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Abstract

In this paper the body is an elastic Cosserat media with voids.
The two-dimensional system of equations corresponding to a plane
deformation case is written in a complex form and its general solution
is presented with using of two analytic functions of a complex variable
and two solutions of the Helmholtz equations. On the basis of the
general representation, specific boundary value problems are solved
for a circle and infinite plane with a circular hole.
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1 Introduction

The non-linear version of elastic materials with voids was proposed by Nun-
ziato and Cowin [1] and the linear version was developed by Cowin and
Nunziato [2] to study mathematically the mechanical behaviour of porous
solids. The linear theory of thermoelastic porous materials with voids is
the generalization of the classical theory of elasticity. Porous materials with
voids have applications in many fields of engineering, such as the petroleum
industry, material science and biology. This theory enables us to analyze
the behaviour of elastic porous materials which can be found in engineering,
such as rock and soil, bone, the manufactured porous materials. The voids
are assumed to contain nothing of mechanical or energetic significance.

It should be noted that all the papers mentioned above dealt with a
classical (symmetric) medium. We consider the problem of elasticity for
solids with triple-porosity in the case of an elastic Cosserat medium [3].

Many problem are investigated by several researchers in the elastic ma-
terials with the microstructure . Some of these results are presented in [4-7]
and in references therein.



Some boundary value ... AMIM Vol.27 No.2, 2022

2 Basic equations

Assume an elastic body with voids occupies the domain Ω ∈ R3. Denote
by x = (x1, x2, x3) a point of the domain Ω in the Cartesian coordinate
system. Assume the domain Ω is filled with an elastic Cosserat media
having voids.

In this case, a system of static equilibrium equations is [2, 8]

∂iσij(x) + ρFj(x) = 0,
∂iµij (x)+ ∈jik σik (x) + ρGj (x) = 0, i, j, k = 1, 2, 3
∂ihi (x) + g(x) + ρl(x) = 0,

(1)

where σij are stress tensor components; ρ is material density; Fj are the
components of the mass force vectors; µij are moment stress tensor compo-
nents; ∈ijk is the Levi–Civita symbol; Gj are the components of the mass
moment vectors; hi is the equilibrated stress vector; g is the intrinsic equi-
librated body force; l is the extrinsic equilibrated body force; ∂i ≡ ∂/∂xi.

Formulas that interrelate functions σij , µij , hi , g to the functions
uj , ωj and φ have the form [2, 8]

σij = (λdiv u+ γϕ) δij + (µ+ α) ∂iuj + (µ− α) ∂jui − 2α∈jikωk,
µij = α div ω δij + (ν + β) ∂iωj + (ν − β) ∂jωi,
hi = δ∂iϕ,
g = −ξϕ− γdiv u,

(2)

where λ and µ are the Lamé parameters; α, β, ν, σ are the constants
characterizing the microstructure of the discussed elastic media; δ, ξ, γ
are the constants characterizing the body porosity; δij is the Kronecker
delta, u = (u1, u2, u3) is the displacement vector, ω = (ω1, ω2, ω3) is
the rotation vector, ϕ is the change of volume fraction.

From the basic three-dimensional equations, we obtain the basic equa-
tions for the case of plane deformation. Let Ω be a sufficiently long cylin-
drical body with generatrix parallel to the Ox3-axis. Denote by D the
cross-section of this cylindrical body, thus D ∈ R2 . In the case of plane de-
formation u3 = 0, ω1 = 0, ω2 = 0, while the functions u1, u2, ω3 and φ
do not depend on the coordinate x3 [9]. We also assume u1, u2, ω3, φ ∈
C2 (D) ∩ C1(D).

As follows from formula (2), in the case of plane deformation

σα3 = 0, σ3α = 0, µαβ = 0, µ33 = 0, h3 = 0, α, β = 1, 2.

If relations (2) are substituted into the system (1) then we obtain the
following system of equilibrium equations with respect to the functions
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u1, u2, ω3 and φ (the homogeneous system (Fα = 0, Gα = 0, l = 0) )

(µ+ α)∆2u1 + (λ+ µ− α) ∂1θ + 2α∂2ω3 + γ∂1φ = 0,
(µ+ α)∆2u2 + (λ+ µ− α) ∂2θ − 2α∂1ω3 + γ∂2φ = 0,
(ν + β)∆2ω3 + 2α(∂1u2 − ∂2u1)− 4αω3 = 0,
(δ∆2 − ξ)φ− γθ = 0.

(3)

On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 =
reiα

(
i2 = −1

)
and the operators ∂z = 0.5 (∂1 − i∂2), ∂z = 0.5 (∂1 + i∂2) ,

z = x1 − ix2, ∆2 = 4∂z∂z.
To write system (3) in the complex form, the second equation of this

system is multiplied by i and summed up with the first equation

2(µ+ α)∂z∂zu+ + (λ+ µ− α)∂zθ − 2αi∂zω3 + γ∂zϕ = 0,
2(ν + β)∂z∂zω3 + αi(θ − 2∂zu+)− 2αω3 = 0,
(4∂z∂z − ξ)ϕ− γθ = 0.

(4)

The general solution of the system of Eqs. (4) is represented using
formulas [8, 9]

2µu+ = (κ+κ0)φ(z)− (1−κ0)zφ′(z)−ψ(z)+4∂z̄(iχ(z, z̄)−γη(z, z̄)), (5)

2µω3 =
4µ

ν + β
χ(z, z)− κ+ 1

2
i(φ′(z)− φ′(z)) (6)

ϕ =
(λ+ 2µ)ξ − γ2

µδ
η(z, z)− γ

(λ+ µ)δζ22
(φ′(z) + φ′(z)) (7)

where φ(z) and ψ(z) are the arbitrary analytic functions of z, χ(z, z̄) and
η(z, z̄) are the general solutions of the Helmholtz equations

∆2χ− ζ21χ = 0, ∆2η − ζ22η = 0

ζ21 =
4µα

(ν + β)(µ+ α)
> 0, ζ22 =

(λ+ 2µ)ξ − γ2

(λ+ 2µ)δ
> 0.

also

κ =
λ+ 3µ

λ+ µ
, κ0 =

γ2µ

(λ+ µ)((λ+ 2µ)ξ − γ2)
.

3 The boundary value problem for a circle

Let us consider the elastic circle, consisting of Cosserat media with voids
bounded by the circumference of radius R (Fig. 1). The origin of coordi-
nates is at the center of the circle.
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Figure 1: The elastic circle.

On the circumference, we consider the following boundary value prob-
lem

σrr − iσrα = N − iT, µr3 =M, hl = F, on r = R (8)

where N , T , M and F are sufficiently smooth functions.
Substituting the formulas (5)–(7) into (8) we have [8, 9, 10]

σrr−iσrα = (1− κ0)
(
φ′(z) + φ′(z)

)
+ ς21 iχ (z, z̄)+ς22γη (z, z̄)

−e2iα [(1−κ0) z̄φ′′ (z) + ψ′ (z) + 4∂z∂z (iχ (z, z̄)+γη (z, z̄))]
(9)

µr3 = Re
(
(κ+1)(ν+β)

2µ iφ′′ (z) e−iα + 4∂z̄χ (z, z̄) e−iα
)
,

hl = Re
(
− 2γ

(λ+µ)ς22
φ′′ (z)e−iα + 2(λ+2µ)ξ−2γ2

µ ∂z̄η (z, z) e
−iα
)
.

(10)

The analytic functions φ′(z), ψ′(z) and the metaharmonic functions
χ(z, z), η(z, z) are represented as the following series

φ′(z) =
∞∑
n=0

anz
n, ψ′(z) =

∞∑
n=0

bnz
n (11)

χ(z, z) =
+∞∑
−∞

αnIn(ζ1r)e
inα, η(z, z) =

+∞∑
−∞

βnIn(ζ2r)e
inα, (12)

where In(ζ1r) and In(ζ2r) are the modified Bessel function of the first kind
of n-th order.

Substituting (11), (12) in (9), (10) taking into account the boundary
conditions (8) and assuming that the series converge on the circumference
r = R, one finds

(1−κ0)
+∞∑
n=0

Rn
(
(1−n)aneinα+āne−inα

)
−

+∞∑
n=0

Rnbne
i(n+2)α

− 2

R

+∞∑
−∞

(n−1) (ς1In−1 (ς1R) iαn+ς2γIn−1 (ς2R)βn) e
inα=N−iT,

(13)
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2ζ1

+∞∑
−∞

I ′n (ζ1R)αne
inα +

(κ+1) (ν+β)

4µ

×
+∞∑
n=0

Rn−1ni
(
āne

−inα − ane
inα
)
=M,

(14)

2 (λ+ 2µ) ξ − 2γ2

µ

ζ2
2

∞∑
−∞

I ′n (ς2r)βne
inα−

− γ

(λ+µ) ς22
n

∞∑
n=0

Rn−1
(
ane

inα − ānR
n−1e−inα

)
=F .

(15)

As a conclusion of the previous relations, we used the following well-
known formula

In−1(x)− In+1(x) =
2n

x
In(x),

In−1(x) + In+1(x) = 2I ′n(x).

Expand the function N− iT , 2µM and F , given on r = R, in a complex
Fourier series

N − iT =
+∞∑
−∞

Nne
inα, 2µM =

+∞∑
−∞

Mne
inα, F =

+∞∑
−∞

Fne
inα. (16)

Comparing in (13)–(15) the coefficients of e0iα we have (it is also as-
sumed that a0 is a real value [9])

2(1− κ0)a0 +
2γ

R
ζ2I1(ζ2R)β0 = N0, (17)

β0 =
2µF0

(2 (λ+ 2µ) ξ − 2γ2)ζ2I1 (ζ2R)
, (18)

α0 = − R

2ζ1I1 (ζ1R)
T0 =

1

2ζ1I ′0(ζ1R)
M0. (19)

In order for the problem to have a solution, the following condition must
be met

M0 = −RI
′
0(ς1R)

I1 (ς1R)
T0.

From Eqs. (17), (18) we determine the coefficients a0

a0 =
N0

2 (1− κ0)
− 2µγF 0

R (1− κ0) (2 (λ+2µ) ξ−2γ2)
.
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comparing the coefficients of einα (n ̸= 0), we have

(1− n)(1− κ0)R
nan −Rn−2bn−2−

2

R
(n− 1)(ζ1In−1(ζ1R)iαn + ζ2γIn−1(ζ2R)βn) = Nn, n ≥ 2

(20)

(1− κ0)R
nan − 2

R
(n+ 1)(ζ1In+1(ζ1R)iαn − ζ2γIn+1(ζ2R)βn)

= N−n, n > 0
(21)

2ς1I
′
n (ς1R)αn − (κ+ 1) (ν + β)

4µ
Rn−1nian =Mn, n ≥ 1, (22)

2 (λ+2µ) ξ−2γ2

2µ
ς2I

′
n (ς2R)βn−

γ

(λ+µ) ς22
Rn−1nan = Fn; n ≥ 1. (23)

From (20)–(23) one finds

an =
N−n + k1nMn − k2nFn

(1− κ0)Rn + k3n + k4n
, n > 0

αn =
Mn + (κ+1)(ν+β)

4µ Rn−1nian

2ζ1I ′n (ζ1R)
, n > 0

βn =
2µ
(
Fn + γ

(λ+µ)ζ22
Rn−1nan

)
ζ2I ′n (ς2R) (2 (λ+2µ) ξ−2γ2)

, n > 0

bn−2 = (1− n) (1− κ0)R
2an

−2 (n− 1)

Rn−1
(ς1In−1 (ς1R) iαn + ς2γIn−1 (ς2R)βn)−

Nn

Rn−2
, n > 1.

where

k1n =
n+ 1

R

In+1 (ς1R) i

I ′n (ς1R)
,

k2n =
n+ 1

R

2µγIn+1 (ζ2R)

((λ+ 2µ) ξ − γ2) I ′n (ζ2R)
,

k3n = n (n+ 1)
(κ+ 1) (ν + β)Rn−2In+1 (ς1R)

4µI ′n (ς1R)
,

k4n = n (n+ 1)
2µγ2Rn−2In+1 (ζ2R)

(λ+ µ) ζ22 ((λ+ 2µ) ξ − γ2) I ′n (ζ2R)
.

It is easy to prove the absolute and uniform convergence of the series ob-
tained in the the circle (including the contours) when the functions set on
the boundaries have sufficient smoothness.
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4 The problem for the infinite plane with a cir-
cular hole

Now let we have an infinite plane with a circular hole (Fig. 2). Assume
that the origin of coordinates is at the center of the hole of radius R.

Figure 2: The infinite plane with a circular hole.

On the circle we consider the following boundary value problem

2µu+ = N − iT,
ω3 =M, r = R,
ϕ = F,

(24)

where N , T , M and F are sufficiently smooth functions.
Substituting the formulas (5)–(7) into (24) we have

(κ+ κ0)φ(z)− (1− κ0) zφ′(z)− ψ(z) + 4i∂z̄χ (z, ẑ)

−4γ∂ẑη (z, ẑ) =
N − iT

2µ
eiα,

4µ

ν + β
χ (z, z)− κ+ 1

2
i
(
φ′ (z)− φ′ (z)

)
= 2µM,

(λ+ 2µ) ξ − γ2

µδ
η (z, ẑ)− γ

(λ+ µ) δς22

(
φ′(z) + φ′(z)

)
= F.

(25)

Conditions at infinity

σ
(∞)
11 = S1, σ

(∞)
22 = S2,

σ
(∞)
12 = σ

(∞)
21 = S3; (26)

µ
(∞)
13 = µ

(∞)
23 = 0; ϕ = S4,

where S1, S2, S3, S4 are the constants.
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In this case the analytic functions φ (z), ψ (z) and the metaharmonic
functions χ(z, ẑ), η(z, ẑ) are represented as a series

φ′ (z) =
∞∑
n=0

anz
−n , ψ′ (z) =

∞∑
n=0

bnz
−n,

χ (z, ẑ) =
+∞∑
−∞

αnKn (ς1r) e
inα , η (z, ẑ) =

+∞∑
−∞

βnKn (ς2r) e
inα ,

(27)

where Kn(ς1r) and Kn(ς2r) are the modified Bessel function of the second
kind of n-th order.

Substituting (27) in (25) taking into account the boundary conditions
(24) and assuming that the series to converge on the circumference r = R,
one finds

(κ+ κ0)

(
Ra0e

iα + lnR a1 + iαa1 +
∞∑
n=2

R−n+1

−n+ 1
ane

i(−n+1)α

)
− (1− κ0)

∞∑
n=0

ān
Rn−1

ei(n+1)α −Rb̄0e
iα − lnR b̄1 + iαb̄1

−
∞∑
n=2

R−n+1

−n+ 1
b̂ne

i(n−1)α − 2ς1i

∞∑
−∞

Kn+1 (ς1R)αne
i(n+1)α

+2ης2

∞∑
−∞

Kn+1 (ς2R)βne
i(n+1)α =

N − iT

2µ
eiα,

(28)

2

ν + β

∞∑
−∞

αnKn (ζ1R) e
inα − κ+ 1

4µ
i

∞∑
n=0

(ane
−inα − ane

inα)R−n

=M,

(29)

(λ+ 2µ) ξ − γ2

µδ

+∞∑
−∞

Kn (ς2R)βne
inα

− γ

(λ+ µ) δ ς22

+∞∑
n=0

1

Rn

(
ane

−inα + an e
inα
)
= F.

(30)

Expand the function N − iT , M and F , given on r = R, in a complex
Fourier series

N−iT
2µ

eiα=
+∞∑
−∞

Nn e
inα,

2µM=
+∞∑
−∞

Mne
inα,

F=

+∞∑
−∞

Fne
inα.

(31)
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Due to the fact that χ, η, M and F are real functions, we have

αn = ᾱ−n, βn = β̄−n,

Bn = B̄−n, Cn = C̄−n.

It is known that [9]

a0 = Γ , b0 = Γ /, (32)

where Γ , Γ / are known quantities, specifying the stress distribution at
infinity (It is also assumed that a0 is a real value [9]). As follows from
formulas (5), (6), (7) and conditions (26) [8]

ReΓ =
S1+S2
4 (1−κ0)

=
(λ+µ) δς22S4

2
,

ReΓ / =
S2−S1

2
, ImΓ / =S3.

We use the condition of single-valuedness of the displacements which in
the present case is expressed as

(κ+ κ0) a1 + b̄1 = 0. (33)

After introducing (31) into (28)–(30), and comparing the coefficients of
einα, we have

(κ+ κ0) lnR a1−lnR b̄1−2ς1iK0 (ς1R)α−1+2ης2K0 (ς2R)β−1 = N0, (34)

2

ν + β
K0 (ς1R)α0 =M0, (35)

(λ+ 2µ) ξ − γ2

µδ
K0 (ς2R)β0 −

γ

(λ+ µ) δς22
ā0 = F0. (36)

(κ+ κ0)Ra0 − (1− κ0)Rā0 −Rb̄0 +
1

R
b̄2 − 2ς1iK1 (ς1R)α0

+2ης2K1 (ς2R)β0 = N1,
(37)

− (1− κ0)
ān−1

Rn−2
+

1

nRn
b̄n+1 − 2ς1iKn (ς1R)αn−1

+2ης2Kn (ς2R)βn−1 = Nn, n ≥ 2,
(38)

(κ+ κ0)
R−n

−n
an+1 − 2ς1iK−n (ς1R)α−n−1 + 2ης2K−n (ς2R)β−n−1

= N−n, n ≥ 1,
(39)

2

ν + β
Kn (ς1R)αn +

(κ+ 1) i

4µRn
ān =Mn, n ≥ 1, (40)
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(λ+ 2µ) ξ − γ2

µδ
Kn (ς2R)βn − γ

(λ+ µ) δς22R
n
ān = Fn, n ≥ 0. (41)

From (32) and (35-37) one finds

α0 =
(ν + β)M0

2K0 (ς1R)
,

β0 =
µδN0

(λ+ 2µ) ξ − γ2
1

K0 (ς2R)
− 2γµΓ

(λ+ µ) ((λ+ 2µ) ξ − γ2) ς22
.

b2 = RN1 + (1− κ− 2κ0)R
2Γ +R2Γ ′ + 2ς1iK1 (ς1R)

(ν + β)M0

2K0 (ς1R)

−2ης2RK1 (ς2R)
µδN0

(λ+ 2µ) ξ − γ2
1

K0 (ς2R)
− 2γµΓ

(λ+ µ) ((λ+ 2µ) ξ − γ2) ς22
.

From equations (33), (34), (40), (41) we get the following system of
equations with respect to a1, b1, α1 and β1:

(κ+ κ0) lnR ā1 − lnR b1 + 2ς1iK0 (ς1R)α1 + 2ης2K0 (ς2R)β1 = N̄0,

(κ+ κ0) ā1 + b1 = 0,

2

ν + β
K1 (ς1R)α1 +

(κ+ 1) i

4µR
ā1 =M1,

(λ+ 2µ) ξ − γ2

µδ
K1 (ς2R)β1 −

γ

(λ+ µ) δς22R
ā1 = F1.

From (38-41) one finds

ān =
N̄−n+1 − J1nMn − J2nFn

J3n − J4n − J5n
, n ≥ 2

αn =
Mn − (κ+1)i

4µRn ān
2

ν+βKn (ς1R)
, n ≥ 1,

βn =
Fn + γ

(λ+µ)δς22R
n ān

(λ+2µ)ξ−γ2

µδ Kn (ς2R)
, n ≥ 0

b̄n+1 = nRn
(
Nn + (1− κ0)

ān−1

Rn−2
+ 2ς1iKn (ς1R)αn−1 − 2ης2Kn (ς2R)βn−1

)
,

where

J1n =
iς1Kn−1 (ς1R) (ν + β)

Kn (ς1R)
,

J2n =
2ης2µδKn−1 (ς2R)

((λ+ 2µ) ξ − γ2)Kn (ς2R)
,
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J3n =
κ+ κ0

Rn−1 (1− n)
, J4n =

ς1 (κ+ 1) (ν + β)Kn−1 (ς1R)

4µRnKn (ς1R)
,

J5n = − 2ηµγKn−1 (ς2R)

(λ+ µ) ((λ+ 2µ) ξ − γ2) ς2Kn (ς2R)
.

It is easy to prove the absolute and uniform convergence of the series ob-
tained in the infinite plane with a circular hole (including the contours)
when the functions set on the boundaries have sufficient smoothness.
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