DPJ: JAVA CLASS LIBRARY FOR DEVELOPMENT OF
DATA-PARALLEL PROGRAMS

V. Ivannikov, S. Gaissaryan, M. Dommrachev, V. Etch, N. Shtaltovnaya

Abstract

Problem of Java language usage of data-parallel programs using the SPMD model
of parallel execution is disscused in the paper. The sequential components of par-
allel program are executed in parallel on distinct JavaVMs running on processors
of the parallel computer. Links between the parallel program components are car-
ried out by means of the standart message passing interface package MPI. Parallel
extension of Java is made by means of Java itself, namely by DPJ class library,
containing the set of Java classes and interfaces. Description of the DPJ library is
a main subject of this paper. The scope of the paper is restricted to implementa-
tion of the DPJ library for set of JavaVM .

1 Introduction

The problem of usage of the Java lenguage [1] for data-parallel programs
development within the framework of SPMD (Single Program, Multiple
Data) model [2] is discussed in the paper: the parallel program represents
a set of sequential functionally identical components. FEach component
represents the Java-program executed on separate JavaVM. All compo-
nents and their JavaVMs work in parallel on processors of the parallel
computer!, so that on each processor appropriate JavaVM interprets one
component of the parallel program. Thus, being a Java-program each
component may use parallel capabilities of JavaMV (i.e. to be executed in
several threads [1]).

We add new parallel capabilities to Java by means of Java itself: we
implement DPJ library, containing the set of Java classes and interfaces
providing these facilities. Describtion of DPJ library is the main subject
of the paper.

Nowadays the activity on organization of parallel computations using
Java language is of great interest for teams working on development of
various parallel systems. It is possible to say so considering the regular
publications on this subject in the Internet [3]. It is worth to mention two

Term the parallel computer means either multiprocessor supercomputer with dis-
tributed memory or local (generally sreaking, inhomogeneous) network of computers.

DPJ: Java Class Library for Development of... AMI Vol.2, 1997

approaches to solution of a problem of parallel computation organization
using Java lenguage:

e Development of Java-interfaces to parallel programs written using other
parallel progamming languages: HPF [4], HPC [5], pC++ [6], MPC++ [7],
etc.;

e Development of special facilities for design of parallel programs using
the Java language [8]. The former approach only conventionally could be
treated as parallel programming using Java language, because only the calls
to the parallel library functions are programmed on Java, but the parallel
programming of these function bodies is carried out on other parallel lan-
guages. The use of parallel libraries can provide high enough efficiency, and
also allows one to use the legacy highly-efficient parallel programs. The dis-
advantages of this approach are in restricted compatibility of such libraries
due to the problems of recompilation and installation of runtime systems
of these libraries to another platform. Additionally it is difficult to control
the library efficiency in case of porting it to another platform as these li-
braries usually work effectively only on parallel computers for which they
were designed. At last, the possibilities of distribution of such libraries are
limited as they require usage of expensive compilers and runtime systems.

We believe the second aproach is preferable because only this approach
supports the full cycle of development of the parallel Java-program [9].
The standard communication package MPI(Message Passing Interface)
[10] has been implemented for most of parallel plaforms and is used to
support communications among components of the parallel program. The
parallel program entirely developed on Java can be executed on any set of
JavaVMs working in parallel and interacting via MPI functions. It may
be easy debugged and modified due to reflexive properties of Java language.
Certainly, the performance of the parallel Java -program in interpetation
mode concedes the performance of compiled programs developed on other
parallel languages such as pC++,MPC++, etc. However, the distribution
of the parallel Java-program bytecode allows to use it immediately and
preliminary evaluate performance improvement of the application caused
by use of this parallel Java -program. Thus there is no need in the complex
and expensive software installations as with parallel programming systems
described in first approach.

Only after the fitness of the parallel Java-program is proved the prob-
lem of its performance increase will arise. We propose three ways to solve
this problem. The first is similar to the first approach to Java parallel
programming: instead of bytecode the machine code obtained as a result of
compilation of C++ program which is functionally similar to given Java-
program and has the same Java -interface as source Java-program. The
second way is to use the Java compiler and/or JavaVM bytecode compiler

33

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

directly to machine codes (Java-to-native compilers) [11,12], optimizing
converters of Java -programs [13], etc. This allows to increase perfor-
mance of the parallel Java-program components and to draw it near the
performance of programs on other programming languages (for example,
C/C++,FORTRAN, etc.). The third way proposes the development of the
optimizing parallelizing Java compiler directly to machine codes of paral-
lel computers (Parallel Java-to-native compilers).

The parallel programing system DPJ described in the paper suggests
the following tecgnique of parallel Java-programs development:

1. The parallel program is developed on Java language with the aid of
special DPJ library classes described below;

2. Then the program is compiled to bytecode and dabugged on a parallel
computer in interpretation mode;

3. The evaluation of the program parallel properties is performed (in
particular the degree of the program acceleration under paralleliza-
tion, program scalability, etc. are evaluated);

4. If the program reveals acceptable outcomes of the parallelization de-
gree, one of three described above ways to performance improvement
is applied;

5. The further performance enhancement will involve the replacement
of the MPI package to the specially developed optimized run-time
support system.

In this paper the presentation is limited to implementation of the DPJ
library for set of JavaVMs. The implementation of mentioned ways of
performance improvement will be covered in the succeeding publications.

It is nessesary to note that alongside with implementation of the Java
classes library there is an implementation of the C++ programming system
(DPS++) [14] using the C++ templates. The DPS++ library is compat-
ible with the standard STL library [15] included into the C++ standard
[16]. The DPS++ implementation will provide high enough efficiency for
parallel programs designed under this library.

The DPJ parallel capabilities include the main components of the li-
brary: networks and subnets (subnetworks), distributed containers and
their iteratos and parallel algorithms. Additionally some aspects of the
DPJ implementation using the MPI package, as well as distinction be-
tween parallelism provided by DPJ library, and built-in Java thread par-
allelism [1] are considered in the section 2.

34

DPJ: Java Class Library for Development of... AMI Vol.2, 1997

The section 3 is devoted to the detailed description of networks and
subnets definition facilities. In the current DPH implementation the defi-
nition of all networks and their subnets is performed dynamically with the
aid of the MPT package.

The definition facilities and basic types of distributed containers are
described in section 4. For effective processing each type of distributed
container assumes a subnet topology it is distributed on to be defined. The
information about the subnet topology is passed to the MPI package for
more effective mapping of the virtual network onto real one.

The types and definition facilities of iterators of distributed containers
are described in section 5. The distributed container iterator provides a
simultaneous access to all elements of one subset of nodes of this container.
Depending on a sort of subsers there are following types of iterators: unary
(contains single node subsets), overall (contains subset of all nodes), and
multiple (contains arbitrary subsets of nodes).

The section 6 contains the brief description of the parallel algorithms
implemented in the current DPJ version used most frequently when de-
veloping parallel programs. The parallel algorithm is parallel program
whith ensures effective execution of standard operations on any types of
distributed containers.

The usage of all DPJ basic components is described in section 7 as an
example of parallel program.

2 The Brief Description of Parallel Capabilities of the
DPJ Library

As has been mentioned above we treat parallel programs working under
SPMD model. Such program is a set of functionally identical components
consisting of either bytecode or machine codes of concrete paralel com-
puter. In the first case component represents the Java-program executed
on separate JavaVM; and all components and their JavaVMs work in
parallel on processors of the parallel computer, so appropriate JavaVIM
internets one component of the parallel program on each processor. In the
second case each component represents a machine code image of a Java
-program, and functionally identical components in machine codes are ex-
ecuted in parallel on processors of the parallel computer. From now on the
component of the parallel program will mean the bytecode implementation
of this component.

MPI package is used for organization of communiction and data ex-
change between components. Providing a set of primitives to handle the

35

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

message passing MPI package allows to hide a physical structure of com-
puter processors, used network hardware, as well as operating systems pe-
culiarities. One of important primitives of the MPI package is process.
The process is a unit of the program execution, and the message passing is
performed only among processes. The MPI package allows to mapp to one
component of the parallel Java-program. Thus the parallel Java-progran
is mapped onto a set of MPI processes. It is convenient to refer this set
as a network, each process being a node of this network. The network is
conceptually created by a special starter class thet defines the power of
network and the parallel program starting parameters.

Using the model described a component of the parallel program could be
associated with a node it is executed on. One could use parallelization fa-
cilities defined in the Java language environment (classes java.lang. Thread,
java.lang. ThreadGroup) while every node executes the Java-program. These
classes use a shared memory model parallelism. In the paper only the dis-
tributed memory parallelism model is discussed, i.e. we suppose that each
component of the parallel program runs in the separate address space, and
threads run within one node achieving the real parallelism on a node with
complex structure (e.g. the MPI process is executed on SMP architecture
which supports thread distribution among different processors). The main
goal of the research is development of parallel execution control, as well as
facilities for distribution and axchange of data among nodes.

One of the program parallelization techniques is partitioning the pro-
gram into independent parts. Let, for example, the program consists of
two independent parts A and B, which could be executed in parallel. It is
convenient to define a subnet « of the network for execution of part A of
the program and subnet 3 for execution of part B. Thus both parts A and
B of the program are executed only on an appropriate subnet, and does
not executed of another subnet?. In turn, one may define subnets of every
subnet. The nodes of the network of subnet are enumerated by integers
from 0 up to n — 1, where n is the power of the set of network (or subnet)
nodes.

As in any other object-oriented language in the Java language it is
convenient to represent the sets of similar objects by container objects
(containers) [17]. Examples of containers are arrays, vectors, lists, set, key
set, atc. Each object that is accesed through the container is element of this

2In spite that in the program « and 3 subnets are defined, according to SPMD model
the same code is located on every node, i.e. there is a code of both A and B parts on each
node. Nodes of subnet a will never execute the code of part B, and nodes of subnet
will never execute the code of part A. The execution of one or another part on the node
is performed by a switch which determines which subnet owns this node and initiates
execution of an appropriate part of the program.

36

DPJ: Java Class Library for Development of... AMI Vol.2, 1997

container. The container iterator is an object which provides access to the
elements of this container. In the sequential program at any given moment
of time iterator provides access at most to the one element of container. It
is convenient to use iterator in the loops processing the container elements.

We introduce implementation of data distribution using distributed con-
tainer, which arranges its elements so that each node of container owns one
element which is placed on the corresponding node of container subnet N.
The subnet N is specified when the distributed container is instantiated.

As in usual container, each element of distributed container can have
references to other elements of this container: in this case the reference
specifies a node where the addressed by this reference element resides. Un-
der distributed container reduction operations may be defined which are
executed involving all elements of the container in parallel with a peak
afficiency. There are following reduction operations: counting container el-
ements, obtaining element index, summation of all container elements (for
example, distributed array), detecting maximum and minimum, etc.

Access to distributed container elements is provided by container itera-
tor. The distributed container may have an arbitrary amount of iterators.

The distributed container iterator is object distributed across the same
subnet as its container and providing simultaneous access to all elements
of one sebset of container nodes. This subnet of container nodes is called
iterator value. The set of all iterator values forms a covering of the set of
container nodes (with or without intersections). T'wo operations are defined
on the iterator: assignment and reassignment of its value. With the aid of
these operations iterator can in turn accept all its values wthich altogether
form a covering of set of all container nodes.In particular, one may define
the iterator providing simultaneous access to all elements of the distributed
container at once (overall iterator), iterator defining simultaneous access
only to the set of one element of the container (unary iterator), ets. Most
frequently used iterators for each of distributed container types are available
in the DPJ class library.

Distributed container element could be an object implementing the par-
allel algorithm interface. Such an object has a method run() defined by the
user which represents the body of a component of parallel algorithm that
is executed on every node. The execution of parallel algorithm begins by
the call of method start() on all nodes of the subnet which the appropriate
object is distributed on. Iterator of such container returns current subset
of nodes executinng method run(). Examples of parallel algorithms are
parallel search, parallel sorting, etc.

At run time there is a need of date exchange with external sources, e.g.
data should be read from or written to a disk file. A special subsystem
of parallel input/output is supposed to be developed to meet these needs.

37

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

Currently this problem is solved by means of standard Java facilities (e.g.
input /output can be performed by the single node to its file).

In our implementation of this concept using Java all described system
objects, namely subnets, distributed containers, their iterators, and the
parallel algorithms are represented by the hierarchy of library and user
classes and interfaces. Their semantics and syntax are described in the
following sections of this paper.

3 Subnet Definition

The definition of subnet of some network (or subnet) is performed by in-
stentiation of the special Subnet class. Each subnet has the parent network
(or subnet) and can have an arbitrary amount of the child subnets. The
brief description of the Subnet class methods is given below:

e Define a subnet

e Get amount of subnet nodes

e Operators on subnets:

* Union

* Intersection

x Complement
e Get space of this subnet free from its child subnets (complement of all
child subnets union)

e Get a subnet of nodes included in the minimal number of child subnets

The Subnet class object representing the network is instantiated when
the parallel program is loaded. This object has no parent network.

The Subnet class contains fields and methods designed for a load balanc-
ing control. When a subnet A of the network N is instantiated, the values
of loading counters of the nodes of network NV included in A are increased
by one. Methods getFree return array of numbers of nodes which have zero
values of loading counters. The method getMinimumLoaded returns array
of numbers of nodes with the minimal values of loading counteds.

In current implementation of the library definition of the network (or
subnet) causes creation of appropriate MPIgrour and communicator. The
MPI communicator creation requires one act of collective communication
on appropriate parent net.

4 Distributed Containers

The distribured container locates its elements one per node of a subnet
which is specified in its definition. The distributed container can be instance

38

DPJ: Java Class Library for Development of... AMI Vol.2, 1997

of any class which implements the appropriate interface. The distributed
container elements are Java object instances. Primitive types should be
represented as instances of apprapriate objects (e.g., Character, Integer,
etc.) before placing them into the container. The distributed container
elements may occupy only a part of nodes of subnet which the container is
distributed on, and the number of elements may vary during execution of
the program. The initial amount of nodes is srecified when the container
is instantiated. When node is added to distributed container the situation
when all nodes of a subnet are already occuried by other elements of the
container may occur. In this case an exception occurs.

The access to elements of distributed container is provided by its iter-
ators. Strong typing of the container elements can be performed with the
aid of typed iterators and adapters. The interfaces hierarchy of the DPJ
distributed containers is given on figure 1.

Fig.1. Interfaces and library class hierarchy of distributed containers.

39

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

The distributed container interfaces are derived from the root DCon-
tainer (distributed container) interface. This interface defines the following
methods:

Definition of the container on subnet.

Obtaining the subnet of the container.

Obtaining current (or maximum) amount of nodes.

Obtaining (or setting up) the container element value on local node.
Scattering of values from the one-dimensional Java-array to be the dis-
tributed container element values (scatter). The number of elements in the
Java-array should correspond to the container size. The distributed con-
tainer element located on a node with an index i will be assigned the value
of the Java-array element with index i.

e Gathering of values of the distributed container elements into Java-array
(gather). The order of elements in the array after operation corresponds to
the order of node indices in the container.

Alongside with interface definition DPJ contains appropriate library classes
implementing these interfaces (for example, the interface DArray is imple-
mented by the DArrayClass class). Any pair of the container nodes may
be linked, one of these nodes being called parent node, and another one - a
child node. The link between nodes of container means that nodes should
be topologically close to each other, because the intensive data exchange
may take place between them. Link is the only information about the real
network topology, that can be used when mapping the virtual network on
the real physical one. DPJ library distributed containers (standard dis-
tributed containers) have pre-defined links between their nodes. When a
new node is added to the container its link with other nodes are established
in a standard way described for each type of library container classes.

DPJ user can either use standard distributed containers or define his
own ones implementing the DUserContainer interface (or interface derived
from it). This interface inherits DContainer interface and contain methods
for definition of links between container nodes. The use of standard dis-
tributed containers, as a rule, ensures higher efficiency, then that of user
defined ones.

The following distributed containers are included in the DPJ library:

e Distributed array is a distributed container with constant amount of ele-
ments (nodes) which have not links among them. Random access iterators
are applied to distributed arrays. The amount of nodes in the array is
specified when array is specified when array is defined and remains con-
stant during program execution.

o Distributed vector is similar to the distributed array except the amount
of nodes in the container an during execution of the program.

e Distributed list is a distributed container for which a head node, inter-

40

DPJ: Java Class Library for Development of... AMI Vol.2, 1997

mediate nodes and tail node are defined. If the list consists of one node,
this node is head node and tail node at once. Sequentail access iterators
are applied to distributed lists. The amount of elements in the list can vary
during program execution. The distributed list interface defines the follow-
ing methods:

* Add (remove) a list node.

« Obtain iterator consisting from a hear (or tail) node of the list.

x 7Shift” the sublists specified by iterator value 4: in each sublist the
element value on node k + 1 becomes equal to the value from node k; the
element of the first node of the sublist saves its value.

e Distributed ring is similar to the distributed list except its head node is
a child of tail node.

o Distributed tree is a distributed container, which has a root node, non-
terminal nodes and leaf nodes.If the tree consists of one node, this node
is root node and leaf node at once, and it has neither child nor parent
nodes. In other cases the root node has no parent node, but has some
child nodes.The leaf node has no child nodes but has one parent node. All
nonterminal nodes have one parent node and some child nodes and these
nodes are distinct. Sequential access iterators are applied to distributed
trees. The amount of elements in a tree can vary during execution of the
program. The distributed tree interface defines the following methods:

* Add a new level of a tree nodes. The nodes of an added level become
leaf nodes, and former leaf nodes - nonterminal ones.

* Add new child node.

% Get iterator providing access to the root node of the tree.

x Get iterator providing access to the leaf node of the tree.

5 Dictributed Container Iterator

Distributed container iterator is an object distributed on the same subnet
as its container and providing simultaneous access to all elements of a sub-
net of nodes of this container. This container node subset is called iterator
value. The set of all iterator values forms a covering of the container node
with or without intersections).Two operations are defined for the iterator:
assignment and reassignment of its value. With the aid of these operations
iterator can turn accept all its values which altogether form a covering of
the set of all container nodes. Instance of any class which implement the
appropriate interface can be iterator of distributed container.

e Unary iterator (DUnarylterator) defines an access only to the single con-
tainer node simultaneously.

41

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

e Multiple iterator (DMultilterator)defines an access to subset of the con-
tainer nodes simultaneously. The power of this subset can vary from value
to value.
o Overall iterator (DAlllterator) defines an access to all container nodes
simultaneously.

In implementation on Java the distributed containers iterators library
classes are implemented with the aid of interfaces given in table 1.

Unary interface Multiple interface
DUnarylterator DMultilterator

Input lterator Unary Input Iterator Multi Input Iterator
Output Iterator | Unary Output Iterator Multi Output Iterator
Forward Iterator | Unary Forward Iterator Multi Forward Iterator

Bidirectional Unary Bidirectional Multi Bidirectional
Iterator Iterator Iterator
Random Access | Unary Random Access Multi Random Access
Iterator Iterator Iterator
Overall Input Iterator Overall Output Iterator
DAlllnputlterator DAIlIQutputlterator
The notes:

1. In the table the bold font marks iterator interfaces,

normal font - library classes

2. Overall iterators provide simultaneous access to all elements of the
distributed container.

6 Parallel Algorithms

DPJ library contains standard classes implementing frequently used paral-
lel algorithms for processing the distributed container elements. All of the
library parallel algorithms implement the interface ParallelAlgorithm con-
taining the following methods:

e Start (stop or suspend) method run(), runTop(), or runBottom().

e Methods run(), runTop(), or runBottom() themselves. Currenyly in the
library implemented following parallel algorithms:

e Applying - applies the specified functional object to the container ele-
ments.

e Coping - copies the distributed container (possibly, reverting the element
order).

e Comparing - parallel comparing of elements of two distributed container.
e Finding - parallel search of elements in the distributed container using
the template.

42

DPJ: Java Class Library for Development of... AMI Vol.2, 1997

e Filtering - parallel selection of elements in the distriuted container using
the template.

e Replacing - parallel replacing of the distributed container elements.

e Sorting - parallel sorting of the distributed container elements.

e Transforming - parallel transforming of the distributed container.

7 Structure of the Parallel Program

The parallel program is represented by the Java class containing the method
main which begins the program execution. The method main of the paral-
lel program is executed on the network, which is specified when program
is loaded. This network is available through the static netWorld object of
the Subnet class which is created when this class is loaded. Using methods
of the netWorld object it is possible to obtain amount of JavaVMs the
parallel program is running on.

Definition of subnets of the netWorld should be done for parallel execu-
tion of different parts of parallel program. For example, let the program
consists of two independent parts A and B, which can be executed in paral-
lel. One may define subnet « (for execution of the part A) and subnet (3 (for
execution of the part B) as subnets of netWorld. The patrs A and B are rep-
resented by distributed container classes A_class andB _class implementing
intrerfaces DContainer (or interfaces derived from it) and ParallelAlgorithm
(of interfaces derived from it). The code of parts A and B of the program
ahould contain methods run() of the classes A_class and B_class overriding
appropriate methods ParallelAlgorithm interface. When odjects A_object
and B_object of classes A_class and B_class accordingly are instantiated
the appropriate subnets o and 8 which the parts A and B are distributed
on should be specified as the parameters of methods distribute(). The start
of each part is performed from the function main by method start() of the
ParallelAlgorithm interface: statement A.start() starts the execution of the
part A and B.start() starts the execution of the part B.

If the elements of the distributed container are indpendent then meth-
ods run() can be started in parallel for all these elements providing the
maximum possible parallelism. In this case it is possible to use overall
iterator.

If there are dependencies among the distributed container elements then
methods run() can be started in parallel only for a subset of the distributed
container elements. Each such subset should be specified by the distinct
iterator value. Thus, correctly selected iterators help to parallelize the
program when the data dependencies are present.

43

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

The use of the DPJ library for development of parallel Java-programs
is shown by the following example:

44

DPJ: Java Class Library for Development of...

AMI Vol.2, 1997

package examples;

import ru.ispras.dpj.*;

import java.io.*;

import COM.objectspace.jgl.*;

class MyDBTree extends DBTreeClass
{public MyDBTree (Subnet net)

{super(net);}

public void runTop() {body();}

public void run(){
put (recvFromParent();
body();

Public void body(){

int mid_pos;

int ij;

float[] to_sort=null;

if (get()!=null)to_sort=(float[])get();

if (to_sort!=null&&

to_sort.length; 1){

mid_pos=to_sort.length/2;
float mid=to_sort[mid_ pos];

for (i=0, j=to_sort.length-1;
i+)4
if(to_sort[i]i=mid)
for (jiisi-)
if(to_sort[i]j=mid){
float temp =to_sort][i];
to_sort[i|=to_sort[j];
to_sort[j]=temp;
if(i==mid_pos) mid_pos=j;
break;
}
i
i

else mid_pos=0;

float[| to_left=null;

float[| to_right=null;

if (to_sort!=null){
to_left=new float[mid_pos];

Program from the examples package:
parallel sorting using QuickSort
parallel algorithm [2].

Used packages import.

Distributed binary tree is derived from
library distributed binary tree
implementing ParallelAlgorithm interface.

This method to be invoked only
at root node.

This method is called on the nonterminal
nodes. Array racived from parent node
becomes a value of container element.

Method body partitions array being a
value of container element into two
parts according the QuickSort algorithm
and sends the lower part to the

left child, and the upper

part - to the right child.

Detecting the middle element of the
array and obtaining its value.

Array partitioning procedure: in the
lower part all element values are no
greater than the middle one, in the upper
part - greater than middle.

In case array is empty the middle
receives 0.

Definition of to_right array of apper
partition and to_left array of lower
partition.

45

AMI Vol.2, 1997

V. Ivannikov, S. Gaissaryan, et all

to_right=new float[
to_sort.length-mid_pos];

for (i=0; ijmid_pos; i++)
to_left[i]=to_sort][i];

while (ijto_sort.length)
to_right[i-mid_ pos]=to_sort[i++];

}

sendToChild(left, to_left);

sendToChild(right, to_right);
put (float[0]);

public void runBottom(){
put (recvFromParent());

if (get() !=null){

FloatArray to_sort=new
FloatArray ((float[])get());
Sorting.sort(to_sort);

i
}
i

class Mulnput extends
DUnaryOutputlteratorClass implements
ParallelAlgorithm {

public Mylnput (Dcontainer ¢,int[| m)
{super (c,m);}

public void run(){

int number_elements;

InputStream input=new
FilelnputStream (" numbers”);

DatalnputStream fin=new;
DatalnputStream (input);

len=fin.readInt();

float[] to_sort=new float [len]

for (int i=0; ijlen; i++)

to_sort[i]=fin.readFloat();

put (to_sort);

input.close(); }

}

class MyOutput extends
DUnaryForwardlteratorClass
implements ParallelAlgorithm {
public MyOutput (Dcontainer

Transmitting to_left to the left child.
Transmitting to_right to the right child.
Clear element value on this node.

Leaf nodes use a standard sorting
algorithm from the Java Generic
Library [17].

Mulput class inherits from unary iterator
and is used at the root node of
distributed tree for input of array to sort
from file "numbers”.

Overridden run method of
ParallelAlgorithm interface is called by
start method of the same interface.

MyOQutput class inherits from unary
iterator and used at root node of
distributed tree for output sorted array
to the file "sorted_numbers”.

46

DPJ: Java Class Library for Development of...

AMI Vol.2, 1997

c, int[] members)}

super (c, members);}

public void run(){
OutputStream output=new

FileOutputStream (Sorted numbers”;
DataOQutputStream fout=new
DataOutputStream (output);
fout.writelnt(oa.lenght);

for (int i=0; ijoa.lenght;i++)
fout.writeFloat (oali]);
output.close();

}
}

class PQSort {
public static void main() {

MyDBTree tree=
new MyDBTree(Subnet.netWorld);

Mylnput input=new Mylnput (tree,
tree.root().members());

input.start();

DMultilnputlteratorClass iter =

new DMultilnputlteratorClass(
tree.root());

tree.put (ir.get());

do {
tree.start(iter);

iter.advance();

} while (liter.atEnd());
MyOutput output=new MyOutput(
tree, tree.root().members());
output.put (tre.gather(
tree.root().member()));

Method main is started on all nodes of
netWorld after class PQSort loading.

Definition of tree distributed over
netWorld and used for sorting.

Input of the array to be sorted by means
of run method of unary iterator onput

of tree consisting of the root node.
Definition of multiple input iterator iter
of tree, having root node as a value.

Initial set up of tree elements.

Running of array partitioning procedure
at the current level of distributed tree.
If the level consists only of leaf

nodes then standard sorting procedure
is applied.

Advances distributed tree level.

Traverse all levels of the tree.

Definition ofd unary iterator output of
tree consisting of the root node.

Method gather gathers all non-empty
elements of distributed tree tree into single
array at the root node, the return value of
this method on other nodes is null.
Resulting array is assigned as root node
element value which is accessed by output
iterator.

47

AMI Vol.2, 1997

V. Ivannikov, S. Gaissaryan, et all

output.start(); | Sorted array output using method run of
} unary iterator output

}

To start the parallel program user should implement the followimg
classes:

e (lass containing the method main and representing the parallel program
(e.g., PQSort from the previous example);

e The Starter class containing the method main and starting the execution
of previous class.

In the method main of the Starter class the network with specified num-
ber of nodes is created, and JavaVMs are loaded onto these nodes. The
JavaVMs load the first of above mentioned classes, then each JavaVIM
runs the method main of this class.

8 The Conclusion

The DPJ library provides basic capabilities of the HP Fortran system
for the distributed data processing. The definition of networks and sub-
nets corresponds to definition of the processor arrays in HP Fortran. The
block distribution of the array A in HP Fortran corresponds to definition
of the distibuted container C element of which are the blocks of the array
A; the cyclic distribution of the array A in HP Fortran corresponds to
definition of covering of the array A and distribution of it onto nodes of
C, etc. In addition, the library provides more complex network structures
then processor arrays in HP Fortran. The use of the DPJ library pro-
vides speedup of parallel Java-programs in comparison with their sequental
versions. In table 2 the experiment result which uses the program imple-
menting parallel modification of the QuickSort sorting algorithm are given.

Number of processors Avarage time of Speedup in comparison with

in experiment

execution, milliseconds

sequential version

1 7237 1
2 3830 1,9
3 3051 2.4

As the execution speed of the program on JavaVM is essentially less then
that of the program in machine codes, then the execution of the parallel
program on JavaVMs concedes to that of the parallel program in a paral-

48

DPJ:

Java Class Library for Development of... AMI Vol.2, 1997

lel computer machine codes. As it was mentioned in introduction there are
different ways to improve performance of the parallel program developed

usin

g DPJ. The more detailed discussion on the problem of the parallel

Java-program performance improvement is out of the scope of this paper.

Acknowledgement
The project is suported by RFBR grant No 96-01-01280 and INTAS-RFBR grant
No 95-0369.
References
1. J. Gosling, " The Java Language Environment”, white paper, Sun Microsys-

10.

tems, Mountain View, Calif., 1995;
http://java.sun.com

Ted G. Levis, Foundation of Parallel Programing: A Machine Independent
Approach, IEEE Computer Society Press, Los Alamitos, CA, 1993.

"HPCC and Java”, A Report by The Parallel Compiler Runtime Consorium
(PCRC), incomplete draft, May 12 1996;
http://www.npac.syr edu/users/gcf/hpjava3.html

HPF:High Performance Fortran Language Specification, High Performance
Fortran Forum, version 2.0, January 31 1997;
http://www.crpc.fice.edu/HPFF /hpf2 /index.html

E. Johnson, P. Beckman, D. Gsnnon, "HPC++: An Experiment with the
Parallel Standard Template Library”,
http://www.cs.indiana.edu/hyplan/ejohnson /papers/pstl.html

F. Bodin, P. Beckman, D. Gannon, S. Narayana, Sh. X. Yang, ”Distributed
pCC++: Basic Ideas for an Object Parallel Language”, Scientific Program-
ming, Vol. 2, No3, 1993;

http://www.extreme.indiana.edu/sage/docs.html

MPC++ Version 2: Massively Parallel, Message Passing, Meta-level Pro-
cessing C++
http://www.rwep.or.jp/lab/mpslab/mpc++/mpc++.html

Susan F. Hummel, Ton Ngo, Harini Srinivasan, "SPMD” Programming in
Java”, tech. report, IBM T.J. Watson Research Center;
http;//www.npac.syr.edu/projects/javafocse/cpande/IBMspmdjava_new.ps

Marc A. Hamilton, ”Java and the Shoft to Net-Centric Computing”, Com-
puter, IEEE Computer Society, August 1996, vol. 29, No 8, p.31-39.

MPI: Message Passing Interface Standard, Message Passing Interface Forum,
June 12 1995;
http://www.mcs.anl.gov/mpi/index.html

49

AMI Vol.2, 1997 V. Ivannikov, S. Gaissaryan, et all

11.

12.

13.

14.

15.

16.

17.

Frank Yellin, ”The Java Mative Code API”, Sun Microsystems, Mountain
View, Calif., 1995;
http://www .javasoft.com/doc/jit_interface.html

Microsoft SDK for Java 1.5, Microsoft Corporation, Palo Alto, CA;
http://www.microsoft.com/java/sdk

Aart J.C. Bik, Dennis B. Gannon, ” Automatically Exploiting Implicit Par-
allelism in Java”, tech. report, Computer Science Dept., Indiana University,
Indiana;

http://www.extreme.indiana.edu/ ajcbik/JAVAR /index.html

V. Ivannikov, S. Gaissaryan, M. Domrachev, V. Etch, N. Shtaltovnaya,
"DPC++:C++ Class Library for Development of Data-Parallel Programs”
in” Voprosy Kibernetiki. Prilojeniya Sistemnogo Programmirovanija’, Moscow,
NSK RAS,1997, (in russian)

D. R. Musser, A. Saini, " TSL Tutorial and Reference Guide. C++ Pro-
gramming with the Stendard Template Library’, Addison-Wesley, 1996;
http://www.aw.com/cp/musser-saini

Draft Proposed International Standard for Information Systems - Program-
ming Language C++, Accredited Standards Committee® Doc No: X3J16/96-
0225 X3,INFORMATION PROCESSING SYSTEMS WG21/N1043 Date: 2
December 1996 Project: Programming Language C++,
http://www.warwick.ac.uk/c++/pub/wp/html/cd2/index.html

R. Rew, "The Java Genric Library (JGL)”, Boulder Java Users Group,
UCAR Unidata, September 1996,
http://www.unidata.ucar.edu./staff/russ/java/jgl-bjug

50

