
Intersection, Union, Dependent
Types and SubType Systems
Why after more than 40 yy the topic is still alive ...

Luigi Liquori, Inria, Sophia Antipolis Méditerranée

Intersection Types for pure λ-calculus [σ
⋂
τ]

• Ad hoc polymorphism for the pure λ-calculus

• 40 years history: characterization of strongly normalizing λ-terms,
λ-models, object-oriented programming, automatic type inference,
type inhabitation, type unification, software product lines, etc

• Type inference is undecidable, subtyping is decidable

B ` M : σ B ` M : τ
B ` M : σ ∩ τ (∩I) B ` M : σ ∩ τ

B ` M : σ (resp. τ)
(∩El/r)

B ` M : σ σ 6T τ
B ` M : τ

(6) x :σ ∈ B
B ` x : σ

(Var)

B, x :σ ` M : τ

B ` λx .M : σ → τ
(→I) B ` M : σ → τ B ` N : σ

B ` M N : τ
(→E)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 2

Intersection Types as a Theoretical Swiss Knife

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 3

Examples

• Polymorphic identity

x :σ ` x : σ
` λx .x : σ → σ

x :τ ` x : τ
` λx .x : τ → τ

` λx .x : (σ → σ) ∩ (τ → τ)

• Self-application λx .x x

x :(σ → τ) ∩ σ ` x : (σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` x : σ → τ

x :(σ → τ) ∩ σ ` x : (σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` x : σ

x :(σ → τ) ∩ σ ` x x : τ

` λx .x x : ((σ → τ) ∩ σ)→ τ

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 4

Examples (continued)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 5

The Reference Book: part 3 is dedicated to
Intersection Types

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 6

Taxonomy of 13
⋂

-systems, pp. 601 [BDS13]

λCD

∩

λCDV

∩

λCDS

∩

λBCD

∩
Add U

Extend 6 Extend 6

Add U

4 historical systems λ
T
∩ T

Coppo-Dezani ’78 λ
CD
∩ CD

Coppo-Dezani-Sallé ’79 λ
CDS
∩ CDS

Coppo-Dezani-Venneri ’81 λ
CDV
∩ CDV

Barendregt-Coppo-Dezani ’83 λ
BCD
∩ BCD

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 7

Intersection Type Theories T
Minimal type theory 6min

(refl) σ 6 σ (incl) σ ∩ τ 6 σ σ ∩ τ 6 τ

(glb) ρ 6 σ & ρ 6 τ ⇒ ρ 6 σ ∩ τ (trans) σ 6 τ & τ 6 ρ⇒ σ 6 ρ

Axiom schemes
(Utop) σ 6 U [Universal type] (U→) U 6 σ → U

(→∩) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

Rule scheme
(→) σ2 6 σ1 & τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

4 historical systems λ
T
∩ T 6min plus U?

Coppo-Dezani ’78 λ
CD
∩ CD − No

Coppo-Dezani-Sallé ’79 λ
CDS
∩ CDS (Utop) Yes

Coppo-Dezani-Venneri ’81 λ
CDV
∩ CDV (→), (→∩) No

Barendregt-Coppo-Dezani ’83 λ
BCD
∩ BCD (→), (→∩), (Utop), (U→) Yes

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 8

Subtyping in programming languages 1/3
• Subtyping, denoted by 6, is a form of implicit polymorphism

(aka implicit type conversion or implicit type coercion)

• Subtyping allows us to implicitly and safely promote some variable
of some type into another type
int x = 3; x is an integer

float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the result is 7.0

• Subtyping is not an explicit type conversion (aka type casting)
float x = 3.0; x is an integer
float y = 4.0; y is an double

int z = (int)x + (int)y; x and y are casted into integers
// the result is 7

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 9

Subtyping in programming languages 1/3
• Subtyping, denoted by 6, is a form of implicit polymorphism

(aka implicit type conversion or implicit type coercion)

• Subtyping allows us to implicitly and safely promote some variable
of some type into another type
int x = 3; x is an integer

float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the result is 7.0

• Subtyping is not an explicit type conversion (aka type casting)
float x = 3.0; x is an integer
float y = 4.0; y is an double

int z = (int)x + (int)y; x and y are casted into integers
// the result is 7

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 9

Subtyping in programming languages 1/3
• Subtyping, denoted by 6, is a form of implicit polymorphism

(aka implicit type conversion or implicit type coercion)

• Subtyping allows us to implicitly and safely promote some variable
of some type into another type
int x = 3; x is an integer

float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the result is 7.0

• Subtyping is not an explicit type conversion (aka type casting)
float x = 3.0; x is an integer
float y = 4.0; y is an double
int z = (int)x + (int)y; x and y are casted into integers

// the result is 7

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 9

Subtyping in programming languages 2/3
Subtyping hierarchy in C

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 10

Subtyping in OO programming languages 3/3
• Subtyping lurks also in object-oriented programming

“An object of class T may be substituted with any object of a
subclass S” (c©Barbara Liskov)

• Inheritance as subtyping

• Subtyping hierarchy in Java

Class Point {int x = 0; int y = 0}
Class ColPoint extends Point with {string col = red}

Point p = new Point();

ColPoint q = new ColPoint()

p = q accept

���q = p reject

q = (ColPoint) p accept (explicit cast)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 11

Parametric vs. ad hoc polymorphism (1/2)
• Parametric (ML)
> fun x -> x : ’a -> ’a ‘a is a type variable

• Ad hoc (C)
int a, b;

float x, y;

printf(‘‘%d %f’’, a+b, x+y);

• The type of the operator + is
+ : (int -> int) ∩ (float -> float)

• Girard’s parametric polymorphism (System F) is ”equivalent” to
ad hoc polymorphism

∀α.σ conj
=

⋂
i=1...∞ σi

∀α.α→ α ∼ (int → int)∩(nat → nat)∩(real → real)∩ ...

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 12

Parametric vs. ad hoc (2/2)
Intersection types can type every strongly normalizing term of the

λ-calculus... which is not the case in System F (or Fomega) ... this

”monster” λ-term is strongly normalizing

λx .z (x (λf .λu.f u)) (x (λv .λg.g v)) (λy .y y y)
is not typable in Girard’s Fomega but it is in Coppo-Dezani λCD

∩ (rank 3)

[Urzyczyn, MSCS’97]

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 13

Many attempts to adopt Intersection Types,
Programming and Proof Languages
• Languages à la ML (Type Inference): Failure because of the HUGE

literature on the difficulty to find a Principal Type System, see
Damas-Milner seminal algorithmW [POPL82]

• Languages à la Algol, C, Java (Type Checking): Failure because of
the HUGE literature to find expressive Fully Typed presentation

with Decidable Type Checking. A small ”galleria” follows...
Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 14

Why a typed calculus with
⋂

is so
complicated?

• Intersection (and union types) were defined as type assignment
systems (for pure λ-terms)

• Very elegant presentation but undecidability of type inference

• Many attempts of finding decidable and typed λ-calculi with
intersection (and union types) preserving all the good properties of
type assignment

• The usual approach (adding types to binders) is problematic

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 15

GOAL: find a suitable Intersection type
systems à la Church
• with DECIDABILITY of Type Checking while preserving

expressivity of the Type Assignment characterising ALL
STRONGLY NORMALISING TERMS

x :σ `∩ x : σ
`∩ λx .x : σ → σ

x :τ `∩ x : τ
`∩ λx .x : τ → τ

`∩ λx .x : (σ → σ) ∩ (τ → τ)
(∩I)

x :σ ` x : σ
` λx :σ.x : σ → σ

x :τ ` x : τ
` λx :τ .x : τ → τ

` λx :???.x : (σ → σ) ∩ (τ → τ)
(∩I)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 16

Reynolds’ FORSYTHE ’88
Reynolds annotates a λ-abstraction with types as in

B, x :σi ` M : τ i ∈ 1 . . . n
B ` λx :σ1|· · ·|σn.M : σi → τ

However, we cannot type a typed term, whose type erasure is the
combinator

K ≡ λx .λy .x

with the intersection type

(σ → σ → σ) ∩ (τ → τ → τ)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 17

Pierce’s PhD ’91
Pierce improves Forsythe by using a for construct to build ad hoc
polymorphic typing, as in

B ` M[σi/α] : τi i ∈ 1 . . . n
B ` forα ∈ {σ1 . . . σn}.M : τi

However, we cannot type a typed term, whose type erasure is

λx .λy .λz.(x y , x z)

with the intersection type

((σ → ρ) ∩ (τ → ρ′)→ σ → τ → ρ× ρ′)
∩

((σ → σ) ∩ (σ → σ)→ σ → σ → σ × σ)
Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 18

Pfenning&Friedman: Refinement Types ’91

Refinement types are subtypes of standard types

We can only intersect types which are refinements of the same ML type

Subtype ground refine the ML type boolexp: variables cannot be of
type ground

ground v boolexp

Var : boolexp

True,False : ground ∩ boolexp

Not : ground ∩ boolexp → ground ∩ boolexp

And : (boolexp ∗ boolexp → boolexp)
∩

(ground ∗ ground → ground)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 19

Miquel’s Implicit Constructions PhD ’01

Extends Coquand-Huet’s CC with the ternary operator

b?M ; N of type Πb:bool .σ; τ

true?M ; N −→IC M false?M ; N −→IC N

Unfortunately, not all terms typed by intersection types have an
equivalent in ICC, for instance λx .x : ((σ ∩ τ)→ σ) ∩ (ρ→ ρ)) appears
to be problematic

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 20

Wells et al. `TCD
∩ λa.λb.λc.c (λd .d a b) : τ ∩ σ

JFP ’02. Explicitly Typed Intermediate Languages (TILs) facilitate the
safe and efficient compilation of programming languages

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 21

Wells & Haak `TCD
∩ λa.λb.λc.c (λd .d a b) :τ ∩ σ

ESOP ’02. The first system with the power of λCD

∩

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 22

Frisch, Castagna, Benzaken, JSL ’08

• Types as sets and subtyping as subsets

• σ ∩ τ 6 σ is interpreted as JσK ∩ JτK ⊆ JσK

• (JσK ∩ JτK) ∩ JσK = ∅

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 23

Many attempts to find an INTUITIONISTIC
LOGIC corresponding to Intersection

A “scientific consensus” on the existence of a

Curry-Howard Isomorphism for
⋂

is still an OPEN PROBLEM

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 24

Curry-Howard Isomorphism

Types as
Logical Propositions

(Formulas)
and

Typed λ-terms as
Logical Proofs

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 25

Logic vs Intersection (and Union) Types

∩ is not ∧
The dual type of intersection is Union:

∪ is not ∨

NB: Usual intuitionistic logics do not apply for intersection and union

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 26

Proof-functional logics for INTERSECTION
Pottinger ’80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A ∧ B is to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert A∩B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1
.
A

P2
.
B

A ∧ B

P
.
A

P
.
B

A ∩ B

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 27

Many attempts to find a LOGIC corresponding
to Intersection

As the time the existence of a

Curry-Howard Isomorphism

is still an OPEN PROBLEM

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 28

Curry-Howard Isomorphism

Types as
Logical Propositions

(Formulas)
and

Typed λ-terms as
Logical Proofs

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 29

Logic vs Intersection (and Union) Types

∩ is not ∧
The dual type of intersection is Union:

∪ is not ∨

NB: Usual intuitionistic logics do not apply for intersection and union

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 30

Proof-functional logics for INTERSECTION
Pottinger ’80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A ∧ B is to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert A∩B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1
.
A

P2
.
B

A ∧ B

P
.
A

P
.
B

A ∩ B

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 31

A proposal of a Church-style calculus with
Intersection Types

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 32

Syntax of the Generic ∆-calculus

σ ::= φ | σ → σ | σ ∩ σ | U types

∆ ::= x | λx :σ.∆ | ∆ ∆ | typed λ-calculus

〈∆ ,∆〉 | strong pairs

pr1 ∆ | pr2 ∆ | projections

∆σ | explicit coercions

u∆ indexed constants

A strong pair 〈∆ ,∆〉 is a kind of cartesian pair

An explicit coercion is ∆σ is a ∆-term annotated with a type

u∆ is an infinite set of constants indexed by ∆-terms

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 33

Typed ∆ vs. Untyped λ: the essence function
• Essence is an erasing function transforming a typed ∆-term into an

untyped λ-term.

o x o def
= x

oλx :σ.∆ o def
= λx .o∆ o

o∆1 ∆2 o
def
= o∆1 o o∆2 o

o∆σ o def
= o∆ o

ou∆ o
def
= o∆ o

opri ∆ o def
= o∆ o

o 〈∆1 ,∆2〉 o
def
= o∆1 o

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 34

Reduction semantics

• (Substitution) Substitution on ∆-terms is defined as usual, with
the additional rules:

u∆1[∆2/x]
def
= u(∆1[∆2/x])

∆σ
1 [∆2/x]

def
= (∆1[∆2/x])σ

• (One-step reduction) Reduction rules:

(λx :σ.∆1) ∆2 −→β ∆1[∆2/x]

pri 〈∆1 ,∆2〉 −→pri ∆i for i ∈ {1,2}

λx :σ.∆ x −→η ∆ if x 6∈ FV (∆)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 35

2 NB and 1 EX

• NB.1: (λx :σ.∆1)τ ∆2 is not a redex

• NB.2: u(λx :σ.∆1) ∆2 is not a redex

• EX: (λx :σ→σ.u(x x)) (λx :σ.x)−→β u((λx :σ.x) (λx :σ.x))

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 36

Synchronization in reductions

Desynchronization inside a strong pair can produce “exotic” ∆-terms

〈(λx :σ.x) pr1 y , (λx :τ.x) pr2 y〉
1β 〈(λx :σ.x) pr1 y ,pr2 y〉 %β
%β 〈pr1 y , (λx :σ.x) pr2 y〉 1β

〈pr1 y ,pr2 y〉

Synchronicity in operational semantics

∆1 −→
‖

∆′1 ∆2 −→
‖

∆′2 o∆′1 o ≡ o∆′2 o
〈∆1 ,∆2〉 −→

‖ 〈∆′1 ,∆′2〉
(Sync)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 37

Church-Rosser property
• Reduction is confluent

∆2 ∆3

∆4∆4

∆1

∆2 ∆3

∆4

• Synchronous reduction is also confluent

∆2 ∆3

∆4∆4

∆1

∆2 ∆3

∆4

‖ ‖

‖ ‖

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 38

The Generic ∆-calculus type system `TR
The Type Checker depends on 2 parameters:

1. The subtyping relation 6T in T ∈ {CD,CDV,CDS,BCD}

2. The synchronicity relation R on pure λ-terms, R ∈ {≡,=β ,=βη}
x :σ ∈ Γ

Γ `TR x : σ
(Var)

Γ `TR ∆ : σ

Γ `TR u∆ : U
(U)

Γ `TR ∆ : σ σ 6T τ

Γ `TR ∆τ : τ
(6)

Γ `TR ∆1 : σ

Γ `TR ∆2 : τ o∆1 o R o∆2 o
Γ `TR 〈∆1 ,∆2〉 : σ ∩ τ

(∩I)
Γ `TR ∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ `TR pri ∆ : σi
(∩Ei)

Γ `TR ∆1 : σ → τ Γ `TR ∆2 : σ

Γ `TR ∆1 ∆2 : τ
(→E)

Γ, x :σ `TR ∆ : τ

Γ `TR λx :σ.∆ : σ → τ
(→I)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 39

Examples

Auto-application (λx .x x) à la Curry can be typed à la Church as follows:

x :(σ → τ) ∩ σ ` x :(σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` pr1 x : σ → τ

x :(σ → τ) ∩ σ ` x :(σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` pr2 x : σ

x :(σ → τ) ∩ σ ` (pr1 x) (pr2 x) : τ

` λx :(σ → τ) ∩ σ.(pr1 x) (pr2 x) : ((σ → τ) ∩ σ)→ τ

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 40

Examples

For ∆CDS

R and ∆BCD

R :

Fixpoint combinator Y def
= λf .(λx .f (x x)) (λx .f (x x))

f :U→ σ, x :U ` f : U→ σ f :U→ σ, x :U ` u(x x) : U

f :U→ σ, x :U ` f u(x x) : σ

f :U→ σ ` λx :U.f u(x x) : U→ σ f :U→ σ ` u(λx :U.f u(x x)) : U

f :U→ σ ` (λx :U.f u(x x)) u(λx :U.f u(x x)) : σ

` λf :U→ σ.(λx :U.f u(x x)) u(λx :U.f u(x x)) : (U→ σ)→ σ

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 40

Replay

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 41

The ∆-chair

λCD

∩

λCDV

∩

λCDS

∩

λBCD

∩
Add U

Extend 6 Extend 6

Add U

R ∈ {≡,=β,=βη}

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη
∆BCD

=βη

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 42

Isomorphism property of ∆T
R

(Soundness) (∆T
R . λT

∩) Γ `TR ∆ : σ =⇒ Γ `T∩ o∆ o : σ

(Completeness) (∆T
R / λT

∩) Γ `T∩ M : σ =⇒ ∃∆. o∆ o ≡ M and Γ `TR ∆ : σ

(Isomorphism) (∆T
R ∼ λ

T
∩) ∆T

R . λT
∩ and ∆T

R / λT
∩

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη ∆T
R ∆T

R . λT
∩ ∆T

R / λT
∩

∆CD

≡
√ √

∆CDV

≡
√ √

∆CDS

≡
√ √

∆BCD

≡
√ √

∆CD

=β ×
√

∆CDV

=β ×
√

∆CDS

=β

√ √

∆BCD

=β

√ √

∆CDV

=βη ×
√

∆BCD

=βη ×
√

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 43

Isomorphism property of ∆T
R

(Soundness) (∆T
R . λT

∩) Γ `TR ∆ : σ =⇒ Γ `T∩ o∆ o : σ

(Completeness) (∆T
R / λT

∩) Γ `T∩ M : σ =⇒ ∃∆. o∆ o ≡ M and Γ `TR ∆ : σ

(Isomorphism) (∆T
R ∼ λ

T
∩) ∆T

R . λT
∩ and ∆T

R / λT
∩

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη ∆T
R ∆T

R . λT
∩ ∆T

R / λT
∩

∆CD

≡
√ √

∆CDV

≡
√ √

∆CDS

≡
√ √

∆BCD

≡
√ √

∆CD

=β ×
√

∆CDV

=β ×
√

∆CDS

=β

√ √

∆BCD

=β

√ √

∆CDV

=βη ×
√

∆BCD

=βη ×
√

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 43

Counter-example for ∆CDV

=βη
and ∆BCD

=βη

• Let in ∆
CDV/BCD

=βη

pr2 〈λy :σ.(pr1 x) y ,pr2 x〉

• We have that

x :(σ → τ) ∩ ρ `CDV/BCD
=βη

pr2 〈λy :σ.(pr1 x) y ,pr2 x〉 : ρ

• The essence is
λy .x y

• . . . but in λCDV

∩ , λBCD

∩

x :(σ → τ) ∩ ρ 6 `CDV/BCD
∩ λy .x y : ρ

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 44

Counter-example for ∆CD

=β
and ∆CDV

=β

• S def
= λx .λy .λz.x z (y z)

• K def
= λx .λy .x

• S K S =β λx .x
• In ∆

CD/CDV

=β , you can construct a term ∆ such that

o∆ o ≡ S K S
• We have that

`CD/CDV
=β

pr2 〈∆ , λx :σ.x〉 : σ → σ

• the essence is
S K S

• . . . but in λCD

∩ , λCDV

∩

6 `CD/CDV
∩ S K S : σ → σ

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 45

Decidability of type checking/reconstruction

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη

∆T
R TC/TR

∆CD

≡
√

∆CDV

≡
√

∆CDS

≡
√

∆BCD

≡
√

∆CD

=β

√

∆CDV

=β

√

∆CDS

=β ×
∆BCD

=β ×
∆CDV

=βη

√

∆BCD

=βη ×

Why? 〈u∆1 ,u∆2〉 is typable if and only if o∆1 o =β,βη o∆2 o

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 46

Union Types

UNION TYPES
• Invented by Mc Queen, Plotkin and Sethi et al. in ’86
• Dual to Intersection Types
• Same features and drawbacks of Intersection Types
• Conjectures with its relation with Intuitionistic Logic
• Not clear Curry-Howard isomorphism
• Relation with Pottinger’s Proof Functional Logic

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 47

Type Assignment Rules for Union and
Intersection all together

x :σ ∈ B
B ` x : σ

(Var)
B, x :σ ` M : τ

B ` λx .M : σ → τ
(→I) B ` M : σ → τ B ` N : σ

B ` M N : τ
(→E)

B ` M : σ σ 6 τ
B ` M : τ

(6) B ` M : σ B ` M : τ
B ` M : σ ∩ τ (∩I)

B ` M : σ ∩ τ
B ` M : σ

(∩El)
B ` M : σ ∩ τ

B ` M : τ
(∩Er)

B ` M : σ
B ` M : σ ∪ τ (∪Ii) B ` M : τ

B ` M : σ ∪ τ (∪Ir)

B, x :σ ` M : ρ B, x :τ ` M : ρ B ` N : σ ∪ τ
B ` M[N/x] : ρ

(∪E)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 48

Subtyping rules (Ξ subtype theory in [BDdL])

(1) σ 6 σ ∩ σ (8) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ, σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ, τ 6 σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 U (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

(6) σ 6 σ (13) U 6 U→ U

(7) σ1 6 σ2, τ1 6 τ2 ⇒ (14) σ2 6 σ1, τ1 6 τ2 ⇒
σ1 ∩ τ1 6 σ2 ∩ τ2 σ1 → τ1 6 σ2 → τ2

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 49

Subtyping rules 1/4

A subtyping relation is a preorder, ie. a reflexive and transitive order
with U is a universal type, corresponding to the > constant in the lattice
of types (with ∪ as t and ∩ as u)

σ 6 σ Reflexivity

σ 6 τ, τ 6 ρ⇒ σ 6 ρ Transitivity

σ 6 U Universal type

U 6 U→ U Universal type is also a function

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 50

Subtyping rules 2/4
Main rules for intersection:

σ 6 σ ∩ σ
σ ∩ τ 6 σ

σ ∩ τ 6 τ

σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∩ τ1 6 σ2 ∩ τ2 Inter. compositionality

Main rules for union:

σ ∪ σ 6 σ

σ 6 σ ∪ τ
τ 6 σ ∪ τ
σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2 Union compositionality

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 51

Subtyping rules 3/4

σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ) Distr. of inter over union

(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ) Codomain factorization

(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ Domain factorization

Distributivity of union over intersection can be inferred, so there is no
need for another distributivity axiom

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 52

Subtyping rules 4/4

Domain contravariance and codomain variance

σ1 6 σ2, τ1 6 τ2 ⇒ σ2 → τ1 6 σ1 → τ2

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 53

Union types as a dual of intersection types
• Union types

⋃
[MacQueen-Plotkin-Sethi ’85] are considered as a

dual of intersection types

Γ, x :σ ` M : ρ Γ, x :τ ` M : ρ Γ ` N : σ ∪ τ
Γ ` M[N/x] : ρ

(∪E)

• Union corresponds “roughly” to OCaml Sum types (via match)
type ’a or = In1 of ’a | In2 of ’a ;; ’a is a type variable
let f x = match x with case analysis on the shape of x
| In1 y -> "case 1" first case
| In2 y -> "case 2" second case
;;

• The big difference between Sum and Union types is that, for Union
types, all cases should have the same structure and “set” disjoint

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 54

Intersection and union are super expressive
The Forsythe code [by Pierce 91]

Is 0 def
= λn.if n=0 then true else false : σ

σ
def
= (Zero → True) ∩ (Neg → False) ∩ (Pos → False)

Not 0 def
= λn.if n 6= 0 then 1 else−1 : Num→ (Pos ∪ Neg)

Is 0 (Not 0 n) : False

Without union types the best information we can get for Is 0 (Not 0 n)
is a Bool type

So intersection and union types allow a restricted form of ABSTRACT
INTERPRETATION

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 55

REPETITA JUVANT: Propositional Logic vs
Intersection (and Union) Types

∩ is not ∧
The dual type of intersection is Union:

∪ is not ∨

NB: Usual intuitionistic logics do not apply for intersection and union

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 56

Proof-functional logics for UNION
We can extend the Pottinger ’80 ”logical” interpretation of union as an
intuitionistic connective, by stating that:

DISJUNCTION: “If one has a reason for asserting A→ C and another
reason for asserting B → C and another reason to assert A ∨ B then
one can assert C”

... (while) ...

UNION: “If one has a reason for asserting both A→ C and B → C and
another reason to assert A ∪ B then one can assert C”

P1
.

A→ C

P2
.

B → C

P3
.

A ∨ B
C

P1
.

A→ C

P1
.

B → C

P2
.

A ∪ B
C

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 57

Extending the ∆-calculus with UNION

σ ::= φ | σ → σ | σ ∩ σ | σ ∪ σ | U types

∆ ::= x | λx :σ.∆ | ∆ ∆ | typed λ-calculus

〈∆ ,∆〉 | pr1 ∆ | pr2 ∆ | strong pairs and projections

[∆ ,∆] | strong sums

inσ1∆ | inσ2∆ | injections for strong sum

∆σ | explicit coercions

u∆ indexed constants

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 58

Reconstructing the essence M from a ∆-term
• Fix the relation between pure λ-terms and typed ∆-terms
• Consider the following “erasing” partial function o − o

opri ∆ o def
= o∆ o

o 〈∆1 ,∆2〉 o
def
= o∆1 o

o inσi ∆ o def
= o∆ o

o [λx :σ.∆1 , λx :τ.∆2] ∆3 o
def
= o∆1 o[o∆3 o/x]

• Example:
o [λx :σ.inτ2x , λx :τ.inσ1x] y o = y

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 59

Semantics and properties of the ∆-calculus

Standard β-reduction
(λx :σ.∆1) ∆2 −→β ∆1[∆2/x]

Projection rules
pr1 〈∆1 ,∆2〉 −→pr1 ∆1

pr2 〈∆1 ,∆2〉 −→pr2 ∆2

Injection rules
[λx :σ.∆1 , λx :τ.∆2] inσ1∆3 −→in1 ∆1[∆3/x]

[λx :σ.∆1 , λx :τ.∆2] inτ2∆3 −→in2 ∆2[∆3/x]

The usual properties hold: isomorphism wrt the Curry-style system,
Church-Rosser, subject reduction for parallel reduction, unicity of
typing, decidability of type checking, and type reconstruction

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 60

Extending the typing rules of ∆-calculus with
Union

Γ ` ∆1 : σ

Γ ` ∆2 : τ o∆1 o ≡ o∆2 o
Γ ` 〈∆1 ,∆2〉 : σ ∩ τ (∩I)

Γ ` ∆ : σ1 ∩ σ2 i ∈ {1,2}
Γ ` pri ∆ : σi

(∩Ei)

Γ ` ∆ : σi i ∈ {1,2}
Γ ` inσj

i ∆ : σ1 ∪ σ2
(∪Ii)

Γ, x :σ ` ∆1 : ρ o∆1 o ≡ o∆2 o
Γ, x :τ ` ∆2 : ρ Γ ` ∆3 : σ ∪ τ
Γ ` [λx :σ.∆1 , λx :τ.∆2] ∆3 : ρ

(∪E)

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 61

Subtyping rules of theory Ξ from [BDdL]
The subtyping relation from [BDdL] defines a lattice with U as the top, ∪
as the join operator and ∩ as the meet operator

σ 6 σ ∩ σ σ1 6 σ2 and τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

σ ∪ σ 6 σ σ 6 τ and τ 6 ρ⇒ σ 6 ρ

σ ∩ τ 6 σ and σ ∩ τ 6 τ σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

σ 6 σ ∪ τ and τ 6 σ ∪ τ (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

σ 6 U (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

σ 6 σ U 6 U→ U

σ1 6 σ2 and τ1 6 τ2 ⇒ σ2 6 σ1 and τ1 6 τ2 ⇒

σ1 ∩ τ1 6 σ2 ∩ τ2 σ1 → τ1 6 σ2 → τ2

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 62

Raising the ∆-calculus to a ∆-framework

• Adding union types as dual types to intersection types

• Adding dependent types à la LF and found a Curry-Howard
Isomorphism

• States a Curry-Howard isomorphism for Union and Intersection

• Proof as ∆-terms and Intersection/Union types as Logical
Formulae

• NB: usual Intuitionistic Logics do not apply to Union and
Intersection

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 63

The ∆-framework (à la Edinburgh LF)

Kinds K ::= Type | Πx :σ.K as in LF

Families σ, τ ::= a | Πx :σ.τ | σ∆ | as in LF
σ →r τ | relevant arrow
σ ∩ τ | intersection
σ ∪ τ union

Objects ∆ ::= c | x | λx :σ.∆ | ∆ ∆ | as in LF
λr x :σ.∆ | ∆ r ∆ | relevant λ
〈∆ ,∆〉 | pairs for intersection
[∆ ,∆] | pairs for union
pr1 ∆ | pr2 ∆ | projections
inσ1 ∆ | inσ2 ∆ injections

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 64

The Bull software

• Bull is an interactive software which implements the ∆-framework

• Developed from scratch in OCaml

• It contains
- a Read-Eval-Print Loop

- a typechecker with refinement types

- an evaluator

- a decidable and Coq proved and code extracted algorithm for
subtyping

- a higher-order unifier

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 65

The language of Bull

∆, σ ::= s | c | x | |?x [∆; . . . ; ∆] | let x :σ := ∆ in ∆ | Πx :σ.∆ |
λx :σ.∆ | ∆ S | σ ∩ σ | σ ∪ σ | 〈∆ ,∆〉 | pr1 ∆ | pr2 ∆ |
smatch ∆ return σ with [x :σ ⇒ ∆ | x :σ ⇒ ∆] |
in1 σ∆ | in2 σ∆ | coeσ∆

• Applications use spines, as in [Cervesato-Pfenning], i.e. lists of
arguments

S ::= () | (S; ∆)

• Meta-variables ?x [∆; . . . ; ∆] use suspended substitutions: if we
know that

z:σ `?y : τ

• We have

(λx :σ.?y [z := x]) ∆ −→β ?y [z := ∆] : τ [z := ∆]

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 66

Interacting with Bull

Welcome to Bull 1.0, an experimental LF−based proof checker

based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

ˆˆˆ
Error: the term "id2" has type "?t[] −> ?t[]"

while it is expected to have type "s −> s −> s −> s".

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

> Definition auto_app (f : (s −> s) & ((s −> s) −> s −> s)) := proj_r f proj_l f.
auto_app is defined.

> Compute (auto_app id).
fun x : s ⇒ x : s −> s

essence = fun x⇒ x : s −> s

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 67

Interacting with Bull

Welcome to Bull 1.0, an experimental LF−based proof checker

based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

ˆˆˆ
Error: the term "id2" has type "?t[] −> ?t[]"

while it is expected to have type "s −> s −> s −> s".

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

> Definition auto_app (f : (s −> s) & ((s −> s) −> s −> s)) := proj_r f proj_l f.
auto_app is defined.

> Compute (auto_app id).
fun x : s ⇒ x : s −> s

essence = fun x⇒ x : s −> s

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 67

Interacting with Bull

Welcome to Bull 1.0, an experimental LF−based proof checker

based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

> Definition auto_app (f : (s −> s) & ((s −> s) −> s −> s)) := proj_r f proj_l f.
auto_app is defined.

> Compute (auto_app id).
fun x : s ⇒ x : s −> s

essence = fun x⇒ x : s −> s

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 67

Interacting with Bull

Welcome to Bull 1.0, an experimental LF−based proof checker

based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

> Definition auto_app (f : (s −> s) & ((s −> s) −> s −> s)) := proj_r f proj_l f.
auto_app is defined.

> Compute (auto_app id).
fun x : s ⇒ x : s −> s

essence = fun x⇒ x : s −> s

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 67

Reduction rules of Bull

• β-reduction: (λx :σ.∆1) ∆2 −→β ∆1[∆2/x]

• η-reduction: λx :σ.∆ x −→η ∆ if x 6∈ FV (∆)

• smatch-reduction:
smatch ini ∆3 return σ with [x :τ ⇒ ∆1 | x :ρ⇒ ∆2] −→ini ∆i [∆3/x]

• pri -reduction: pri 〈∆1 ,∆2〉 −→pri ∆i

• δ-reduction: if c is defined as ∆, then c −→δ ∆

• ζ-reduction: let x :σ := ∆1 in ∆2 −→ζ ∆2[∆1/x]

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 68

Easing the work of the programmer

• In this example, the types of id1 and id2 are inferred:

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

• Also, error reports focus precisely on the culprit:

Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

ˆˆˆ
Error: the term "id2" has type "?t[] −> ?t[]"

while it is expected to have type "s −> s −> s −> s".

• The algorithms we use in order to achieve this are a unifier and a
refiner

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 69

Unification and refinement
• There is a meta-environment for meta-variables and their

instanciation
Φ ::= · | Φ,sort(?x) | Φ, ?x := s | Φ, (Γ `?x : σ) |

Φ, (Γ `?x := ∆ : σ) | Φ,Ψ `?x | Φ,Ψ `?x := M

• We use Higher-Order Pattern Unification. Judgments are

Φ1; Σ; Γ ` ∆1
?
= ∆2

U
 Φ2

• Refinement is done the same way as in Matita. Judgments are

Φ1; Σ; Γ ` ∆1
⇑
 ∆2 : σ; Φ2

Φ1; Σ; Γ ` σ1
F
 σ2 : τ ; Φ2

Φ1; Σ; Γ ` ∆1 : σ
⇓
 ∆2; Φ2

Φ1; Σ; Ψ ` ∆
E⇑
 M; Φ2

Φ1; Σ; Ψ ` M@∆
E⇓
 Φ2

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 70

Conclusion and future work
• We have presented different Church-style λ-calculi with

intersection, union, relevant arrow, and dependent types
• We have studied their meta-properties
• We have developed Bull, a proof-of-concept logical framework
• Future: logical interpretation of intersection and union
• Future: enhance the ∆-framework with inductive types

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 71

Thank you for listening

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη

The ∆-calculus: syntax and types
https://arxiv.org/abs/1803.09660

Joint works with Claude Stolze, Dan Dougherty, Furio Honsell,
Ugo de’ Liguoro, Ivan Scagnetto

Proudly supported by COST EUTYPES and, hopefully supported by COST EuroProofNet

Luigi Liquori, Inria, Sophia Antipolis Méditerranée –Intersection, Union, Dependent Types and SubType Systems 72

https://arxiv.org/abs/1803.09660

	Proof-of-concept: the Bull software
	Conclusion and future work

