitionistic logics do not apply for intersection and union
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Proof-functional logics for INTERSECTION

Pottinger 80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A A Bis to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert AN B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1 P P P
Y Y Y Y
A B A B
ANB ANB
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A proposal of a Church-style calculus with
Intersection Types

The A-calculus: Syntax and Types

Luigi Liquori Claude Stolze !
Université Cote d’Azur, Inria, France
[Luigi.Liquori,Claude.Stolze] @inria.fr
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Syntax of the Generic A-calculus

o = ¢|lo—o|oNa|U types
A = X| Mo A]AA| typed A-calculus
VASWAVE strong pairs
pri A | pr, A projections
A7 | explicit coercions
un indexed constants

A strong pair (A, A) is a kind of cartesian pair
An explicit coercion is A’ is a A-term annotated with a type

ua is an infinite set of constants indexed by A-terms
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Typed A vs. Untyped )\: the essence function

» Essence is an erasing function transforming a typed A-term into an
untyped A-term.

Xt = X
VAo AL = AXLAY
VA1 A0 = 1A NARN
VA% = 1A
tupl = 1A
LAY = 1A

VAT, A2)0 = 1A

-
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Reduction semantics

¢ (Substitution) Substitution on A-terms is defined as usual, with
the additional rules:

def
Un[B2/X] = Uaiayx)

Af[Az/x] E (Ai[Az/x]))
« (One-step reduction) Reduction rules:
(Mo D) Dy —5  A[A2/X]
pri(Ay,Az) —p A, forie {1,2}
Ao AX —, A if x ¢ FV(A)

-
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2 NB and 1 EX

« NB.1:  (AX:0.A4)" Ao is not a redex

* NB2:  U)x.o.n)0, is not a redex

- EX: (AX:0—0. u(xx)) (Ax:0.X) —3 U((\x:0.x) (Ax:0.x))

-
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Synchronization in reductions

Desynchronization inside a strong pair can produce “exotic” A-terms

ooy oy | OXOXIPRY PRI N
e g oy, (xox)pryy) 78 T

Synchronicity in operational semantics

Ay —" Ay Do —' Ay 1A =100
(D1, Do) — (A7, D)

(Sync)
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Church-Rosser property

¢ Reduction is confluent

« Synchronous reduction is also confluent

Ay
VN
2 A

N 7
N I,

N W

Ay

A 3

-
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The Generic A-calculus type system -7,

The Type Checker depends on 2 parameters:
1. The subtyping relation <, in T € {CD,CDV,CDS, BCD}
2. The synchronicity relation R on pure A-terms, R € {=,=3,=3,}

Xoel (Var)

Fl—%x:a
MR Ao 0 k% Ao 0<TT(<)
MFT Ua:U e am:r
ML Ay:o
TR Do 1AL R 1A (" Tl A:oyNog ic{1,2} (E)
FTET Ay, Dg)ionT MR priA o ’
I’|—77—3A1:0—>T FI—%AZ:U(_)E) F,X:al—%A:T (=)
F|—77'3A1A2:T FI—%)\X:U.A:U—M'

on, Union, Dependent Types and SubType Systems
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Examples

Auto-application (Ax.x x) a la Curry can be typed a la Church as follows:

xX(oc—=w71)Nokx(c—-71)No x:(c >7)NokFXx:(c >T)N0o
X(c—=1)NokFprXx:o—T1 X(oc—=T)NokpLXx:o
X(c = T1)Nok(pryx)(prXx):T
Fx:(c = 71)no(pr X)(prx): ((c = 17)No) =71
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Examples

For A%® and A" :
Fixpoint combinator Y ® A.(AX.F(x X)) (Ax.f (X X))

fU=0o,xUFf:U=0 fU—=0,XUF Uyyx:U
fU— o, XUFfUyy:o
fU— ok )\X:U.fU(XX) U—o0o fU— otk U()\X;U.fu(”)) U
fU—=ok ()\XZU.fU(XX)) Ux:ufuy,) = O
F AU — J.()\XZU.fU(XX)) UOxu.f ugy ) - (U — 0’) — 0

-
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Replay

Taxonomy of 13 (-systems, pp. 601 [BDS13]
DHM /\gDV Add U /\.E,CD
CDZ HR  Scott
Engeler
Extend < Extend <
[
HL @ )\CD ACDS
B R
[ 4 historical systems AL T <min plus u? |
Coppo-Dezani '78 AL CD - No
Coppo-Dezani-Sallé '79 Ao | CDS | (Ukp) Yes
Coppo-Dezani-Venneri '81 S CDV | (=), (—=N) No
Barendregt-Coppo-Dezani 83 | A | BCD | (=), (—N), (Uwp), (U—) | Yes

(22X | ;i icuori, inia - Wy reduct d U) typed lambda-calculi
.

-
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The A-chair ASZ - AB:C;:

CDhV Add U BCD
)\ﬂ )\ﬂ

ACDV ABCD

=B =B

/ /

CD CDS CD CDS

Extend < Extend <

A;DV AB:CD

R €{==p=p} pa P -

A N

-
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Isomorphism property of A”,
(Soundness) (A% > )\;) r l—;rz A:o=T I—Z Ao
(Completeness) (A% < )\;) r F%— M:oc— 3A. M =Mand T |—77—3 Ao

(Isomorphism) (Az;z ~ )\;) A% > /\I: and A% <1>\g

-
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Isomorphism property of A”,
(Soundness) (A% > )\;) r I—;rz A:o=T I—Z Ao
(Completeness) (A% < )\;) r |_r71— M:oc— 3A. M =Mand T |—77—3 Ao

(Isomorphism) (Az;z ~ )\;) A% > /\; and A% <1>\g

AT —— AZD AT, [AR oM [AR <AL |

ASP
] A

A§Ds
ACDV ABCD ABZCD \\? v

=B =B =

7 / AT
ACP T ACPS AESV * \/
R adbs | y
ASDV N N AB_CD ABZgD \/ \/

= = =5
/ /! ;E’ X Vv
A —— AP N X J




Counter-example for ASDB: and AZ;?,
- Letin AV
pry (Ay:o.(pry X) y , pry X)

We have that

)

x:(0 = 7) N p EEYIEP pry, (\ya(pry X) y . pry X) -

e The essence is

Ay Xy
o ...butin ASPY AP
CDV/BCD
x:(o = 7)Nphs / AYXy:p

-
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Counter-example for AS; and AS;V

.S AX Ay Az.xz(y z)

K% AXAY.X
SKS =5 Ax.x

« In AZY/°"Y, you can construct a term A such that

(A =SKS

We have that
|-CD/CDV
=B

pry (A AX:0.X) 0 =0

the essence is

SKS

o ...butin ASP APV

VﬁD/CDVSKS:a—m
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Decidability of type checking/reconstruction

ACPV A\ECP
=Bn n
l |A% [TC/TR |
AT J
AczDv
ACPY ABCP AEDS y
=8 =8 AECD \/
aer’ | qevd N Y
=5 =5 ACSV \/
Acgs %
ACDV N N ABCD BgD
= = X
—3
/ % AT
AL —— A At

Why? (Ua, , Ua,) is typable if and only if 1 Ay =5 g, 1 A2
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Union Types

UNION TYPES

Invented by Mc Queen, Plotkin and Sethi et al. in 86
Dual to Intersection Types

» Same features and drawbacks of Intersection Types
» Conjectures with its relation with Intuitionistic Logic
» Not clear Curry-Howard isomorphism

« Relation with Pottinger’s Proof Functional Logic
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Type Assignment Rules for Union and
Intersection all together

Xo€B B xob-M:1 B-M:0—717 BEFEN:o
Brxio N BrwMoor D BFMN: 7 (—E)
BEM:0 o<1 BrM:o BFM:7
Brm.r (Y BrM.onr ()
BEM:onrt BEM:ont
BEM:co (NE) B-M:+ (NEr)
_BEM:o BFM:7
BFM:UUT(UII) BI—M:OUT(Ulr)

B, xo-M:p Bxt+-M:p BFN:ocUT
BEM[N/x]:p

(UE)
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Subtyping rules (= subtype theory in [BDdL])

(1)o<ono (8)o1 <o, <m=01Un <02Um
(2)oUo <o Qo< T<p=>0<p
B)onrt<oonrt<t (10)on(rUp)<(ecnT)U(enp)
A)o<oUr,r<oUr (M)(c—=7)N(c—=p)<o—(tNp)
(5)o<vU (12) (e = p)N(r = p) <(cUT) = p
(6)oc <o (13) uU<U—U

(7)o1 <o, <= (14) o< o, <2 =

orNT < 02NTo 01— T1 < 02— To

-
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Subtyping rules 1/4

A subtyping relation is a preorder, ie. a reflexive and transitive order
with U is a universal type, corresponding to the T constant in the lattice
of types (with U as LU and N as M)

o < o Reflexivity
o< 7, T p=0 < P Transitivity
g < U Universal type
U<U—U Universal type is also a function
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Subtyping rules 2/4

Main rules for intersection:

oc<oNo
cNT<o
cN7T<T

01 <X 02,71 X T2 = 01Ty < 02 T2 Inter. compositionality
Main rules for union:

cUo <o
oc<LoUJrT
T<oUT

01 KX 02,71 < To= 01UTy < 02U To Union compositionality

-
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Subtyping rules 3/4

A
o/

on (7’ U ,0) < (O' N 7') U (O’ N ,0) Distr. of inter over union

(0 > 71)N(0c— p) <o —(TNp) Codomain factorization

(c—=p)N(tr—=p)<(cUT)—p Domain factorization

Distributivity of union over intersection can be inferred, so there is no
need for another distributivity axiom

-
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Subtyping rules 4/4

Domain contravariance and codomain variance

01 <02, T ST2=> 02 —>T1 <01~ T2
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Union types as a dual of intersection types

» Union types | J [MacQueen-Plotkin-Sethi '85] are considered as a
dual of intersection types

[ xoFM:p T'xtTEM:p THEN:cUT
FEM[N/X]:p

(UE)

» Union corresponds “roughly” to OCaml Sum types (via match)
type ’a or = Inl of ’a | In2 of ’a ;; ‘a is a type variable

let £ x = match x with case analysis on the shape of x
| Inl y -> "case 1" first case

| In2 y -> "case 2" second case

EI)

» The big difference between Sum and Union types is that, for Union
types, all cases should have the same structure and “set” disjoint

I Crzia— [
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Intersection and union are super expressive
The Forsythe code [by Pierce 91]

Is.0 = An.if n=0 then frue else false : o
o = (Zero— True) N (Neg — False) N (Pos — False)
Not.0 = An.ifn#0then1 else —1: Num — (Pos U Neg)
Is 0 (Not0 n) : False

Without union types the best information we can get for Is.0 (Not.0 n)
is a Bool type

So intersection and union types allow a restricted form of ABSTRACT
INTERPRETATION
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REPETITA JUVANT: Propositional Logic vs
Intersection (and Union) Types

N IS not A

The dual type of intersection is Union:

U IS not Vv

Since the méarﬁng of N is réasonably clear (to claim that ANB is to claim that one has
a reason for asserting A which is also a reason for asserting B), it would obviously be of
interest to figure out how to add N to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

NB: Usual intuitionistic logics do not apply for intersection and union
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Proof-functional logics for UNION

We can extend the Pottinger ‘80 "logical” interpretation of union as an
intuitionistic connective, by stating that:

DISJUNCTION: “If one has a reason for asserting A — C and another
reason for asserting B — C and another reason to assert AV B then
one can assert C”

... (while) ...

UNION: “If one has a reason for asserting both A — C and B — C and
another reason to assert AU B then one can assert C”

P4 Po Ps P P Po
Y Y Y Y Y Y
A—-C B—-C AVB A—-C B—-C AUB
C C
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Extending the A-calculus with UNION

o = ¢lo—o|oNoloUc|U

A = x| Ao A|AA| typed A-calculus
(ALA) | pry A | pr, A | strong pairs and projections
[AA] | strong sums
inTA | ingA | injections for strong sum
A7 | explicit coercions

Un indexed constants
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Reconstructing the essence M from a A-term

« Fix the relation between pure \-terms and typed A-terms
» Consider the following “erasing” partial function : —2

oA E )

V(A1 , Ag) A0

infAy £

LPxcoAg A A0 Mgt B VA Ag /X

» Example:
LAXioinpx , Ax:T.inix]yr =y
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Semantics and properties of the A-calculus

Standard S-reduction
(/\XZG.A1)A2 —8 A1[A2/X]

Projection rules
pri(Aq,D2) —rpr, A
pry (A1, D2) —pr, Az

Injection rules
[)\XZO'.A1 , )\X:T.AZ] in?A(; —iny Aq [A3/X]

[)\XZU.A1 ,)\XIT.AQ] I.n;Ag —in, AQ[A3/X]

The usual properties hold: isomorphism wrt the Curry-style system,
Church-Rosser, subject reduction for parallel reduction, unicity of
typing, decidability of type checking, and type reconstruction
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Extending the typing rules of A-calculus with
Union

A0
F=Ao:7 1A= 100 r'EA:o01N ie{1,2

2 1- 2 () o1 Noy . .{, }(DE,-)
(A, Dg)ionT [FprA:o

Mxob Ay :p A= 1A0
M= A:o; i€{1’2}(ul-) MxtHEMAo:p THEAz:0UT
[inlA: oy Uop YUT R Mo Ay AT AR Ag - p

(UE)
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Subtyping rules of theory = from [BDdL]

The subtyping relation from [BDdL] defines a lattice with U as the top, U
as the join operator and N as the meet operator

c<oNo c1<ocand < =>01Umn <ooUm
cUoc <o <Ttand7T<p=0<p
cNt<ocandeoN7 <7 N(rUp) < (enT)U(cnp)
c<oUrand T <oUT (c—=71)N(c—=p)<o—=(TNp)
oc<U (c—=p)N(r—=p)<(cUT)—=p
o< o U<U—T

o1 <ocand i < =

o1 N7 <02NTo

.
I V227 | . | iquori, Inria, Sophia Antipolis Méditerran

oo<Loyand i < » =

01— T <02 =T

on, Union, Dependent Types and SubType Systems




Raising the A-calculus to a A-framework

Adding union types as dual types to intersection types

Adding dependent types a /a LF and found a Curry-Howard
Isomorphism

States a Curry-Howard isomorphism for Union and Intersection

Proof as A-terms and Intersection/Union types as Logical
Formulae

NB: usual Intuitionistic Logics do not apply to Union and
Intersection
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The A-framework (a la Edinburgh LF)

Kinds K := Type|Nx:c.K asinLF

Families o,7 == a|Mxwor|cA] asinLF
o—="1| relevant arrow
onNT]| intersection
ocuUr union

Objects A == c|x| o A|AA| asinlLF
ANXxoA|ATA relevant A
(A A) | pairs for intersection
[A,A] ] pairs for union
pri A | pr, A | projections
in]A | ing A injections
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The Bull software

 Bull is an interactive software which implements the A-framework
» Developed from scratch in OCaml

« It contains
- a Read-Eval-Print Loop

- a typechecker with refinement types
- an evaluator

- a decidable and Coq proved and code extracted algorithm for
subtyping

- a higher-order unifier
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The language of Bull

Ao = s|c|x|-|2x[A;...;A] | let x:o :=Ain A |Nx:0.A |
Mo A|AS|oNo|loUo | (A,A) | pry Al pnA|
smatch A return o with [x:c = A | x:0 = A] |
infoAlingo A | coeo A

» Applications use spines, as in [Cervesato-Pfenning], i.e. lists of

arguments
S:=(1(8:4)
» Meta-variables ?x[A;...; A] use suspended substitutions: if we
know that
ZobR?ly:T
¢ We have

(Mo?y[z:=x])A —p ?y[z:=A]:7[z:= 4]
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Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definitionid:(s —>s) & (s >s —>s —>s8) =
let idl x ;= x in let id2 x := x in <idil, id2>.
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Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definitionid:(s —>s) & (s >s —>s —>s8) =
let idl x ;= x in let id2 x := x in <idil, id2>.

Definitionid:(s —>s) & (s >s-—>s —>s8) =
let idl x '= x in let id2 x ;= x in <id1l, id2>.

AAA

Error: the term "id2" has type "?t[]1 — 7t[1"
while it is expected to have type "s —>s —>s —> s".
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Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s @ Type.
s is assumed.

> Definitionid:(s —>s) & ((s —>s) >s —>s) =

let idl x '= x in let id2 x := x in <id1l, id2>.
id is defined.
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Interacting with Bull

Welcome to Bull 1.0, an experimental LF—based proof checker
based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s @ Type.
s is assumed.

> Definitionid:(s —>s) & ((s —>s) >s —>s) =
let idl x '= x in let id2 x := x in <id1l, id2>.
id is defined.

> Definition auto_app (f : (s — s) & ((s — s) — s —> s)) :=proj_r f proj_1 f.
auto_app is defined.

> Compute (auto_app id).

funx: s =>x!s —>s
essence=funx=x:s —>s
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Reduction rules of Bull

o B-reduction: ()\X:O‘.A1)A2 —3 A1[A2/X]
e n-reduction: Ax:o.Ax —, Aif x & FV(A)

» smatch-reduction:
smatch in; Az return o with [x:7 = A4 | x:1p = Ap] —in, Aj[As/X]

« pr;-reduction: pr; (Aq , o) —p, A

o-reduction: if ¢ is defined as A, then ¢ —s A

o {-reduction: let x:0 := Aqin Ao —¢ AQ[A1 /X]
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Easing the work of the programmer

¢ In this example, the types of id1 and id2 are inferred:

> Definitionid:(s —>s) & ((s >s8) >s —>s8) =
let idl x '= x in let id2 x ;= x in <id1l, id2>.
id is defined.

« Also, error reports focus precisely on the culprit:
Definitionid:(s >s) & (s >s -—>s —>s) =

let idl x = x in let id2 x ;= x in <id1l, id2>.

AAA

Error: the term "id2" has type "?7t[1 — 7t[1"
while it is expected to have type "s —>s —>s —> s".

» The algorithms we use in order to achieve this are a unifier and a
refiner
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Unification and refinement

e There is a meta-environment for meta-variables and their

instanciation

o = | d,sort(?x) | P, ?x:=5| P, (TH?x:0) |

S (MEX=A:0)| P, VEIX|OVEI2Xx:=M
» We use Higher-Order Pattern Unification. Judgments are

ST T AL LA % by
« Refinement is done the same way as in Matita. Judgments are

;T
;LT
[OFED A}
(OFED N
(OFED N

.
I V22T I | . | iquori, Inria, Sophia Antipolis Médite

l_

T T T T

A1 «TI%AQZO';(DQ
f
g1 WO'QZT;(DQ
A1 20’«£A2;¢2
gﬂ
A~ M, o,
4
M@A = &,
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Conclusion and future work

» We have presented different Church-style A-calculi with
intersection, union, relevant arrow, and dependent types

« We have studied their meta-properties

« We have developed Bull, a proof-of-concept logical framework

Future: logical interpretation of intersection and union

Future: enhance the A-framework with inductive types

CcDV BCD
AT — AZ
=Bn —=Bn
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Thank you for listening
ACDV N AECD

=Bn =B8n

|

ASPY — AZCP
; —TB ; =B
A% oy
AEDV N AB_CD

| o e
AL — A"

The A-calculus: syntax and types

https://arxiv.org/abs/1803.09660
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