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Intersection Types for pure λ-calculus [σ
⋂
τ ]

• Ad hoc polymorphism for the pure λ-calculus

• 40 years history: characterization of strongly normalizing λ-terms,
λ-models, object-oriented programming, automatic type inference,
type inhabitation, type unification, software product lines, etc

• Type inference is undecidable, subtyping is decidable

B ` M : σ B ` M : τ
B ` M : σ ∩ τ (∩I) B ` M : σ ∩ τ

B ` M : σ (resp. τ)
(∩El/r )

B ` M : σ σ 6T τ
B ` M : τ

(6) x :σ ∈ B
B ` x : σ

(Var)

B, x :σ ` M : τ

B ` λx .M : σ → τ
(→I) B ` M : σ → τ B ` N : σ

B ` M N : τ
(→E)
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Intersection Types as a Theoretical Swiss Knife
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Examples

• Polymorphic identity

x :σ ` x : σ
` λx .x : σ → σ

x :τ ` x : τ
` λx .x : τ → τ

` λx .x : (σ → σ) ∩ (τ → τ)

• Self-application λx .x x

x :(σ → τ) ∩ σ ` x : (σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` x : σ → τ

x :(σ → τ) ∩ σ ` x : (σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` x : σ

x :(σ → τ) ∩ σ ` x x : τ

` λx .x x : ((σ → τ) ∩ σ)→ τ
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Examples (continued)
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The Reference Book: part 3 is dedicated to
Intersection Types
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Taxonomy of 13
⋂

-systems, pp. 601 [BDS13]

λCD

∩

λCDV

∩

λCDS

∩

λBCD

∩
Add U

Extend 6 Extend 6

Add U

4 historical systems λ
T
∩ T

Coppo-Dezani ’78 λ
CD
∩ CD

Coppo-Dezani-Sallé ’79 λ
CDS
∩ CDS

Coppo-Dezani-Venneri ’81 λ
CDV
∩ CDV

Barendregt-Coppo-Dezani ’83 λ
BCD
∩ BCD
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Intersection Type Theories T
Minimal type theory 6min

(refl) σ 6 σ (incl) σ ∩ τ 6 σ σ ∩ τ 6 τ

(glb) ρ 6 σ & ρ 6 τ ⇒ ρ 6 σ ∩ τ (trans) σ 6 τ & τ 6 ρ⇒ σ 6 ρ

Axiom schemes
(Utop) σ 6 U [Universal type] (U→) U 6 σ → U

(→∩) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

Rule scheme
(→) σ2 6 σ1 & τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

4 historical systems λ
T
∩ T 6min plus U?

Coppo-Dezani ’78 λ
CD
∩ CD − No

Coppo-Dezani-Sallé ’79 λ
CDS
∩ CDS (Utop) Yes

Coppo-Dezani-Venneri ’81 λ
CDV
∩ CDV (→), (→∩) No

Barendregt-Coppo-Dezani ’83 λ
BCD
∩ BCD (→), (→∩), (Utop), (U→) Yes
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Subtyping in programming languages 1/3
• Subtyping, denoted by 6, is a form of implicit polymorphism

(aka implicit type conversion or implicit type coercion)

• Subtyping allows us to implicitly and safely promote some variable
of some type into another type
int x = 3; x is an integer

float y = 4.0; y is a float
float z = x + y; x is implicitly coerced into a float

// the result is 7.0

• Subtyping is not an explicit type conversion (aka type casting)
float x = 3.0; x is an integer
float y = 4.0; y is an double

int z = (int)x + (int)y; x and y are casted into integers
// the result is 7
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Subtyping in programming languages 2/3
Subtyping hierarchy in C
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Subtyping in OO programming languages 3/3
• Subtyping lurks also in object-oriented programming

“An object of class T may be substituted with any object of a
subclass S” ( c©Barbara Liskov)

• Inheritance as subtyping

• Subtyping hierarchy in Java

Class Point {int x = 0; int y = 0}
Class ColPoint extends Point with {string col = red}

Point p = new Point();

ColPoint q = new ColPoint()

p = q accept

���q = p reject

q = (ColPoint) p accept (explicit cast)
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Parametric vs. ad hoc polymorphism (1/2)
• Parametric (ML)
> fun x -> x : ’a -> ’a ‘a is a type variable

• Ad hoc (C)
int a, b;

float x, y;

printf(‘‘%d %f’’, a+b, x+y);

• The type of the operator + is
+ : (int -> int) ∩ (float -> float)

• Girard’s parametric polymorphism (System F) is ”equivalent” to
ad hoc polymorphism

∀α.σ conj
=

⋂
i=1...∞ σi

∀α.α→ α ∼ (int → int)∩(nat → nat)∩(real → real)∩ ...
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Parametric vs. ad hoc (2/2)
Intersection types can type every strongly normalizing term of the

λ-calculus... which is not the case in System F (or Fomega) ... this

”monster” λ-term is strongly normalizing

λx .z (x (λf .λu.f u)) (x (λv .λg.g v)) (λy .y y y)
is not typable in Girard’s Fomega but it is in Coppo-Dezani λCD

∩ (rank 3)

[Urzyczyn, MSCS’97]
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Many attempts to adopt Intersection Types,
Programming and Proof Languages
• Languages à la ML (Type Inference): Failure because of the HUGE

literature on the difficulty to find a Principal Type System, see
Damas-Milner seminal algorithmW [POPL82]

• Languages à la Algol, C, Java (Type Checking): Failure because of
the HUGE literature to find expressive Fully Typed presentation

with Decidable Type Checking. A small ”galleria” follows...
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Why a typed calculus with
⋂

is so
complicated?

• Intersection (and union types) were defined as type assignment
systems (for pure λ-terms)

• Very elegant presentation but undecidability of type inference

• Many attempts of finding decidable and typed λ-calculi with
intersection (and union types) preserving all the good properties of
type assignment

• The usual approach (adding types to binders) is problematic
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GOAL: find a suitable Intersection type
systems à la Church
• with DECIDABILITY of Type Checking while preserving

expressivity of the Type Assignment characterising ALL
STRONGLY NORMALISING TERMS

x :σ `∩ x : σ
`∩ λx .x : σ → σ

x :τ `∩ x : τ
`∩ λx .x : τ → τ

`∩ λx .x : (σ → σ) ∩ (τ → τ)
(∩I)

x :σ ` x : σ
` λx :σ.x : σ → σ

x :τ ` x : τ
` λx :τ .x : τ → τ

` λx :???.x : (σ → σ) ∩ (τ → τ)
(∩I)
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Reynolds’ FORSYTHE ’88
Reynolds annotates a λ-abstraction with types as in

B, x :σi ` M : τ i ∈ 1 . . . n
B ` λx :σ1|· · ·|σn.M : σi → τ

However, we cannot type a typed term, whose type erasure is the
combinator

K ≡ λx .λy .x

with the intersection type

(σ → σ → σ) ∩ (τ → τ → τ)
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Pierce’s PhD ’91
Pierce improves Forsythe by using a for construct to build ad hoc
polymorphic typing, as in

B ` M[σi/α] : τi i ∈ 1 . . . n
B ` forα ∈ {σ1 . . . σn}.M : τi

However, we cannot type a typed term, whose type erasure is

λx .λy .λz.(x y , x z)

with the intersection type

((σ → ρ) ∩ (τ → ρ′)→ σ → τ → ρ× ρ′)
∩

((σ → σ) ∩ (σ → σ)→ σ → σ → σ × σ)
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Pfenning&Friedman: Refinement Types ’91

Refinement types are subtypes of standard types

We can only intersect types which are refinements of the same ML type

Subtype ground refine the ML type boolexp: variables cannot be of
type ground

ground v boolexp

Var : boolexp

True,False : ground ∩ boolexp

Not : ground ∩ boolexp → ground ∩ boolexp

And : (boolexp ∗ boolexp → boolexp)
∩

(ground ∗ ground → ground)
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Miquel’s Implicit Constructions PhD ’01

Extends Coquand-Huet’s CC with the ternary operator

b?M ; N of type Πb:bool .σ; τ

true?M ; N −→IC M false?M ; N −→IC N

Unfortunately, not all terms typed by intersection types have an
equivalent in ICC, for instance λx .x : ((σ ∩ τ)→ σ) ∩ (ρ→ ρ)) appears
to be problematic
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Wells et al. `TCD
∩ λa.λb.λc.c (λd .d a b) : τ ∩ σ

JFP ’02. Explicitly Typed Intermediate Languages (TILs) facilitate the
safe and efficient compilation of programming languages
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Wells & Haak `TCD
∩ λa.λb.λc.c (λd .d a b) :τ ∩ σ

ESOP ’02. The first system with the power of λCD

∩
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Frisch, Castagna, Benzaken, JSL ’08

• Types as sets and subtyping as subsets

• σ ∩ τ 6 σ is interpreted as JσK ∩ JτK ⊆ JσK

• (JσK ∩ JτK) ∩ JσK = ∅
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Many attempts to find an INTUITIONISTIC
LOGIC corresponding to Intersection

A “scientific consensus” on the existence of a

Curry-Howard Isomorphism for
⋂

is still an OPEN PROBLEM
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Curry-Howard Isomorphism

Types as
Logical Propositions

(Formulas)
and

Typed λ-terms as
Logical Proofs
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Logic vs Intersection (and Union) Types

∩ is not ∧
The dual type of intersection is Union:

∪ is not ∨

NB: Usual intuitionistic logics do not apply for intersection and union
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Proof-functional logics for INTERSECTION
Pottinger ’80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A ∧ B is to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert A∩B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1
.
A

P2
.
B

A ∧ B

P
.
A

P
.
B

A ∩ B
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Many attempts to find a LOGIC corresponding
to Intersection

As the time the existence of a

Curry-Howard Isomorphism

is still an OPEN PROBLEM
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Curry-Howard Isomorphism

Types as
Logical Propositions

(Formulas)
and

Typed λ-terms as
Logical Proofs
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Logic vs Intersection (and Union) Types

∩ is not ∧
The dual type of intersection is Union:

∪ is not ∨

NB: Usual intuitionistic logics do not apply for intersection and union
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Proof-functional logics for INTERSECTION
Pottinger ’80 conjectured a “logical” interpretation of intersection as an
intuitionistic connective, stating that:

CONJUNCTION: “To assert A ∧ B is to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
([possibly different from the first]) of which is a reason for asserting B”

... (while) ...

INTERSECTION: “To assert A∩B is to assert that one has a reason for
asserting A which is also a reason for asserting B”

P1
.
A

P2
.
B

A ∧ B

P
.
A

P
.
B

A ∩ B
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A proposal of a Church-style calculus with
Intersection Types
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Syntax of the Generic ∆-calculus

σ ::= φ | σ → σ | σ ∩ σ | U types

∆ ::= x | λx :σ.∆ | ∆ ∆ | typed λ-calculus

〈∆ ,∆〉 | strong pairs

pr1 ∆ | pr2 ∆ | projections

∆σ | explicit coercions

u∆ indexed constants

A strong pair 〈∆ ,∆〉 is a kind of cartesian pair

An explicit coercion is ∆σ is a ∆-term annotated with a type

u∆ is an infinite set of constants indexed by ∆-terms
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Typed ∆ vs. Untyped λ: the essence function
• Essence is an erasing function transforming a typed ∆-term into an

untyped λ-term.

o x o def
= x

oλx :σ.∆ o def
= λx .o∆ o

o∆1 ∆2 o
def
= o∆1 o o∆2 o

o∆σ o def
= o∆ o

ou∆ o
def
= o∆ o

opri ∆ o def
= o∆ o

o 〈∆1 ,∆2〉 o
def
= o∆1 o
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Reduction semantics

• (Substitution) Substitution on ∆-terms is defined as usual, with
the additional rules:

u∆1[∆2/x ]
def
= u(∆1[∆2/x ])

∆σ
1 [∆2/x ]

def
= (∆1[∆2/x ])σ

• (One-step reduction) Reduction rules:

(λx :σ.∆1) ∆2 −→β ∆1[∆2/x ]

pri 〈∆1 ,∆2〉 −→pri ∆i for i ∈ {1,2}

λx :σ.∆ x −→η ∆ if x 6∈ FV (∆)
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2 NB and 1 EX

• NB.1: (λx :σ.∆1)τ ∆2 is not a redex

• NB.2: u(λx :σ.∆1) ∆2 is not a redex

• EX: (λx :σ→σ.u(x x)) (λx :σ.x)−→β u((λx :σ.x) (λx :σ.x))
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Synchronization in reductions

Desynchronization inside a strong pair can produce “exotic” ∆-terms

〈(λx :σ.x) pr1 y , (λx :τ.x) pr2 y〉
1β 〈(λx :σ.x) pr1 y ,pr2 y〉 %β
%β 〈pr1 y , (λx :σ.x) pr2 y〉 1β

〈pr1 y ,pr2 y〉

Synchronicity in operational semantics

∆1 −→
‖

∆′1 ∆2 −→
‖

∆′2 o∆′1 o ≡ o∆′2 o
〈∆1 ,∆2〉 −→

‖ 〈∆′1 ,∆′2〉
(Sync)
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Church-Rosser property
• Reduction is confluent

∆2 ∆3

∆4∆4

∆1

∆2 ∆3

∆4

• Synchronous reduction is also confluent

∆2 ∆3

∆4∆4

∆1

∆2 ∆3

∆4

‖ ‖

‖ ‖
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The Generic ∆-calculus type system `TR
The Type Checker depends on 2 parameters:

1. The subtyping relation 6T in T ∈ {CD,CDV,CDS,BCD}

2. The synchronicity relation R on pure λ-terms, R ∈ {≡,=β ,=βη}
x :σ ∈ Γ

Γ `TR x : σ
(Var)

Γ `TR ∆ : σ

Γ `TR u∆ : U
(U)

Γ `TR ∆ : σ σ 6T τ

Γ `TR ∆τ : τ
(6)

Γ `TR ∆1 : σ

Γ `TR ∆2 : τ o∆1 o R o∆2 o
Γ `TR 〈∆1 ,∆2〉 : σ ∩ τ

(∩I)
Γ `TR ∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ `TR pri ∆ : σi
(∩Ei )

Γ `TR ∆1 : σ → τ Γ `TR ∆2 : σ

Γ `TR ∆1 ∆2 : τ
(→E)

Γ, x :σ `TR ∆ : τ

Γ `TR λx :σ.∆ : σ → τ
(→I)
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Examples

Auto-application (λx .x x) à la Curry can be typed à la Church as follows:

x :(σ → τ) ∩ σ ` x :(σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` pr1 x : σ → τ

x :(σ → τ) ∩ σ ` x :(σ → τ) ∩ σ
x :(σ → τ) ∩ σ ` pr2 x : σ

x :(σ → τ) ∩ σ ` (pr1 x) (pr2 x) : τ

` λx :(σ → τ) ∩ σ.(pr1 x) (pr2 x) : ((σ → τ) ∩ σ)→ τ
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Examples

For ∆CDS

R and ∆BCD

R :

Fixpoint combinator Y def
= λf .(λx .f (x x)) (λx .f (x x))

f :U→ σ, x :U ` f : U→ σ f :U→ σ, x :U ` u(x x) : U

f :U→ σ, x :U ` f u(x x) : σ

f :U→ σ ` λx :U.f u(x x) : U→ σ f :U→ σ ` u(λx :U.f u(x x)) : U

f :U→ σ ` (λx :U.f u(x x)) u(λx :U.f u(x x)) : σ

` λf :U→ σ.(λx :U.f u(x x)) u(λx :U.f u(x x)) : (U→ σ)→ σ
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Replay
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The ∆-chair

λCD

∩

λCDV

∩

λCDS

∩

λBCD

∩
Add U

Extend 6 Extend 6

Add U

R ∈ {≡,=β,=βη}

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη
∆BCD

=βη
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Isomorphism property of ∆T
R

(Soundness) (∆T
R . λT

∩ ) Γ `TR ∆ : σ =⇒ Γ `T∩ o∆ o : σ

(Completeness) (∆T
R / λT

∩ ) Γ `T∩ M : σ =⇒ ∃∆. o∆ o ≡ M and Γ `TR ∆ : σ

(Isomorphism) (∆T
R ∼ λ

T
∩ ) ∆T

R . λT
∩ and ∆T

R / λT
∩

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη ∆T
R ∆T

R . λT
∩ ∆T

R / λT
∩

∆CD

≡
√ √

∆CDV

≡
√ √

∆CDS

≡
√ √

∆BCD

≡
√ √

∆CD

=β ×
√

∆CDV

=β ×
√

∆CDS

=β

√ √

∆BCD

=β

√ √

∆CDV

=βη ×
√

∆BCD

=βη ×
√
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Isomorphism property of ∆T
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R ∆T
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√ √
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√
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√
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=β

√ √

∆BCD

=β

√ √

∆CDV

=βη ×
√

∆BCD

=βη ×
√
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Counter-example for ∆CDV

=βη
and ∆BCD

=βη

• Let in ∆
CDV/BCD

=βη

pr2 〈λy :σ.(pr1 x) y ,pr2 x〉

• We have that

x :(σ → τ) ∩ ρ `CDV/BCD
=βη

pr2 〈λy :σ.(pr1 x) y ,pr2 x〉 : ρ

• The essence is
λy .x y

• . . . but in λCDV

∩ , λBCD

∩

x :(σ → τ) ∩ ρ 6 `CDV/BCD
∩ λy .x y : ρ
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Counter-example for ∆CD

=β
and ∆CDV

=β

• S def
= λx .λy .λz.x z (y z)

• K def
= λx .λy .x

• S K S =β λx .x
• In ∆

CD/CDV

=β , you can construct a term ∆ such that

o∆ o ≡ S K S
• We have that

`CD/CDV
=β

pr2 〈∆ , λx :σ.x〉 : σ → σ

• the essence is
S K S

• . . . but in λCD

∩ , λCDV

∩

6 `CD/CDV
∩ S K S : σ → σ
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Decidability of type checking/reconstruction

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη

∆T
R TC/TR

∆CD

≡
√

∆CDV

≡
√

∆CDS

≡
√

∆BCD

≡
√

∆CD

=β

√

∆CDV

=β

√

∆CDS

=β ×
∆BCD

=β ×
∆CDV

=βη

√

∆BCD

=βη ×

Why? 〈u∆1 ,u∆2〉 is typable if and only if o∆1 o =β,βη o∆2 o
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Union Types

UNION TYPES
• Invented by Mc Queen, Plotkin and Sethi et al. in ’86
• Dual to Intersection Types
• Same features and drawbacks of Intersection Types
• Conjectures with its relation with Intuitionistic Logic
• Not clear Curry-Howard isomorphism
• Relation with Pottinger’s Proof Functional Logic
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Type Assignment Rules for Union and
Intersection all together

x :σ ∈ B
B ` x : σ

(Var)
B, x :σ ` M : τ

B ` λx .M : σ → τ
(→I) B ` M : σ → τ B ` N : σ

B ` M N : τ
(→E)

B ` M : σ σ 6 τ
B ` M : τ

(6) B ` M : σ B ` M : τ
B ` M : σ ∩ τ (∩I)

B ` M : σ ∩ τ
B ` M : σ

(∩El)
B ` M : σ ∩ τ

B ` M : τ
(∩Er )

B ` M : σ
B ` M : σ ∪ τ (∪Ii) B ` M : τ

B ` M : σ ∪ τ (∪Ir )

B, x :σ ` M : ρ B, x :τ ` M : ρ B ` N : σ ∪ τ
B ` M[N/x ] : ρ

(∪E)
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Subtyping rules (Ξ subtype theory in [BDdL])

(1) σ 6 σ ∩ σ (8) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ, σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ, τ 6 σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 U (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

(6) σ 6 σ (13) U 6 U→ U

(7) σ1 6 σ2, τ1 6 τ2 ⇒ (14) σ2 6 σ1, τ1 6 τ2 ⇒
σ1 ∩ τ1 6 σ2 ∩ τ2 σ1 → τ1 6 σ2 → τ2
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Subtyping rules 1/4

A subtyping relation is a preorder, ie. a reflexive and transitive order
with U is a universal type, corresponding to the > constant in the lattice
of types (with ∪ as t and ∩ as u)

σ 6 σ Reflexivity

σ 6 τ, τ 6 ρ⇒ σ 6 ρ Transitivity

σ 6 U Universal type

U 6 U→ U Universal type is also a function
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Subtyping rules 2/4
Main rules for intersection:

σ 6 σ ∩ σ
σ ∩ τ 6 σ

σ ∩ τ 6 τ

σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∩ τ1 6 σ2 ∩ τ2 Inter. compositionality

Main rules for union:

σ ∪ σ 6 σ

σ 6 σ ∪ τ
τ 6 σ ∪ τ
σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2 Union compositionality
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Subtyping rules 3/4

σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ) Distr. of inter over union

(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ) Codomain factorization

(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ Domain factorization

Distributivity of union over intersection can be inferred, so there is no
need for another distributivity axiom
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Subtyping rules 4/4

Domain contravariance and codomain variance

σ1 6 σ2, τ1 6 τ2 ⇒ σ2 → τ1 6 σ1 → τ2
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Union types as a dual of intersection types
• Union types

⋃
[MacQueen-Plotkin-Sethi ’85] are considered as a

dual of intersection types

Γ, x :σ ` M : ρ Γ, x :τ ` M : ρ Γ ` N : σ ∪ τ
Γ ` M[N/x ] : ρ

(∪E)

• Union corresponds “roughly” to OCaml Sum types (via match)
type ’a or = In1 of ’a | In2 of ’a ;; ’a is a type variable
let f x = match x with case analysis on the shape of x
| In1 y -> "case 1" first case
| In2 y -> "case 2" second case
;;

• The big difference between Sum and Union types is that, for Union
types, all cases should have the same structure and “set” disjoint
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Intersection and union are super expressive
The Forsythe code [by Pierce 91]

Is 0 def
= λn.if n=0 then true else false : σ

σ
def
= (Zero → True) ∩ (Neg → False) ∩ (Pos → False)

Not 0 def
= λn.if n 6= 0 then 1 else−1 : Num→ (Pos ∪ Neg)

Is 0 (Not 0 n) : False

Without union types the best information we can get for Is 0 (Not 0 n)
is a Bool type

So intersection and union types allow a restricted form of ABSTRACT
INTERPRETATION
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REPETITA JUVANT: Propositional Logic vs
Intersection (and Union) Types

∩ is not ∧
The dual type of intersection is Union:

∪ is not ∨

NB: Usual intuitionistic logics do not apply for intersection and union
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Proof-functional logics for UNION
We can extend the Pottinger ’80 ”logical” interpretation of union as an
intuitionistic connective, by stating that:

DISJUNCTION: “If one has a reason for asserting A→ C and another
reason for asserting B → C and another reason to assert A ∨ B then
one can assert C”

... (while) ...

UNION: “If one has a reason for asserting both A→ C and B → C and
another reason to assert A ∪ B then one can assert C”

P1
.

A→ C

P2
.

B → C

P3
.

A ∨ B
C

P1
.

A→ C

P1
.

B → C

P2
.

A ∪ B
C
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Extending the ∆-calculus with UNION

σ ::= φ | σ → σ | σ ∩ σ | σ ∪ σ | U types

∆ ::= x | λx :σ.∆ | ∆ ∆ | typed λ-calculus

〈∆ ,∆〉 | pr1 ∆ | pr2 ∆ | strong pairs and projections

[∆ ,∆] | strong sums

inσ1∆ | inσ2∆ | injections for strong sum

∆σ | explicit coercions

u∆ indexed constants
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Reconstructing the essence M from a ∆-term
• Fix the relation between pure λ-terms and typed ∆-terms
• Consider the following “erasing” partial function o − o

opri ∆ o def
= o∆ o

o 〈∆1 ,∆2〉 o
def
= o∆1 o

o inσi ∆ o def
= o∆ o

o [λx :σ.∆1 , λx :τ.∆2] ∆3 o
def
= o∆1 o[o∆3 o/x ]

• Example:
o [λx :σ.inτ2x , λx :τ.inσ1x ] y o = y
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Semantics and properties of the ∆-calculus

Standard β-reduction
(λx :σ.∆1) ∆2 −→β ∆1[∆2/x ]

Projection rules
pr1 〈∆1 ,∆2〉 −→pr1 ∆1

pr2 〈∆1 ,∆2〉 −→pr2 ∆2

Injection rules
[λx :σ.∆1 , λx :τ.∆2] inσ1∆3 −→in1 ∆1[∆3/x ]

[λx :σ.∆1 , λx :τ.∆2] inτ2∆3 −→in2 ∆2[∆3/x ]

The usual properties hold: isomorphism wrt the Curry-style system,
Church-Rosser, subject reduction for parallel reduction, unicity of
typing, decidability of type checking, and type reconstruction
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Extending the typing rules of ∆-calculus with
Union

Γ ` ∆1 : σ

Γ ` ∆2 : τ o∆1 o ≡ o∆2 o
Γ ` 〈∆1 ,∆2〉 : σ ∩ τ (∩I)

Γ ` ∆ : σ1 ∩ σ2 i ∈ {1,2}
Γ ` pri ∆ : σi

(∩Ei)

Γ ` ∆ : σi i ∈ {1,2}
Γ ` inσj

i ∆ : σ1 ∪ σ2
(∪Ii)

Γ, x :σ ` ∆1 : ρ o∆1 o ≡ o∆2 o
Γ, x :τ ` ∆2 : ρ Γ ` ∆3 : σ ∪ τ
Γ ` [λx :σ.∆1 , λx :τ.∆2] ∆3 : ρ

(∪E)
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Subtyping rules of theory Ξ from [BDdL]
The subtyping relation from [BDdL] defines a lattice with U as the top, ∪
as the join operator and ∩ as the meet operator

σ 6 σ ∩ σ σ1 6 σ2 and τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

σ ∪ σ 6 σ σ 6 τ and τ 6 ρ⇒ σ 6 ρ

σ ∩ τ 6 σ and σ ∩ τ 6 τ σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

σ 6 σ ∪ τ and τ 6 σ ∪ τ (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

σ 6 U (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

σ 6 σ U 6 U→ U

σ1 6 σ2 and τ1 6 τ2 ⇒ σ2 6 σ1 and τ1 6 τ2 ⇒

σ1 ∩ τ1 6 σ2 ∩ τ2 σ1 → τ1 6 σ2 → τ2
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Raising the ∆-calculus to a ∆-framework

• Adding union types as dual types to intersection types

• Adding dependent types à la LF and found a Curry-Howard
Isomorphism

• States a Curry-Howard isomorphism for Union and Intersection

• Proof as ∆-terms and Intersection/Union types as Logical
Formulae

• NB: usual Intuitionistic Logics do not apply to Union and
Intersection
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The ∆-framework (à la Edinburgh LF)

Kinds K ::= Type | Πx :σ.K as in LF

Families σ, τ ::= a | Πx :σ.τ | σ∆ | as in LF
σ →r τ | relevant arrow
σ ∩ τ | intersection
σ ∪ τ union

Objects ∆ ::= c | x | λx :σ.∆ | ∆ ∆ | as in LF
λr x :σ.∆ | ∆ r ∆ | relevant λ
〈∆ ,∆〉 | pairs for intersection
[∆ ,∆] | pairs for union
pr1 ∆ | pr2 ∆ | projections
inσ1 ∆ | inσ2 ∆ injections
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The Bull software

• Bull is an interactive software which implements the ∆-framework

• Developed from scratch in OCaml

• It contains
- a Read-Eval-Print Loop

- a typechecker with refinement types

- an evaluator

- a decidable and Coq proved and code extracted algorithm for
subtyping

- a higher-order unifier
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The language of Bull

∆, σ ::= s | c | x | |?x [∆; . . . ; ∆] | let x :σ := ∆ in ∆ | Πx :σ.∆ |
λx :σ.∆ | ∆ S | σ ∩ σ | σ ∪ σ | 〈∆ ,∆〉 | pr1 ∆ | pr2 ∆ |
smatch ∆ return σ with [x :σ ⇒ ∆ | x :σ ⇒ ∆] |
in1 σ∆ | in2 σ∆ | coeσ∆

• Applications use spines, as in [Cervesato-Pfenning], i.e. lists of
arguments

S ::= () | (S; ∆)

• Meta-variables ?x [∆; . . . ; ∆] use suspended substitutions: if we
know that

z:σ `?y : τ

• We have

(λx :σ.?y [z := x ]) ∆ −→β ?y [z := ∆] : τ [z := ∆]
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Interacting with Bull

Welcome to Bull 1.0, an experimental LF−based proof checker

based on union, intersection, and relevant types.
Enter "Help." for help.

> Axiom s : Type.
s is assumed.

> Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

ˆˆˆ
Error: the term "id2" has type "?t[] −> ?t[]"

while it is expected to have type "s −> s −> s −> s".

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

> Definition auto_app (f : (s −> s) & ((s −> s) −> s −> s)) := proj_r f proj_l f.
auto_app is defined.

> Compute (auto_app id).
fun x : s ⇒ x : s −> s

essence = fun x⇒ x : s −> s
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Reduction rules of Bull

• β-reduction: (λx :σ.∆1) ∆2 −→β ∆1[∆2/x ]

• η-reduction: λx :σ.∆ x −→η ∆ if x 6∈ FV (∆)

• smatch-reduction:
smatch ini ∆3 return σ with [x :τ ⇒ ∆1 | x :ρ⇒ ∆2] −→ini ∆i [∆3/x ]

• pri -reduction: pri 〈∆1 ,∆2〉 −→pri ∆i

• δ-reduction: if c is defined as ∆, then c −→δ ∆

• ζ-reduction: let x :σ := ∆1 in ∆2 −→ζ ∆2[∆1/x ]
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Easing the work of the programmer

• In this example, the types of id1 and id2 are inferred:

> Definition id : (s −> s) & ((s −> s) −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

id is defined.

• Also, error reports focus precisely on the culprit:

Definition id : (s −> s) & (s −> s −> s −> s) :=
let id1 x := x in let id2 x := x in <id1, id2>.

ˆˆˆ
Error: the term "id2" has type "?t[] −> ?t[]"

while it is expected to have type "s −> s −> s −> s".

• The algorithms we use in order to achieve this are a unifier and a
refiner
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Unification and refinement
• There is a meta-environment for meta-variables and their

instanciation
Φ ::= · | Φ,sort(?x) | Φ, ?x := s | Φ, (Γ `?x : σ) |

Φ, (Γ `?x := ∆ : σ) | Φ,Ψ `?x | Φ,Ψ `?x := M

• We use Higher-Order Pattern Unification. Judgments are

Φ1; Σ; Γ ` ∆1
?
= ∆2

U
 Φ2

• Refinement is done the same way as in Matita. Judgments are

Φ1; Σ; Γ ` ∆1
⇑
 ∆2 : σ; Φ2

Φ1; Σ; Γ ` σ1
F
 σ2 : τ ; Φ2

Φ1; Σ; Γ ` ∆1 : σ
⇓
 ∆2; Φ2

Φ1; Σ; Ψ ` ∆
E⇑
 M; Φ2

Φ1; Σ; Ψ ` M@∆
E⇓
 Φ2
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Conclusion and future work
• We have presented different Church-style λ-calculi with

intersection, union, relevant arrow, and dependent types
• We have studied their meta-properties
• We have developed Bull, a proof-of-concept logical framework
• Future: logical interpretation of intersection and union
• Future: enhance the ∆-framework with inductive types

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη
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Thank you for listening

∆CD

≡

∆CD

=β

∆CDV

≡

∆CDV

=β

∆CDS

≡

∆CDS

=β

∆BCD

≡

∆BCD

=β

∆CDV

=βη ∆BCD

=βη

The ∆-calculus: syntax and types
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