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Abstract

The problem of unsteady rotational motion of electrically con-
ducting viscous incompressible fluid, contained within two asxially
concentric cylinders of finite length in the presence of an axial sym-
metric magnetic field of constant strength, has been solved exactly
using finite Hankel transform in combination with a technique pre-
sented in this paper. This paper presents a complete of the problem
under consideration, which has been of interest for many years; more-
over the Pneuman-Lykoudis solution in Magnetohydrodynamics and
Childyat solution in hydrodynamics appears as a special case of this
study. The analysis shows that the disturbance in the fluid disappears
by increasing the magnetic field.
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1 Introduction

In recent years, the study of electrically conducting fluids has received much
attention in areas such as rocket flight and high-speed reentry missiles. It
is known that the motion of a conducting fluid in a magnetic field induces
electric currents in the fluid, thereby modifying the field; at the same time,
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the flow in the magnetic field produces mechanical forces which in turn
modify the motion.

Recently, C. D. Ghildyal [2] has presented a solution of the problem
in hydrodynamics concerning the unsteady motion of a viscous, rotating
fluid contained between two infinitely long coaxial cylinders. However, the
motion of an electrically conducting fluid contained between two coaxial
rotating cylinders in the presence of magnetic field becomes much more
complicated. S. Chandrasekhar [1] has discussed the rotational and ther-
mal instability of a viscous, rotating, electrically conducting fluid within
two infinitely long coaxial cylinders in presence of a magnetic filed, while
G. Pneuman and P. Lykoudis [6] have studied the steady motion of a vis-
cous, rotating, electrically conducting fluid between two concentric cylin-
ders of finite length.

This paper deals with the unsteady rotational motion of an electrically
conducting fluid within two concentric cylinder of finite length. The un-
steady motion is caused by an impulsive twist given to the inner cylinder so
that it starts rotating suddenly in a previously steady fluid in the presence
of an axial magnetic field.

The problem has attracted attention in practice; and since from point
of experiment, infinite cylinders can not be used it would be advantageous
to obtain an analytical solution for the case when the cylinders are finite.
However, according to the knowledge of the author of this paper, such a
solution has not yet been given in literature.

We assume that the material of which the cylinders are made is an
electrical conductor. The surfaces of the cylinders in contact with the fluid
will be electrically charged and there will be surface currents as well. The
effect of these surface charges and the surface currents will be to prevent
any electrical field in the radial direction and any magnetic field in the
z-direction from penetrating into the cylinders [1, 2]. However, we suppose
that the bounding planes are of insulating material, so that there will be
static surface charge but not surface current.

In this paper, we are directly interested in the deformation of the fluid
in the presence of a magnetic field; hence, we are searching for the velocity
distribution in a magnetic field. That is the fundamental object of this
study. After the fluid field is determined, we can study the electromagnetic
field from the knowledge of the boundary and initial condition imposed
upon the field. Not that a wide range of solutions compatible with these
conditions are possible[1− 5].
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Figure 1: Geometry of the cylinders

2 Basic part

It is convenient for the study of this problem to introduce a cylindrical
system (r, θ, z). a Let the length of the cylinders be 2L, so that the origin
of the system is located at the middle point on axis of cylinders. We assume
that the velocity field is given by

V⃗ = V⃗ (ν, u, w) (1)

where ν, u, w are the components of the velocity in the radial, circumfer-
ential and axial directions, respectively. Since the motion of the fluid is
primarily in the circumferential directions, the radial velocity v in the flow
may be neglected on comparison with the circumferential velocity u. How-
ever, the assumption that the axial velocity w is zero is true only if the
cylinders are infinitely long. If the cylinders are finite in length, the ax-
ial velocity is not zero. Therefore, the “end effects” should be considered.
Pneman and Lykoudis [6] showed that the “end effects”will be confined to
regions very close to the bounding planes and the axial velocity may be
safely neglected in the region midway between these planes.

Furthermore, we impose a magnetic field of constant strength. H0, in
axial direction and we assume that there are perturbations hr, hθ and hz
in the magnetic field and Er, Eθ, Ez in the electrical field. Note that it can
be assumed that hr << hθ and hr << hz, since the motion occurs in the
θ−direction. Therefore

−→
H =

−→
H (0, h0, H0 + hz) . (2)

Similarly, −→
E =

−→
E (0, Eθ, Ez) . (3)

It has been assumed throughout this paper that physical and electro-
magnetic properties of the flow are known. Since the flow is incompressible
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with constant properties, the energy equation and characteristic equation
may be omitted; therefore, the problem is reduced to the solution of the
following system of equations, namely:

Continuity : ∆ · V̄ = 0. (4)

Momentum :
∂V⃗

∂t
+ (∆ · V⃗ )V⃗ +

1

ρ
∆p− ν

ρ
∆2V⃗ − µe

ρ
(
→
J ×H⃗) = 0. (5)

Maxwell equations : ∆ · D⃗ − ρe = 0. (6)

∆ · H⃗ = 0, (7)

∆× E⃗ + µe
∂H⃗

dt
= 0, (8)

∆× H⃗ − J⃗ − ∂D⃗

∂t
= 0. (9)

∆ · J⃗ +
∂ρe
dt

= 0 (10)

Here are: V⃗ -velocity of the flow (not perturbed), ρ -density of the
flow, p -pressure, µ -dynamical visco, J⃗ -current density, H⃗ -strength of
magnetic field, µe -magnetic permeability, E⃗ -strength of electric field, pe
-charge density, t -time.
Note that

B⃗ = νeH⃗, (11)

D⃗ = εeE⃗, (12)

J⃗ = σ
(
E⃗ + νeq⃗ × H⃗

)
, (13)

where B⃗ is magnetic induction, D⃗ is displacement current, ee is dielectric
constant, s is electric conductivity. The system of eq. (4), (5), (6), (7), (8),
(9), (10) is subjected to the conditions imposed upon the hydrodynamic
field and those imposed upon the electromagnetic field. Assuming that
both cylinders are rotating in the same direction, the no-slip condition at
the walls of the cylinders requires that

u (a, θ, z, t) = ω1a, (14)

u (b, θ, z, t) = ω2b, (15)

u (r, θ,±L, t) = ωer, (16)

where ω1 and ω2 are angular velocities of the cylinders, a is the radius of
the inner cylinder, b is the radius of the outer cylinder, and ωe is angular
velocity of the bounding end planes.
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Moreover, the initial condition, for t = 0, is prescribed, namely,

u (r, θ, z, 0) = f (r, z) , (17)

where f (r, z) is a regular function every where in the domain under con-
sideration.

In addition to these conditions, we have the conditions imposed by
electromagnetic field which require that on the surface of the discontinuity,
such as r = a and r = b, the normal and tangential components of the
magnetic induction and electric field suffer a discontinuity, which is equal
for the magnetic field to the components of the surface current density at
the right angle to the field, and for the electric field to the components of the
surface charge density [1, 2] perpendicular to the electric field. Note that
the surface current density is measured in amper per meter, and surface
charge density is Coulombs per square meter. However, in accordance with
the assumption that the bounding end planes are of insulating material, we
have that the normal and tangential components of the magnetic induction
and electric field are continuous on those planes.

The main characteristic of the field equations (6), (7), (8) and (10) is
that electric field depends upon the magnetic field through the time varia-
tion of H⃗; and the magnetic field depends on the electric field through the

time variation of
−→
D . Therefore, the initial condition in the electromagnetic

field has to be introduced.
Evidently, the time derivative of D⃗ acts as a source for H⃗, and the

derivative of H⃗ acts as a source for E⃗. Hence, coupling between the electric
field and the magnetic field becomes bilateral. Note that the hydrodynamic
field is coupled with the electromagnetic field through the electrobody force.
At the first glance, the problem from the mathematical point of view repre-
sents a mixed boundary value problem of a very complicated nature. That
is true. However, the problem can be solved using the method of the oper-
ational calculus outlined in this paper. From the continuity eq. (4), since
circumferential symmetry is assumed, it follows that

u = u (r, z, t) . (18)

Then (5) and (17) lead to following equations in scalar form

−ρ
u2

r
− Fr +

∂p

∂r
= 0, (19)

ρ
∂u

∂t
− µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

∂2u

∂z2

)
− Fθ = 0, (20)

Fz −
∂p

∂z
= 0, (21)
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where Fr, Fθ, Fz are coordinates of the electrobody force in r, θ and z
direction, respectively. Then

−→
F = J⃗ × B⃗, (22)

where J⃗ and B⃗ are prescribed by eq. (11) and (13). However, it can be
shown that hz is zero everywhere in the field. The proof is simple. By
circumferential symmetry eq. (7) becomes

∂hz
∂z

= 0, (23)

or

hz = hz (r, t) . (24)

Moreover, on the boundary z = ±L we have that the magnetic field is
constant, namely H⃗ = H0e⃗z. Hence, hz = 0 at the planes z = ±L, and
therefore is zero everywhere. This completes the proof. Hereafter, e⃗r, e⃗θ, e⃗z
denote the unit vectors in r, θ and z-direction.

From eq. (1), (2) and (13) it follows

J⃗ = J⃗
(
σµeH0u, σEθ, σEz

)
. (25)

Then, eq. (22) becomes

F⃗ = F⃗
[
µeσ (EθH0 − Ezhθ) , −σµ2

eH
2
0 , σµ

2
eH0hθu

]
. (26)

Hence, eq. (19), (20), (21) and (26) lead to

−ρ
u2

r
− µeσ (EθH0 − Ezhθ) +

∂p

∂r
= 0 (27)

ρ
∂u

∂t
− µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r
+

∂2u

∂z2

)
+ σµ2

eH
2
0u = 0, (28)

σµ2
eHohθu− ∂p

∂z
= 0. (29)

From eq. (6) and (12), by virtue of circumferential symmetry, it follows

∂Ez

∂z
=

ρe
εe

. (30)

Moreover, from eq. (8) one obtains

∆× F⃗ + µe
∂hθ
∂t

e⃗θ = 0. (31)
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Note that by taking the circumferential symmetry into account the first
part of eq. (31) becomes

∆× E⃗ = ℵ⃗
(
−∂Eθ

∂z
,−∂Ez

∂r
,
1

r

∂ (rEθ)

∂r

)
, (32)

where ℵ⃗ = ∆× E⃗.

Hence, eq. (31) lead to
∂Eθ

∂z
= 0, (33)

∂ (rEθ)

∂r
= 0, (34)

∂Ez

∂r
− µe

∂hθ
∂t

= 0. (35)

From eq. (33) it follows that

Eθ = ϕ (r, t) . (36)

Moreover, eq. (34) yields

rEθ = K (t) , (37)

where K (t) is time depending constant.

Therefore,

Eθ =
K (t)

r
. (38)

Now, we consider eq. (9). Note that

∆× H⃗ = H⃗

(
−∂hθ

∂z
, 0,

1

r

∂ (rhθ)

∂r

)
. (39)

Moreover, eq. (9), (12), (25) and (39) lead to

σµeH0u+
∂hθ
∂z

= 0, (40)

σEθ + εe
∂Eθ

∂t
= 0, (41)

∂Ez

∂t
+

σ

εe
Ez −

1

rεe

∂ (rhθ)

∂r
= 0. (42)

Evidently, from eq. (41) it follows

Eθ = C1e
− σ

εe
t, (43)
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where C1 is a pure constant, not ye determined. Eq. (38) and (43) lead to

K (t) = C1re
− σ

εe
t. (44)

However, at t = 0, Eθ (0) = 0; hence, C1 = 0. Therefore, K (t) = 0, and
Eθ is zero everywhere for all t.

Two more equations, eqs. (10) and (30), may be combined; namely,
form eqs. (10) and (25), it follows that

σµeH0
∂u

∂r
+ σ

∂Ez

∂z
+

∂ρe
∂t

= 0. (45)

Eq. (30) and (45) lead to

∂ρe
∂t

+
σ

εe
ρe + σµeH0

∂u

∂r
= 0. (46)

Hence, we arrive at the following mixed boundary value problem; namely,
to find u, hθ, Ez,

∂p
∂r ,

∂ρ
∂z and ρe from the following system of equations.

ρ
u2

r
− µeσEzhθ −

∂p

∂r
= 0, (47)

ρ
∂u

∂t
− µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r
+

∂2u

∂z2

)
+ σµ2

eH
2
0u = 0, (48)

σµ2
eH0hθu− ∂p

∂z
= 0, (49)

σµeH0u+
∂hθ
∂z

= 0, (50)

∂Ez

∂t
+

σ

εe
Ez −

1

rεe

∂ (rhθ)

∂r
= 0, (51)

∂ρe
∂t

+
σ

εe
ρe + σµH0

∂u

∂r
= 0. (52)

Evidently, the key to the solution of this system is eq. (48); i. e. as
soom as u is determined from eq. (48) then hθ is evaluated from eq. (50).
Then ∂p

∂z ,
∂ρ
∂r , Ez, ρe follow directly from eq. (47) ,(47), (49), (51), (52).

3 Solution of the problem

The problem will be solved if eq. (48), subjected to the conditions eq. (14),
(15), (16) and (17) is solved.

46



On the Unsteady Motion of a ... AMIM Vol.27 No.2, 2022

For such purposes, denote

µ

ρ
= ν;

σµ2
eH

2
0

µ
= M2 (53)

Then eq. (48) becomes

∂2u

∂r2
+

1

r

∂u

∂r
−
(

1

r2
+M2

)
u+

∂2u

∂z2
− 1

ν

∂u

∂t
= 0. (54)

Evidently, if M = 0 and in addition L → ∞ then the solution is reduced
to the simple solution, recently given in hydrodynamics for infinite long
cylinders [1]. This will be later on evidently, from resulting velocity field.

Written in operator form, the boundary value problem, under consid-
eration, can be written as

u (a, z, t) = ω1a,
u (b, z, t) = ω2b,
u (r,±L, t) = ωer


D {u (r, z, t)} = 0,
u (r, z, 0) = f (r, z) ,

t > 0

 . (55)

The solution to this problem follows directly by using method of super-
position, namely:

u (r, z, t) = u0 (r, z, t) + u1 (r, z, t) (56)

where u0 and u1 are the solutions of the following boundary value problems:
I.

u0 (a, z, t) = 0,
u0 (b, z, t) = 0,
u0 (r,±L, t) = 0


D0 {u0 (r, z, t)} = 0,
u0 (r, z, 0) = f (r, z) ,

t > 0

 , (57)

II.

u1 (a, z, t) = ω1a,
u1 (b, z, t) = ω2b,
u1 (r,±L, t) = ωer


D1 {u1 (r, z, t)} = 0,

u1 (r, z, 0) = 0,

t > 0

 . (58)

Note that before we start to find the solution of this problem the initial
condition given by function f (r, z) has to be specified. First, we assume
that the external cylinder is rotating with ω2and the interior cylinder is
fixed in stead motion [3]. The after a velocity u (r, z) of steady fluid is
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obtained, an impulsive twist is given to the interior cylinder, so that it
rotates with a constant angular velocity equal to velocity of steady fluid at
the instant of application of the impulsive twist. This solution for f (r, z) is
obtained ([1] , [2]) by means of Hankel Transform in the form of the Bessel
functions the first and second kind Jτ (), Yτ (), of the order t = 1; 2, namely

f (r, z) = π2

2

∑
β

β2J1(βb)
J2
1 (βa)−J2

1 (βb)

×
{
[G2 (β)−G1 (β)]

cosh
√

β2+a2 z

cosh
√

β2+a2 L
+G1 (β)

}
B1 (βr)

(59)

where

G1 (β) =
2ω2b

π (β2 + a2)

J1 (βa)

J1 (βb)
, (60)

G2 (β) =
ωe
β

[
b2 (J2 (βb)Y1 (βa)− Y2 (βb) J1 (βa))

−a2 (J2 (βa)Y1 (βa)− Y2 (βa) J1 (βa))
]
,

(61)

B1 (βr) = J1 (βr)Y1 (βa)− Y1 (βr) J1 (βa) , (62)

and β is positive root of equation:

J1 (βb)Y1 (βa)− Y1 (βb) J1 (βa) = 0. (63)

Now, as soon as the velocity, given by eq. (59) has been reached, the
impulsive twist is applied to the inner cylinder so that it starts to rotate
with angular velocity ω1 in the same direction as ω2. Hence, we have de-
termined the initial condition of the problem. Now, we are going to solve
the problems given by eq. (57) and (58), which hereafter are referred as
fundamental I and II. respectively:

Solution of the Fundamental Problem I

Let

u0 (r, z, t) = R (r)Z (z)T (t) . (64)

Then eq. (54) leads
∂2Z

∂z2
+A2

nZ = 0, (65)

∂2R

∂r2
+

1

r

∂R

∂r
+

(
k2m −M2 − 1

r2

)
R = 0, (66)

and
∂T

∂t
+ ν

(
k2m +A2

n

)
T = 0. (67)

48



On the Unsteady Motion of a ... AMIM Vol.27 No.2, 2022

Eq. (65) with the boundary condition z = ±L lead to

Z =
∞∑
n=0

AncosAn z, (68)

where An is a constant to be determined later and

An =
2n+ 1

2L
π, n = 0, 1, 2, ..., (69)

Denote
k2m −M2 = a2m,m = 0, 1, 2, ..., (70)

Then eq. (66) lead to

R (r) = D1J1 (amr) +D2Y1 (amr) . (71)

However,
R (a) = R (b) = 0. (72)

Then
J1 (ama)Y1 (amb) + J1 (amb)Y1 (ama) = 0. (73)

Hence, for given a and b, am are positive roots of eq. (73). Therefore,
for any αm we can find corresponding km given by eq. (70) for every m.
Evidently, according to eq. (63) and (73) we have that am = β. Eq. (71)
can be written in the form

R (r) =
∞∑

m=0

Dm [Y1 (ama) J1 (amr)− J1 (ama)Y1 (amr)] . (74)

Moreover, from eq. (67) it follows

T (t) = Ce−r(k2m+A2
n)t. (75)

Hence, eq. (64) becomes

u0 (r, z, t) =
∞∑
m

∞∑
n
Amn [Y1 (ama) J1 (amr)

−J1 (amb)Y1 (amr)] cosAnze
−ν(k2m+A2

m)t.

(76)

The constant Amm has to be determined in the usual way by using initial
condition. Hence,

f (r, z) =

∞∑
m

∞∑
n

Amn [Y1 (ama) J1 (amr)− J1 (amb)Y1 (amr)]cosAn z.

(77)
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Note that the solutions of Bessel’s equation satisfying the boundary
conditions of the
Sturm-Liouville type form an orthogonal system. [5], with respect to the
weight function rover interval [a, b]. Evidently,∫ b

a
rB2

1 (amr)dr =
b2

2
B2

2 (amb)− a2

2
B2

2 (ama) , (78)

where

B2 (amb) = Y1 (ama) J2 (amb)− J1 (ama)Y2 (amb)
B1 (ama) = Y1 (ama) J2 (ama)− J1 (ama)Y2 (ama)

}
. (79)

Hence, by means of generalized Fourier Analysis, it follows

Amn =
2

L

∫ b
a

∫ +L
−L rf (r, z)B1 (amr) cosAn zdrdz

b2B2
2 (amb)− a2B2

2 (ama)
. (80)

Therefore, eq. (76) and (80) lead to

u0 (r, z, t) =
∞∑
m

∞∑
n

AmnB1 (amr)cosAn ze−ν(k2m+A2
n)t, (81)

where Amn is given by eq. (80), and B1 (amr) by eq. (62). Thus, the
solution of the problem defined by eq. (57) is determined.

The Solution of the Fundamental Problem II

We have to solve the boundary value problem eq. (58). For such pur-
poses, we use finite Havkel. Transform with respect to r. Define

u (am, z, t) =

∫ b

a
ru (r, z, t)B1 (amr)dr, (82)

where am are positive roots of eq, (73). Then eq. (58) becomes

∂2u1(am,z,t)
∂z2

− k2mu1 (am, z, t)− 1
ν
∂u1(am,z,t)

∂t

= − 2
π

[
ω2b

J1(ama)
J1[amb] − ω2a

]
,

(83)

with
u1 (am, z, t) = 0, (84)

and
u1 (am,±L, t) = G2 (am) t > 0. (85)
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The solution of eq. (83) subjected to the conditions eq. (84) and (85)
can be obtained using Laplace Transform. In this paper, we will not use
Laplace Transform in order not to confuse problem with transforms; more-
over, the inverse of Laplace Transform will be very difficult to manipulate.
However, a technique will be demonstrated here which willbring the solu-
tion of the problem under consideration to be in closed form [1-5]. This
technique, in fact, is based upon the known principle of superposition.
Namely, a nonhomogeneous equation with homogeneous initial condition
and nonhomogeneous boundary conditions can be reduced by substitution
to a homogeneous equation with nonhomogeneous initial and boundary
conditions.

By such a procedure, we relax the partial differential equation but com-
plicate the initial and boundary conditions. In order to relax the boundary
conditions, we use a substitution prescribed in this paper which permits
the function to vanish on the boundary; however, the initial condition is
now in functional form

Therefore, through two types o substitutions the nonhomogeneous par-
tial differential equation with homogeneous initial condition and nonhomo-
geneous boundary conditions is reduced to a homogeneous partial differen-
tial equation with homogeneous boundary conditions and nonhomogeneous
initial condition. Under such a procedure, the problem under consideration
is solved exactly.

Let

u1 (am, z, t) = u∗1 (am, z, t)− A∗ (am)

k2m
, (86)

where

A∗ (am) = − 2

π

[
ω2b

J1 (ama)

J1 (amb)
− ω2a

]
. (87)

Then, the boundary value problem II, can be written as

D
∗
1 {u∗1 (am, z, t)} = 0,

u∗1 (am, z, t) = A∗(am)
k2m

,

u∗1 (am,±L, t) = G2 (am) + A∗(am)
k2m

.

 (88)

However, the boundary value problems given by eq. (88) possesses
nonhomogeneous boundary and initial condition. Let

u∗1 (am, z, t) = ϕ (am, z, t) + Scoshkm z, (89)

where S has to be chosen so that F (am, z, t) vanishes at the boundary,
z = ±L.
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Evidently, from eq. (89) it follows

S =

[
G2 (am) +

A∗ (am)

k2m

]
1

coshkm L
. (90)

Therefore,

u∗1 (am, z, t) = ϕ (am, z, t) +

[
G2 (am) +

A∗ (am)

k2m

]
coshkm z

coshkm L
. (91)

Substituting qe. (91) into eq. (88) it follows

Dϕ {ϕ (am, z, t)} = 0,

ϕ (am, z, 0) =
A∗ (am)

k2m
−
[
G2 (am) +

A∗ (am)

k2m

]
coshkm z

coshkm L,

ϕ (am,±L, t) = 0, t > 0

 (92)

Hence,

∂2ϕ (am, z, t)

∂z2
− k2mϕ (am, z, t)− 1

ν

∂Φ

∂t
[am, z, t] = 0,

ϕ [am, z, 0] =
A∗ (am)

k2m
−
[
G2 (am) +

A∗ (am)

k2m

]
coshkm z

coshkm L
,

ϕ (am,±L, t) = 0, t > 0


(93)

Using

ϕ (am, z, t) = Ψ (am, z)T (t) (94)

then, the partial differential Eq. (93) becomes

∂2Ψ(am,z)
Ψz2

−
(
k2m − j2

)
Ψ(am, z) = 0,

∂T
∂t + j2νT = 0.

 (95)

From eq. (67) we have that

∂T

∂t
+
(
k2m +A2

n

)
νT = 0. (96)

Therefore,

j2 =
(
k2m +A2

n

)
. (97)

Hence,
∂2Ψ(am, z)

∂z2
+A2

nΨ(am, z) = 0, (98)
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and

T (t) = Me−ν(k2m+A2
n)t, (99)

where M is a constant.

Evidently,

Φm (am, z, t) =

∞∑
n

MmncosAn ze−ν(k2m+A2
n)t. (100)

Using generalized Fourier Analysis it follows that

Mmn =
2sinAn L

AnL

{
A∗ (am)

k2m
−
[
G2 (am) +

A∗ (am)

k2m

]
A2

n

k2m +A2
n

}
. (101)

Then eq. (82), (83). (86), (89) lead to

u1 (r, z, t) =
p2

2

∞∑
m

∞∑
n

a2mJ1 (amb)

J2
1 (ama)− J2

1 (amb)

×MmnB1 (amr) cosAn ze−ν(k2m+A2
n)t

+
p2

2

∞∑
m

a2mJ1 (amb)

J2
1 (ama)− J2

1 (amb)
B1 (amr)[(

G2 (am) +
A∗ (am)

k2m

)
coshkm z

coshkm L
− A∗ (am)

k2m

]
.

(102)

Hence, eq. (56), (81) and (102) lead to

u (r, z, t) =
∞∑
m

∞∑
n

[
Amn + π2

2
a2mJ1(amb)

J2
1 (ama)−J2

1 (amb)
Mmn ]

×B1 (amr) cosAn ze−ν(k2m+A2
n)t

+π2

2

∞∑
m

a2mJ1(amb)
J2
1 (ama)−J2

1 (amb)
B1 (amr)

×
[(

G2 (am) + A∗(am)
k2m

)
coshkm z
coshkm L − A∗(am)

k2m

]
= T ∗ + S∗.

(103)

4 Discussion of the solution

Eq. (103) represents the principal object of this paper, since this equation
is the mathematical key of the problem. More important, this equation
represents the general solution for the velocity field, from which other so-
lutions previously given in literature ([1]) follow directly as special cases
of this equation. At the outset, we recognized that Eq. (103) consists of
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two parts: The first part, T ∗, represents the transient velocity and the sec-
ond part, S∗, represents the steady velocity which was given previously in
literature in literature [2].

Moreover, the transient part itself, T ∗, consists of two parts, namely
T ∗ = T ∗

1 + T ∗
2 , where T ∗

1 is the transient part resulting from suddenly
applied initial velocity on the interior cylinder, and T ∗

2 is the part added to
T ∗
1 when the steady state is finally attained.
Hence, Eq. (103) can be written as

u (r, z, t) = T ∗
1 + T ∗

2 + S∗. (104)

Evidently T ∗decreases when t increases. Moreover, by increasing the
magnetic field we increase the value of M as can be seen from eq. (53).
However, from eq. (70) it follows that k2m = a2m +M2.

Therefore by increasing the magnetic field the values of km will increase
also. Hence, by large increases of the magnetic field the transient part
disappears quickly and the duration of disturbance is of shorter time; con-
sequently the magnetic field has stabilized motion. Note that T ∗

1 results
from the initial velocity given to the system and therefore is dependent on
the function f (r, z). However, T ∗

2 is a pure transient part, since it generates
a source of disturbance, and as can be seen from eq. (103) is dependent on
the ration b

a , namely:

1. If b
a → 1 then from eq. (103) it follows J2

1 (ama) ≈ J2
1 (amb), hence

the steady state is attained very soon after disturbance;
2. If b

a ≫ 1 then the disturbance will continue for a longer period, and

3. If the value of b
a is between the above considered values, then a

concerning the duration of the disturbance can be obtained using Bessel’s
inequality, which says that for an orthonormal system {Bn (amr)}, whether
closed or not, we have that

∞∑
m

C2
m ≤

∫ b

a
[ϕ (amr)]2dr, (105)

where C ′s is all the coefficients in the generalized Fourier expansion of
Φ (αmr) in terms of Bn (amr), and [a, b] is the interval of orthogonality.

Evidently,
|T ∗| = |T ∗

1 + T ∗
2 | = |T ∗

1 |+ |T ∗
2 | . (106)

Denote by a the smallest root of eq. (63), then eq. (70) gives the
smallest value of k2m say k∗2; moreover, the smallest root An off eq. (69) is
given by A0 =

π
2L .

Then
η = k∗2 +A2

0 (107)
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is the smallest value of k2m +A2
n. Therefore,

|T ∗
2 | ≤ H

∣∣∣∣∣
∞∑
m

J1 (amb)B1 (amr)

J2
1 (ama)− J2

1 (amb)

∣∣∣∣∣ cosπz2L e−νηt, (108)

where

H =
π2

2
a2mMmn, (109)

is the smallest value of π2

2 a2mMmn.
Hence, by means of Bessel, inequality

|T ∗
2 | = H

a2

2r

(
b2 − r2

b2 − a2

)
cos

πz

2L
e−νηt. (110)

Therefore, for any fixed z = z1 and t = t1. T ∗
2 decreases when r increases,

in other words the duration of disturbance continue longer in the region
closer to outer cylinder.

Hence, in order to reduce the duration of the disturbance in to hydro-
magnetic fluid under consideration we have either to increase the magnetic
field or to allow the ration of the radii of cylinders, b

a approach 1, or to do
both together.

Further mathematical treatment of the problem now becomes trivial,
since other unknown quantities can be easily evaluated. In this paper,
because of the limitation of the space and the triviality of the solution of
the remaining equations, the technique of the solution will not be presented.
Evidently, integrating eq. (52) it follows

ρe (r, z, t) = e−
σ
εe

t

[
C (r, z)− σµeH0

∫ t ∂u (r, z, ξ)

∂r
e−

σ
εe

ξdξ

]
(111)

where the constant C (r, z) is determined by condition that ρe (r, z, 0) = 0.
Similarly, from eq. (47), (49), (50) and (51) one can easily obtain the
values of p, and Ez. The friction couple per unit length of cylinders and
that at that at the end of the bounding planes can be evaluated without
any difficulty as was shown in ref [3] and [4,5].

5 Conclusion

The problem of unsteady rotational motion of electrically conducting, vis-
cous, incompressible fluid contained within two axially concentric cylinders
of finite length in the presence of an axial symmetric magnetic field, has
been studied and solved by methods of methods of the operational calcu-
lus. The solution for the velocity field is obtained in an exact from, since
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the corresponding partial differential equations are solved exactly. It has
been shown that the distu-rbance is of very short time duration if b

a → 1.

However, if b
a ≫ 1 then disturbance is longer in the region closer to the

outer cylinder. Moreover, as the magnetic field is increased the disturbance
disappears more quickly. Finally, this solution is more general, since other
solutions which have previously appeared in literature on the subject are
merely special cases of this investigation.
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