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What This Talk is About

Applying formal methods (model checking) to analysis of
cryptographic protocols that rely on time and space
constraints

Use Maude-NPA tool

symbolic model checker; uses logical variables and symbolic
constraints

Extend Maude-NPA with timed and located syntax and
semantics

Connect to an SMT solver for non-linear real arithmetic

Two protocol examples:

Brands & Chaum distance bounding
Secure localization protocol with beacons



Why Time and Space?

Security protocols for Internet of Things

Distance bounding protocols - Can use round trip of a
challenge and response to decide whether someone is within k
meters from you

Secure localization- can use time of arrival of signals at
different locations to localize a principal

Even if it tries to mislead you

Use this together with cryptography to authenticate the
principals to each other



Larger Questions

What kinds of non-linear constraint problems can we analyze
symbolically via model checkers?

What kinds of analyses are practical?

State space explosion is always a problem

What can be done to extend the bounds of what is possible?
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1 Distance Bounding

2 Secure Localization

3 Timed and Located Maude-NPA

4 Experiments

5 Conclusion



Outline

1 Distance Bounding

2 Secure Localization

3 Timed and Located Maude-NPA

4 Experiments

5 Conclusion



Mafia Attack

A to B: challenge

B to A: response

A to B: challenge

B to A: challenge

B to A: response

B to A: response



Brands & Chaum

Standard Description
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the prover and the verifier is as follows, where NA denotes a nonce generated
by A, SA denotes a secret generated by A, X;Y denotes concatenation of two
messages X and Y , commit(N,S) denotes commitment of secret S with a nonce
N , open(N,S,C) denotes opening a commitment C using the nonce N and
checking whether it carries the secret S, ⊕ is the exclusive-or operator, and
sign(A,M) denotes A signing message M .

P → V : commit(NP , SP )
//The prover sends his name and a commitment

V → P : NV

//The verifier sends a nonce and records the time when this message was sent
P → V : NP ⊕ NV

//The verifier checks the answer message arrives within two times a fixed distance

P → V : SP

//The prover sends the committed secret and the verifier opens the commitment

P → V : signP (NV ; NP ⊕ NV )
//The prover signs the two rapid exchange messages

In [1], we already considered this Brands-Chaum protocol. We assumed the
participants were located at an arbitrary given topology (participants do not
move from their assigned locations) with distance constraints, where time and
distance are equivalent for simplification and are represented by a real number.
We assumed a metric space with a distance function d : A × A → Real from a
set A of participants such that d(A,B) ≥ 0, d(A,A) = 0, d(A,B) = d(B,A),
and d(A,B) ≤ d(A,C) + d(C,B).

In this paper, we assume coordinates Px, Py, Pz for each participant P and
the distance function d : A×A → Real calculated from the positions of the par-
ticipants. From now on, we will use the following notation in order to improve
readability: &d(A,B)' that provides the set of constraints associated to a sym-
bolic distance between participants A and B and d((x, y, z), (x′, y′, z′)) that
calculates the actual distance between participants A and B from their given
concrete coordinates:

&d(A,B)' := (d(A,B) ≥ 0∧ d(A,B)2 = (Ax −Bx)2 +(Ay −By)2 +(Az −Bz)
2)

d((x, y, z), (x′, y′, z′)) :=
√

(x − x′)2 + (y − y′)2 + (z − z′)2

The previous informal Alice&Bob notation was naturally extended to include
time in [1] and we further extend it here to include both time and location.
First, we add the time when a message was sent or received as a subindex
Pt1 → Vt2 . Second, the sending and receiving times of a message differ by the
distance between them just by adding the location constraints &d(A,B)'. Third,
the distance bounding constraint of the verifier is represented as an arbitrary
distance d. Time and space constraints are written using quantifier-free formulas
in real arithmetic. For convenience, we allow both 2 ∗ x = x + x and the monus
function x−̇y = if y < x then x − y else 0 as definitional extensions.
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Fig. 1. Mafia attack Fig. 2. Hijacking attack

In the following time and space sequence of actions, a vertical bar differenti-
ates between the process and corresponding constraints associated to the metric
space. We remove the constraint open(NP , SP , commit(NP , SP )) for simplifica-
tion. The following action sequence differs from [1] only on the terms !d(P, V )".

Pt1 → Vt′
1

: commit(NP , SP ) | t′
1 = t1 + d(P, V ) ∧ #d(P, V )$

Vt2 → Pt′
2

: NV | t′
2 = t2 + d(P, V ) ∧ t2 ≥ t′

1 ∧ #d(P, V )$
Pt3 → Vt′

3
: NP ⊕ NV | t′

3 = t3 + d(P, V ) ∧ t3 ≥ t′
2 ∧ #d(P, V )$

V : t′
3 −̇ t2 ≤ 2 ∗ d

Pt4 → Vt′
4

: SP | t′
4 = t4 + d(P, V ) ∧ t4 ≥ t3 ∧ #d(P, V )$

Pt5 → Vt′
5

: signP (NV ; NP ⊕ NV ) | t′
5 = t5 + d(P, V ) ∧ t5 ≥ t4 ∧ #d(P, V )$

The Brands-Chaum protocol is designed to defend against mafia frauds,
where an honest prover is outside the neighborhood of the verifier (i.e., d(P, V ) >
d) but an intruder is inside (i.e., d(I, V ) ≤ d), pretending to be the honest prover
as depicted in Fig. 1. The following is an example of an attempted mafia fraud, in
which the intruder simply forwards messages back and forth between the prover
and the verifier. We write I(P ) to denote an intruder pretending to be an honest
prover P .

Pt1→It2 : commit(NP , SP ) | t2 = t1 + d(P, I) ∧ #d(P, I)$
I(P )t2→Vt3 : commit(NP , SP ) | t3 = t2 + d(V, I) ∧ #d(V, I)$

Vt3→I(P )t4 : NV | t4 = t3 + d(V, I) ∧ #d(V, I)$
It4→Pt5 : NV | t5 = t4 + d(P, I) ∧ #d(P, I)$
Pt5→It6 : NP ⊕ NV | t6 = t5 + d(P, I) ∧ #d(P, I)$

I(P )t6→Vt7 : NP ⊕ NV | t7 = t6 + d(V, I) ∧ #d(V, I)$
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5 ∧ #d(P, I)$
I(P )t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7 ∧ #d(V, I)$
I(P )t12→Vt13 : signP (NV ; NP ⊕ NV )| t13 = t12 + d(V, I) ∧ t13 ≥ t11 ∧ #d(V, I)$

This attack is physically unfeasible, since it would require that 2 ∗ d(V, I) + 2 ∗
d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V, P ) > d > 0 and the triangular
inequality d(V, P ) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space. This
attack was already unfeasible in [1] using only the metric space assumptions.

Time & Space Constraints
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the prover and the verifier is as follows, where NA denotes a nonce generated
by A, SA denotes a secret generated by A, X;Y denotes concatenation of two
messages X and Y , commit(N,S) denotes commitment of secret S with a nonce
N , open(N,S,C) denotes opening a commitment C using the nonce N and
checking whether it carries the secret S, ⊕ is the exclusive-or operator, and
sign(A,M) denotes A signing message M .
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V → P : NV

//The verifier sends a nonce and records the time when this message was sent
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//The verifier checks the answer message arrives within two times a fixed distance

P → V : SP

//The prover sends the committed secret and the verifier opens the commitment
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In [1], we already considered this Brands-Chaum protocol. We assumed the
participants were located at an arbitrary given topology (participants do not
move from their assigned locations) with distance constraints, where time and
distance are equivalent for simplification and are represented by a real number.
We assumed a metric space with a distance function d : A × A → Real from a
set A of participants such that d(A,B) ≥ 0, d(A,A) = 0, d(A,B) = d(B,A),
and d(A,B) ≤ d(A,C) + d(C,B).

In this paper, we assume coordinates Px, Py, Pz for each participant P and
the distance function d : A×A → Real calculated from the positions of the par-
ticipants. From now on, we will use the following notation in order to improve
readability: &d(A,B)' that provides the set of constraints associated to a sym-
bolic distance between participants A and B and d((x, y, z), (x′, y′, z′)) that
calculates the actual distance between participants A and B from their given
concrete coordinates:

&d(A,B)' := (d(A,B) ≥ 0∧ d(A,B)2 = (Ax −Bx)2 +(Ay −By)2 +(Az −Bz)
2)

d((x, y, z), (x′, y′, z′)) :=
√

(x − x′)2 + (y − y′)2 + (z − z′)2

The previous informal Alice&Bob notation was naturally extended to include
time in [1] and we further extend it here to include both time and location.
First, we add the time when a message was sent or received as a subindex
Pt1 → Vt2 . Second, the sending and receiving times of a message differ by the
distance between them just by adding the location constraints &d(A,B)'. Third,
the distance bounding constraint of the verifier is represented as an arbitrary
distance d. Time and space constraints are written using quantifier-free formulas
in real arithmetic. For convenience, we allow both 2 ∗ x = x + x and the monus
function x−̇y = if y < x then x − y else 0 as definitional extensions.
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Fig. 1. Mafia attack Fig. 2. Hijacking attack

In the following time and space sequence of actions, a vertical bar differenti-
ates between the process and corresponding constraints associated to the metric
space. We remove the constraint open(NP , SP , commit(NP , SP )) for simplifica-
tion. The following action sequence differs from [1] only on the terms !d(P, V )".

Pt1 → Vt′
1

: commit(NP , SP ) | t′
1 = t1 + d(P, V ) ∧ #d(P, V )$

Vt2 → Pt′
2

: NV | t′
2 = t2 + d(P, V ) ∧ t2 ≥ t′

1 ∧ #d(P, V )$
Pt3 → Vt′

3
: NP ⊕ NV | t′

3 = t3 + d(P, V ) ∧ t3 ≥ t′
2 ∧ #d(P, V )$

V : t′
3 −̇ t2 ≤ 2 ∗ d

Pt4 → Vt′
4

: SP | t′
4 = t4 + d(P, V ) ∧ t4 ≥ t3 ∧ #d(P, V )$

Pt5 → Vt′
5

: signP (NV ; NP ⊕ NV ) | t′
5 = t5 + d(P, V ) ∧ t5 ≥ t4 ∧ #d(P, V )$

The Brands-Chaum protocol is designed to defend against mafia frauds,
where an honest prover is outside the neighborhood of the verifier (i.e., d(P, V ) >
d) but an intruder is inside (i.e., d(I, V ) ≤ d), pretending to be the honest prover
as depicted in Fig. 1. The following is an example of an attempted mafia fraud, in
which the intruder simply forwards messages back and forth between the prover
and the verifier. We write I(P ) to denote an intruder pretending to be an honest
prover P .

Pt1→It2 : commit(NP , SP ) | t2 = t1 + d(P, I) ∧ #d(P, I)$
I(P )t2→Vt3 : commit(NP , SP ) | t3 = t2 + d(V, I) ∧ #d(V, I)$

Vt3→I(P )t4 : NV | t4 = t3 + d(V, I) ∧ #d(V, I)$
It4→Pt5 : NV | t5 = t4 + d(P, I) ∧ #d(P, I)$
Pt5→It6 : NP ⊕ NV | t6 = t5 + d(P, I) ∧ #d(P, I)$

I(P )t6→Vt7 : NP ⊕ NV | t7 = t6 + d(V, I) ∧ #d(V, I)$
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5 ∧ #d(P, I)$
I(P )t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7 ∧ #d(V, I)$
I(P )t12→Vt13 : signP (NV ; NP ⊕ NV )| t13 = t12 + d(V, I) ∧ t13 ≥ t11 ∧ #d(V, I)$

This attack is physically unfeasible, since it would require that 2 ∗ d(V, I) + 2 ∗
d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V, P ) > d > 0 and the triangular
inequality d(V, P ) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space. This
attack was already unfeasible in [1] using only the metric space assumptions.
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5
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prover P .
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I(P )t6→Vt7 : NP ⊕ NV | t7 = t6 + d(V, I) ∧ #d(V, I)$
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5 ∧ #d(P, I)$
I(P )t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7 ∧ #d(V, I)$
I(P )t12→Vt13 : signP (NV ; NP ⊕ NV )| t13 = t12 + d(V, I) ∧ t13 ≥ t11 ∧ #d(V, I)$

This attack is physically unfeasible, since it would require that 2 ∗ d(V, I) + 2 ∗
d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V, P ) > d > 0 and the triangular
inequality d(V, P ) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space. This
attack was already unfeasible in [1] using only the metric space assumptions.

In addition d(P,V ) > d , d(I ,V ) ≤ d , d(P,V ) ≤ d(I ,V ) + d(I ,P)



Hijacking Attack

A to B:  𝑁!

B to A : commit(𝑁", 𝑆")

B to A: 𝑁"⊕𝑁!)

M to A: 𝑆#(𝑁", 𝑁"⊕𝑁!)

M overhears conversation
between A and B

B to A: 𝑆"
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Fig. 3. Trilateration Fig. 4. Insecure Fig. 5. Secure

However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable), as depicted in Fig. 2, where an intruder located out-
side the neighborhood of the verifier (i.e., d(V, I) > d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of an
honest prover in the neighborhood (i.e., d(V, P ) ≤ d) to achieve his goal. The
following is an example of a successful distance hijacking, in which the intruder
listens to the exchanges messages between the prover and the verifier but builds
the last message.

Pt1 → Vt2 : commit(NP , SP ) | t2 = t1 + d(P, V ) ∧ #d(P, V )$
Vt2 → Pt3 , It′

3
: NV | t3 = t2 + d(P, V ) ∧ #d(P, V )$

| t′
3 = t2 + d(I, V ) ∧ #d(V, I)$

Pt3 → Vt4 , It′
4

: NP ⊕ NV | t4 = t3 + d(P, V ) ∧ #d(P, V )$
| t′

4 = t3 + d(I, P ) ∧ #d(I, P )$
V : t4 −̇ t2 ≤ 2 ∗ d

Pt5 → Vt6 : SP | t6 = t5 + d(P, V ) ∧ #d(P, V )$
| t5 ≥ t3 ∧ t6 ≥ t4

I(P )t7 → Vt8 : signI(NV ; NP ⊕ NV ) | t8 = t7 + d(I, V ) ∧ #d(I, V )$
| t7 ≥ t′

4 ∧ t8 ≥ t6

This attack was feasible in [1] using the metric space assumptions, and it is
also possible in three-dimensional space. Note that an attack may be possible
in some metric space but it may not be possible in all metric spaces, let alone
in Euclidean metric spaces like three-dimensional space. This inspired us to add
location to our previous framework, as motivated by the following protocol.

Example 2. A secure localization protocol determines the physical location of
a mobile device such as a sensor, a mobile phone, or a small computer with
applications to location-based access control and security. In [20], a malicious
device may lie about its location in an environment with different beacons to
appear either farther away than its true location or closer than it really is.

We consider a very simple protocol in two-dimensional space. A device sends
a timestamp to different beacons. All beacons are honest and receive the times-
tamp. Figure 3 shows how three beacons infer the position of the device by
trilateration, i.e., the intersection of the hyperbolas associated to the distance
travelled from the device’s location. There is a base station that receives the
positions inferred by the beacons and checks whether they coincide or not.
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D → Bei : timestamp
//The device broadcasts a timestamp, maybe different to its
//actual time to appear farther or closer than its true location

Bei → Ba : timediff ; Bei
x ; Bei

y

//Each beacon sends to a base station the difference between
//the received timestamp and the actual reception time plus
//her position.

An informal Alice-Bob presentation with time and location is as follows, where
(Di

x,Di
y) is the inferred location of the device D according to beacon Bei. The

base calculates whether the positions of the device inferred by the beacons coin-
cide, in symbols D1

x = · · · = Dn
x and D1

y = · · · = Dn
y .

Dt1 → Bei
t′
1

: t | t′
1 = t1 + d(D,Bei) ∧ #d(D,Bei)$

Bei : t̄ = t −̇ t′
1 | t̄ ≥ 0

Bei
t2 → Bat′

2
: t̄ ; Bei

x ; Bei
y | t′

2 = t2 + d(Bei,Ba) ∧ #d(Bei,Ba)$
Ba : t̄2 = (D1

x − Be1
x)2 + (D1

y − Be1
y)2

...
Ba : t̄2 = (Dn

x − Ben
x)2 + (Dn

y − Ben
y )2

Ba : D1
x = · · · = Dn

x ∧ D1
y = · · · = Dn

y

If the device is honest, the constraints on the real numbers computed by the base
station are always satisfied. If the device is malicious, [20] shows two interesting
configurations.

(i) (Insecure configuration) If the beacons are in the same lobe of a hyperbola,
as shown in Fig. 4, it is possible for a malicious device at position P to
choose a timestamp to pretend to be at position P ′.

(ii) (Secure configuration) If there are four beacons and they form a rectangle,
shown in Fig. 5, then [20] proves that the device is always caught by the
base station.

Note that these two statements, (i) an attack and (ii) the absence of any attack,
are verified by our time and space process algebra below without requiring exact
positions. That is, (i) is verified just by showing an execution where the computed
time and space constraints are satisfied and (ii) is verified by obtaining a finite
search space where all the computed time and space constraints are unsatisfiable.

3 A Time and Space Process Algebra

In [1] we provided a timed process algebra syntax and a timed transition seman-
tics. The timed process algebra only made message sending-and-reception times
available to processes whereas the timed transition semantics modelled the
actual time interactions between processes under metric space constraints. In
this section, we extend the previous process algebra syntax to make spatial

The base station takes the intersection of four different circles, each
center = Beacon’s location, and radius = Beacon’s timediff

The intersection is the location of the device
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If the device is honest, the constraints on the real numbers computed by the base
station are always satisfied. If the device is malicious, [20] shows two interesting
configurations.

(i) (Insecure configuration) If the beacons are in the same lobe of a hyperbola,
as shown in Fig. 4, it is possible for a malicious device at position P to
choose a timestamp to pretend to be at position P ′.

(ii) (Secure configuration) If there are four beacons and they form a rectangle,
shown in Fig. 5, then [20] proves that the device is always caught by the
base station.

Note that these two statements, (i) an attack and (ii) the absence of any attack,
are verified by our time and space process algebra below without requiring exact
positions. That is, (i) is verified just by showing an execution where the computed
time and space constraints are satisfied and (ii) is verified by obtaining a finite
search space where all the computed time and space constraints are unsatisfiable.

3 A Time and Space Process Algebra

In [1] we provided a timed process algebra syntax and a timed transition seman-
tics. The timed process algebra only made message sending-and-reception times
available to processes whereas the timed transition semantics modelled the
actual time interactions between processes under metric space constraints. In
this section, we extend the previous process algebra syntax to make spatial
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the prover and the verifier is as follows, where NA denotes a nonce generated
by A, SA denotes a secret generated by A, X;Y denotes concatenation of two
messages X and Y , commit(N,S) denotes commitment of secret S with a nonce
N , open(N,S,C) denotes opening a commitment C using the nonce N and
checking whether it carries the secret S, ⊕ is the exclusive-or operator, and
sign(A,M) denotes A signing message M .

P → V : commit(NP , SP )
//The prover sends his name and a commitment

V → P : NV

//The verifier sends a nonce and records the time when this message was sent
P → V : NP ⊕ NV

//The verifier checks the answer message arrives within two times a fixed distance

P → V : SP

//The prover sends the committed secret and the verifier opens the commitment

P → V : signP (NV ; NP ⊕ NV )
//The prover signs the two rapid exchange messages

In [1], we already considered this Brands-Chaum protocol. We assumed the
participants were located at an arbitrary given topology (participants do not
move from their assigned locations) with distance constraints, where time and
distance are equivalent for simplification and are represented by a real number.
We assumed a metric space with a distance function d : A × A → Real from a
set A of participants such that d(A,B) ≥ 0, d(A,A) = 0, d(A,B) = d(B,A),
and d(A,B) ≤ d(A,C) + d(C,B).

In this paper, we assume coordinates Px, Py, Pz for each participant P and
the distance function d : A×A → Real calculated from the positions of the par-
ticipants. From now on, we will use the following notation in order to improve
readability: &d(A,B)' that provides the set of constraints associated to a sym-
bolic distance between participants A and B and d((x, y, z), (x′, y′, z′)) that
calculates the actual distance between participants A and B from their given
concrete coordinates:

&d(A,B)' := (d(A,B) ≥ 0∧ d(A,B)2 = (Ax −Bx)2 +(Ay −By)2 +(Az −Bz)
2)

d((x, y, z), (x′, y′, z′)) :=
√

(x − x′)2 + (y − y′)2 + (z − z′)2

The previous informal Alice&Bob notation was naturally extended to include
time in [1] and we further extend it here to include both time and location.
First, we add the time when a message was sent or received as a subindex
Pt1 → Vt2 . Second, the sending and receiving times of a message differ by the
distance between them just by adding the location constraints &d(A,B)'. Third,
the distance bounding constraint of the verifier is represented as an arbitrary
distance d. Time and space constraints are written using quantifier-free formulas
in real arithmetic. For convenience, we allow both 2 ∗ x = x + x and the monus
function x−̇y = if y < x then x − y else 0 as definitional extensions.
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However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable), as depicted in Fig. 2, where an intruder located out-
side the neighborhood of the verifier (i.e., d(V, I) > d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of an
honest prover in the neighborhood (i.e., d(V, P ) ≤ d) to achieve his goal. The
following is an example of a successful distance hijacking, in which the intruder
listens to the exchanges messages between the prover and the verifier but builds
the last message.

Pt1 → Vt2 : commit(NP , SP ) | t2 = t1 + d(P, V ) ∧ #d(P, V )$
Vt2 → Pt3 , It′

3
: NV | t3 = t2 + d(P, V ) ∧ #d(P, V )$

| t′
3 = t2 + d(I, V ) ∧ #d(V, I)$

Pt3 → Vt4 , It′
4

: NP ⊕ NV | t4 = t3 + d(P, V ) ∧ #d(P, V )$
| t′

4 = t3 + d(I, P ) ∧ #d(I, P )$
V : t4 −̇ t2 ≤ 2 ∗ d

Pt5 → Vt6 : SP | t6 = t5 + d(P, V ) ∧ #d(P, V )$
| t5 ≥ t3 ∧ t6 ≥ t4

I(P )t7 → Vt8 : signI(NV ; NP ⊕ NV ) | t8 = t7 + d(I, V ) ∧ #d(I, V )$
| t7 ≥ t′

4 ∧ t8 ≥ t6

This attack was feasible in [1] using the metric space assumptions, and it is
also possible in three-dimensional space. Note that an attack may be possible
in some metric space but it may not be possible in all metric spaces, let alone
in Euclidean metric spaces like three-dimensional space. This inspired us to add
location to our previous framework, as motivated by the following protocol.

Example 2. A secure localization protocol determines the physical location of
a mobile device such as a sensor, a mobile phone, or a small computer with
applications to location-based access control and security. In [20], a malicious
device may lie about its location in an environment with different beacons to
appear either farther away than its true location or closer than it really is.

We consider a very simple protocol in two-dimensional space. A device sends
a timestamp to different beacons. All beacons are honest and receive the times-
tamp. Figure 3 shows how three beacons infer the position of the device by
trilateration, i.e., the intersection of the hyperbolas associated to the distance
travelled from the device’s location. There is a base station that receives the
positions inferred by the beacons and checks whether they coincide or not.

Definition (Insecure configuration)

If the beacons are in the same lobe of a
hyperbola, it is possible for a malicious device
at the P to choose a timestamp to pretend to
be at position P ′, where P and P ′ are the foci
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side the neighborhood of the verifier (i.e., d(V, I) > d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of an
honest prover in the neighborhood (i.e., d(V, P ) ≤ d) to achieve his goal. The
following is an example of a successful distance hijacking, in which the intruder
listens to the exchanges messages between the prover and the verifier but builds
the last message.

Pt1 → Vt2 : commit(NP , SP ) | t2 = t1 + d(P, V ) ∧ #d(P, V )$
Vt2 → Pt3 , It′

3
: NV | t3 = t2 + d(P, V ) ∧ #d(P, V )$

| t′
3 = t2 + d(I, V ) ∧ #d(V, I)$

Pt3 → Vt4 , It′
4

: NP ⊕ NV | t4 = t3 + d(P, V ) ∧ #d(P, V )$
| t′

4 = t3 + d(I, P ) ∧ #d(I, P )$
V : t4 −̇ t2 ≤ 2 ∗ d

Pt5 → Vt6 : SP | t6 = t5 + d(P, V ) ∧ #d(P, V )$
| t5 ≥ t3 ∧ t6 ≥ t4

I(P )t7 → Vt8 : signI(NV ; NP ⊕ NV ) | t8 = t7 + d(I, V ) ∧ #d(I, V )$
| t7 ≥ t′

4 ∧ t8 ≥ t6

This attack was feasible in [1] using the metric space assumptions, and it is
also possible in three-dimensional space. Note that an attack may be possible
in some metric space but it may not be possible in all metric spaces, let alone
in Euclidean metric spaces like three-dimensional space. This inspired us to add
location to our previous framework, as motivated by the following protocol.

Example 2. A secure localization protocol determines the physical location of
a mobile device such as a sensor, a mobile phone, or a small computer with
applications to location-based access control and security. In [20], a malicious
device may lie about its location in an environment with different beacons to
appear either farther away than its true location or closer than it really is.

We consider a very simple protocol in two-dimensional space. A device sends
a timestamp to different beacons. All beacons are honest and receive the times-
tamp. Figure 3 shows how three beacons infer the position of the device by
trilateration, i.e., the intersection of the hyperbolas associated to the distance
travelled from the device’s location. There is a base station that receives the
positions inferred by the beacons and checks whether they coincide or not.

Definition (Secure configuration)

If there are four beacons and they form a
rectangle, then it can be proved that they
never lie on the same lobe of a hyberbola.
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Original Maude-NPA

State is a set of communicating processes

Instead of communicating with each other, communicate with
a single intruder who can

Read messages
Apply functions to messages it’s received (e.g.
encryption/decrypton)
Send messages
Block messages

Supplied with an Intruder Knowledge constraint set

Maude-NPA executes backwards from a description of an
insecure state

As Maude-NPA executes, constraints are introduced to the
constraint set



Timed and Located Maude-NPA

State in Maude-NPA is again a set of communicating
processes

Each process is assumed to have a fixed location with
coordinates x , y , and z

Each action (sending or receiving) takes place at a time t

We designate a sent message M by
M@(ro, i) : x , y , z , t → AS , where AS stands for a set of
recipients of the form B : t

B denotes a principal, t denotes the time it receives a message

These are added to a Network constraint set



Timed Send

{(ro, i , j , x , y , z) (+M@t · P) & PS | {Net} | t̄}
−→(ro,i,j,+(Mσ′),0,t̄)

{(ro, i , j + 1, x , y , z) Pσ′ & PS | {(Mσ′@(ro, i) : x , y , z , t̄ → ∅),Net} | t̄}
if (Mσ′ : (ro, i) : x , y , z , t̄ → ∅) /∈ Net

where σ is a ground substitution binding choice variables in M

and σ′ = σ ] {t 7→ t̄} (TPA++)



Timed Receive

{(ro, i , j , x , y , z) (−(M@t) · P) & PS |
{(M ′@((ro′, k) : x ′, y ′, z ′, t ′ → AS)),Net} | t̄}

−→(ro,i,j,−(Mσ′),0,t̄)

{(ro, i , j + 1, x , y , z) Pσ′ & PS |
{(M ′@((ro′, k) : x ′, y ′, z ′, t ′ → (AS ] (ro, i) : t̄)),Net} | t̄}

IF ∃σ : M ′ =EP Mσ, t̄ = t ′ + d((x , y , z), (x ′, y ′, z ′)), σ′ = σ ] {t 7→ t̂}
(TPA-)



Further Constraints

General Time and Space

Constraints on distance:
d(A,A) = 0, d(A,B) = d(B,A), d(A,B) ≤ d(A,C ) + d(B,C )

For every message M@A : t → AS stored in the network,
t ′ = t + d(A,B) for any B : t ′ in AS

Constraints Specific to Problem

Wireless Line-of-Sight Constraint

If M@A : t → AS , and (B, t ′) ∈ AS , then
if ((d(A,C ) ≤ d(A,B), then (C , t ′′) ∈ AS for some t ′′)

All constraints on space and time sent to SMT solver
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Experiments (1/3)

Brands & Chaum: Shown secure against Mafia fraud- fully
symbolic, bounded number of principals

44 D. Aparicio-Sánchez et al.

Example 15. Following the strand specification of the Brands-Chaum protocol
given in Example 13, the mafia attack of Example 1 is given as the following
attack pattern. We consider one prover p, one verifier v, and one intruder i at fixed
locations (px, py, pz), (vx, vy, vz) and (ix, iy, iz), respectively. Brands-Chaum is
secure against the mafia fraud attack and no initial state is found in the backwards
search.

eq ATTACK-STATE(1) --- Mafia fraud
= :: r :: ---Alice --- Verifier
[ nil,
-(commit(n(b,r1),s(b,r2)) @ i : ix,iy,iz,t1 -> a : t2),
((t2 === t1 +=+ dai) and (dai > 0/1) and
((dai *=* dai) === (((ix -=- ax) *=* (ix -=- ax)) +=+ ((iy -=- ay) *=* (iy -=- ay)))

+=+ ((iz -=- az) *=* (iz -=- az)))),
+(n(a,r) @ a : ax,ay,az,t2 -> i : t2’’’),
-(n(a,r) * n(b,r1) @ i : ix,iy,iz,t3 -> a : t4),
((t4 === (t3 +=+ dai)) and (dai > 0/1) and
(((t4 -=- t2) <= (2/1 *=* d)) and (d > 0/1)) | nil ]
&
:: r1,r2 :: ---Bob --- Prover
[ nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1’ -> i : t1’’),
-(n(a,r) @ i : ix,iy,iz,t2’’ -> b : t3’),
((t3’ === (t2’’ +=+ dbi)) and (dbi > 0/1) and
((dbi *=* dbi) === ((((ix -=- bx) *=* (ix -=- bx)) +=+ ((iy -=- by) *=* (iy -=- by)))

+=+ ((iz -=- bz) *=* (iz -=- bz))))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3’ -> i : t3’’) | nil ]
|| smt(((dai +=+ dbi) > d) and (dbi > 0/1) and (dab > 0/1) and (dai > 0/1) and

((dab *=* dab) === ((((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))
+=+ ((az -=- bz) *=* (az -=- bz)))))

Example 16. Continuing Example 15, the hijacking attack of Example 1 is given
as the following attack pattern. And the backwards search of Maude-NPA from
this attack pattern does find an initial state.

eq ATTACK-STATE(2) --- Hijacking
= :: r :: --- Alice --- Verifier
[ nil,
-(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
((t2 === t1 +=+ dab) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t2’’),
-(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4’’),
((t4 === t3 +=+ dab)),
((t4 -=- t2) <= (2/1 *=* d)),
-(s(b,r2) @ b : bx,by,bz,t5 -> a : t6),
((t6 === t5 +=+ dab)),
-(sign(i,(n(a,r) * n(b,r1)) ; n(a,r)) @ i : ix,iy,iz,t7 -> a : t8),
((t8 === (t7 +=+ dai)) and (dai > 0/1) and
((dai *=* dai) === (((ax -=- ix) *=* (ax -=- ix)) +=+ ((ay -=- iy) *=* (ay -=- iy)))

+=+ ((az -=- iz) *=* (az -=- iz)))) | nil ]
&
:: r1,r2 :: ---Bob --- Prover
[ nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
-(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t3’’),
((t3 === (t2 +=+ dab)) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4’’),
+(s(b,r2) @ b : bx,by,bz,t5 -> a : t6) | nil]
|| smt( (dai > d) and (dab <= d))

Brands & Chaum:Shown insecure against hijacking attack -
fully symbolic, bounded number of principals

44 D. Aparicio-Sánchez et al.
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attack pattern. We consider one prover p, one verifier v, and one intruder i at fixed
locations (px, py, pz), (vx, vy, vz) and (ix, iy, iz), respectively. Brands-Chaum is
secure against the mafia fraud attack and no initial state is found in the backwards
search.
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-(commit(n(b,r1),s(b,r2)) @ i : ix,iy,iz,t1 -> a : t2),
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((dab *=* dab) === ((((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))
+=+ ((az -=- bz) *=* (az -=- bz)))))

Example 16. Continuing Example 15, the hijacking attack of Example 1 is given
as the following attack pattern. And the backwards search of Maude-NPA from
this attack pattern does find an initial state.

eq ATTACK-STATE(2) --- Hijacking
= :: r :: --- Alice --- Verifier
[ nil,
-(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
((t2 === t1 +=+ dab) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t2’’),
-(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4’’),
((t4 === t3 +=+ dab)),
((t4 -=- t2) <= (2/1 *=* d)),
-(s(b,r2) @ b : bx,by,bz,t5 -> a : t6),
((t6 === t5 +=+ dab)),
-(sign(i,(n(a,r) * n(b,r1)) ; n(a,r)) @ i : ix,iy,iz,t7 -> a : t8),
((t8 === (t7 +=+ dai)) and (dai > 0/1) and
((dai *=* dai) === (((ax -=- ix) *=* (ax -=- ix)) +=+ ((ay -=- iy) *=* (ay -=- iy)))

+=+ ((az -=- iz) *=* (az -=- iz)))) | nil ]
&
:: r1,r2 :: ---Bob --- Prover
[ nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
-(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t3’’),
((t3 === (t2 +=+ dab)) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4’’),
+(s(b,r2) @ b : bx,by,bz,t5 -> a : t6) | nil]
|| smt( (dai > d) and (dab <= d))



Experiments (2/3)

Secure Localization: Hyperbola attack - one specific
configuration

46 D. Aparicio-Sánchez et al.

+=+ ((be3y -=- bay) *=* (be3y -=- bay))) +=+ ((be3z -=- baz) *=* (be3z -=- baz)))),
-((t4 -=- t) ; be4x ; be4y @ Be4 : be4x,be4y,be4z,t4 -> Ba : t4’),
((t4’ === t4 +=+ dbabe4) and (dbabe4 > 0/1) and
((dbabe4 *=* dbabe4) === (((be4x -=- bax) *=* (be4x -=- bax))

+=+ ((be4y -=- bay) *=* (be4y -=- bay))) +=+ ((be4z -=- baz) *=* (be4z -=- baz)))),
(((t1 -=- t) *=* (t1 -=- t)) === (((dx -=- be1x) *=* (dx -=- be1x))

+=+ ((dy -=- be1y) *=* (dy -=- be1y))) and
((t2 -=- t) *=* (t2 -=- t)) === (((dx -=- be2x) *=* (dx -=- be2x))
+=+ ((dy -=- be2y) *=* (dy -=- be2y))) and

((t3 -=- t) *=* (t3 -=- t)) === (((dx -=- be3x) *=* (dx -=- be3x))
+=+ ((dy -=- be3y) *=* (dy -=- be3y))) and

((t4 -=- t) *=* (t4 -=- t)) === (((dx -=- be4x) *=* (dx -=- be4x))
+=+ ((dy -=- be4y) *=* (dy -=- be4y)))),

+(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1’’ # Be2 : t2’’ # Be3 : t3’’ # Be4 : t4’’),
(t5 >= t1’ and t5 >= t2’ and t5 >= t3’ and t5 >= t4’) | nil]
|| smt((t =/== t0))

The insecure configuration of Fig. 4 is now obtained by just adding extra con-
straints to the attack pattern: (i) fixing concrete locations for the beacons in a
hyperbola, (ii) adding the distances from the malicious device to the beacons, (iii)
adding the distances inferred by the beacons from the malicious device, and (iv)
adjusting the sent timestamp to differ from the actual sending time in the appro-
priate amount to fake the base station. And the backwards search of Maude-NPA
from this attack pattern does find an initial state.

smt( --- hyperbola with a^2 = 4, b^2 = 5, c^2 = 9

(t > t0) and (t0 === 0/1) and (z1 === 0/1) and

(be1z === 0/1) and (be2z === 0/1) and (be3z === 0/1) and

(be4z === 0/1) and (baz === 0/1) and

((be1x === 3/1) and (be1y === 5/2)) and

((be2x === 3/1) and (be2y === -(5/2))) and

((be3x === 4/1) and ((be3y *=* be3y) === 60/4) and (be3y > 0/1)) and

((be4x === 4/1) and ((be4y *=* be4y) === 60/4) and (be4y < 0/1)) and

(x1 === -(3/1)) and (dx === 3/1) and (dy === y1) and (y1 === 0/1))

The secure configuration of Fig. 5 is now obtained by just adding extra con-
straints to the attack pattern: (i) fixing concrete locations for the beacons in a
rectangle for a parametric height and width, and (ii) asking whether the times-
tamp is different from the sending time.

smt( (t =/== t0) and (t >= 0/1) and z1 === 0/1 and baz === 0/1 and

be1z === 0/1 and be2z === 0/1 and be3z === 0/1 and be4z === 0/1 and

(h > 0/1) and (v > 0/1) and (be1x === 0/1) and (be1y === 0/1) and

(be2x === be1x) and (be2y === be1y +=+ v) and

(be3x === be1x +=+ h) and (be3y === be1y) and

(be4x === be1x +=+ h) and (be4y === be1y +=+ v))

Our analysis of this protocol uncovered some interesting challenges that would
need to be addressed in future research. When we gave the constraints to the SMT
solvers, including Yices [24] and Z3 [25], which support non-linear real arithmetic,
none of them were able to prove that they were unsatisfiable. It was not until we
simplified them by hand by using Gaussian elimination on the matrix defined by
the coefficients of the constraints, producing the set of constraints given below, that



First Try at Solving Constraints for Beacons in a
Rectangle (fully symbolic)

Assume beacons at (0, 0), (0,w), (h, 0), (w , h)

Attacker can only fake its distance by the same amount d for
each beacon

This can be deduced from the constraints of the problem

Constraints as follows
1 w > 0, h > 0, d 6= 0
2 All distance, real and fake, are positive (8 constraints)
3 2 quadratic equations for each beacon, one with the real

distance as radius and real location as a solution, one with the
fake distance and fake location

Total of 11 inequalities, and 8 quadratic equations

Every single SMT solver we tried it on tanked



Second Try

Manually simplified the equations by addition, subtraction,
and multiplication

Wound up with the following, which only Mathematica could
handle

Protocol Analysis with Time and Space 47

we were able to get one solver, Mathematica [13], to prove unsatisfiability. This
suggest that more research is needed on heuristics for preprocessing the types of
constraints that arise from reasoning about time and space protocols so that they
can be handled by available SMT solvers.

6 Conclusions

We have extended our previous paper with a time model for protocols using time
constraints to a time and space model for protocol analysis based on timing and
space constraints. We have also extended our previous prototype of Maude-NPA
handling protocols with time to handle time and space by taking advantage of
Maude’s support of SMT solvers, and Maude-NPA’s support of constraint han-
dling. We have used the Brands and Chaum protocol to illustrate how this exten-
sion is natural and smoothly subsumes our previous time-only framework, and a
secure localization protocol with complex location and time constraints. This app-
roach should be applicable to other tools that support constraint handling. There
are several ways this work can be extended, as suggested within the paper. And
there are many interesting protocols that can be tested with this time and space
model, for example protocols using the Message Time Of Arrival Codes (MTACs)
of [12].
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Conclusion

We’ve shown how it is possible to use symbolic methods to
reason about crypto protocols that rely on properties of time
and space

Still easy to run into issues that limit the ability to perform
fully symbolic reasoning

Number of ways in which we can explore this further
Concentrate on specific classes of problems where solutions
and methodologies can be reused

This has already been done to some extent for distance
bounding

Develop ways of breaking down problems so that they can be
better handled by available tools

Did this to some extent for secure localization

There’s a lot to explore out there!
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