CORRECTLY POSED BOUNDARY VALUE PROBLEMS FOR MAXWELL'S SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

Irine Sigua ${ }^{1}$, Mari Rashoian ${ }^{2}$
1 Department of Mathematics, Georgian Technical University 77 M. Kostava, 0175 Tbilisi, Georgia
irinasigua@mail.ru
2 Faculty of Informatics and Control Systems
Georgian Technical University
77 M. Kostava, 0175 Tbilisi, Georgia
rashoian96@mail.ru

(Received 14.05.2022; accepted 10.10.2022)

Abstract

Boundary value problems for Maxwell's system of partial differential equations are considered. Necessary and sufficient conditions, imposed on the boundary coefficients that ensure the correctness of the problem are found. It is shown what type of violation of the correctness of the problem occurs when these conditions are not fulfilled. It is also shown what changes in the initial conditions should be made to make the problem correct. In the case of a correctly posed problem, the solution is written out explicitly.

Keywords and phrases: Maxwell's system of partial differential equations, boundary value problems, existence and uniqueness of solution.

AMS subject classification (2010): 35F45, 35F46.

In the space $O_{x y z}$ consider Maxwell's system of equations [1]

$$
\begin{equation*}
E_{t}-\operatorname{rot} H=0, \quad H_{t}+\operatorname{rot} E=0, \tag{1}
\end{equation*}
$$

where $E=\left(u_{1}, u_{2}, u_{3}\right)$ and $H=\left(u_{4}, u_{5}, u_{6}\right)$ are vectors of electric and magnetic fields, respectively, (the velocity of a light is taken as $c=1$), $\operatorname{rot} E=\left(u_{3 y}-u_{2 z}, u_{1 z}-u_{3 x}, u_{2 x}-u_{1 y}\right)$.

The system (1) can be rewritten as follows

$$
\begin{cases}\frac{\partial u_{1}}{\partial t}-\frac{\partial u_{6}}{\partial y}+\frac{\partial u_{5}}{\partial z}=0, & \frac{\partial u_{4}}{\partial t}+\frac{\partial u_{3}}{\partial y}-\frac{\partial u_{2}}{\partial z}=0 \tag{2}\\ \frac{\partial u_{2}}{\partial t}-\frac{\partial u_{4}}{\partial z}+\frac{\partial u_{6}}{\partial x}=0, & \frac{\partial u_{5}}{\partial t}+\frac{\partial u_{1}}{\partial z}-\frac{\partial u_{3}}{\partial x}=0 \\ \frac{\partial u_{3}}{\partial t}-\frac{\partial u_{5}}{\partial x}+\frac{\partial u_{4}}{\partial y}=0, & \frac{\partial u_{6}}{\partial t}+\frac{\partial u_{2}}{\partial x}-\frac{\partial u_{1}}{\partial y}=0\end{cases}
$$

By notation $u=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$ the system (2) can be written in vectorial form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}+B \frac{\partial u}{\partial y}+C \frac{\partial u}{\partial z}=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
C=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) . \tag{4}
\end{align*}
$$

Consider the case, when the vector u does not depend on the variables y and z, then the system (3) takes the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}=0 \tag{5}
\end{equation*}
$$

The Matrix A in the system (5) has real characteristic roots $\lambda_{1}=0$, $\lambda_{2}=1, \lambda_{3}=-1$, each of them of multiplicity two. Thus, the system (5) represents a non-split non-strictly hyperbolic system.

In the semi-strip $D: 0<x<l, t>0$ of the plane $O x t$, for the system (5) consider the following boundary value problem: find in the domain D a regular solution $u \in C^{1}(\bar{D})$ to the system (5) which satisfies the following boundary conditions

$$
\begin{align*}
\left(M_{0} u\right)(x, 0) & =\varphi(x), \quad 0 \leq x \leq l, \tag{6}\\
\left(M_{1} u\right)(0, t) & =\mu_{1}(t), \quad t \geq 0, \tag{7}\\
\left(M_{2} u\right)(l, t) & =\mu_{2}(t), \quad t \geq 0, \tag{8}
\end{align*}
$$

where M_{i} are given $m_{i} \times 6$ dimensional matrices, $i=0,1,2$, while $\varphi=$ $\left(\varphi_{1}, \ldots, \varphi_{6}\right)$ and $\mu_{i}=\left(\mu_{i 1}, \ldots, \mu_{i 6}\right), i=1,2$, are given vector-functions from the class C^{1}, satisfying the corresponding agreement conditions at the points $O(0,0)$ and $O^{\prime}(l, 0)$. Here the number $m_{i}, 0 \leq m_{i} \leq 6$, indicates the extent to which the boundary conditions occupy the corresponding part of the boundary of D. Particularly, $m_{i}=0$ means that the corresponding
part of the boundary of D is completely free from the boundary conditions. When the matrix M_{0} in (6) is a unit one, then the problem (5)-(8) is called an initial-boundary problem.

It should be noted that the initial boundary problem for first-order hyperbolic systems, i.e., when M_{0} is a unit matrix, has been investigated by many authors, but as a rule in the case when the system is split in the main part $[1,2,3,4,5,6]$.

Consider the initial boundary problem (5)-(8), i.e., when M_{0} in (6) is a unit matrix. In this case, if we take into account the structure of the matrix A for the correctness of the problem it is necessary to require that the matrices M_{1} and M_{2} were of order 2×6, i.e. $m_{1}=m_{2}=2$. Denote the elements of the matrix M_{i} by $n_{k j}^{i}, k=1,2 ; j=1, \ldots, 6$. Introduce two second-order square matrices

$$
\begin{aligned}
M_{11} & =\left(\begin{array}{ll}
n_{12}^{1}+n_{16}^{1} & n_{13}^{1}-n_{15}^{1} \\
n_{22}^{1}+n_{26}^{1} & n_{23}^{1}-n_{25}^{1}
\end{array}\right), \\
M_{22} & =\left(\begin{array}{ll}
n_{12}^{2}-n_{16}^{2} & n_{13}^{2}+n_{15}^{2} \\
n_{22}^{2}-n_{26}^{2} & n_{23}^{2}+n_{25}^{2}
\end{array}\right) .
\end{aligned}
$$

Theorem. For unique solvability of the initial boundary problem (5)(8) with the unit matrix $M_{0}=I, m_{1}=m_{2}=2$, in the semi-strip D : $0<x<l, t>0$ for any vector-functions $\varphi=\left(\varphi_{1}, \ldots, \varphi_{6}\right) \in C^{1}([0, l])$ and $\mu_{i}=\left(\mu_{i 1}, \mu_{i 2}\right) \in C^{1}([0, \infty]), i=1,2$, from the class $C^{1}(\bar{D})$, satisfying at the points $O(0,0)$ and $O^{\prime}(l, 0)$ the agreement conditions $M_{1} \varphi(0)=\mu_{1}(0)$, $M_{2} \varphi(l)=\mu_{2}(l)$, it is necessary and sufficient that

$$
\begin{equation*}
\operatorname{det} M_{11} \neq 0, \quad \operatorname{det} M_{22} \neq 0 \tag{9}
\end{equation*}
$$

Remark. Denote by m_{j}^{i} the columns of the matrix M_{i}, i.e., $M_{i}=$ $\left(m_{1}^{i}, \ldots, m_{6}^{i}\right)$ and introduce 2×6 order matrix $M_{i}^{*}=\left(m_{2}^{i}, m_{3}^{i}, m_{5}^{i}, m_{6}^{i}, m_{1}^{i}, m_{4}^{i}\right)$, $i=1,2$. Consider the sixth order quadratic matrix

$$
K_{0}=\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and introduce 2×6 order matrix $N_{i}=M_{i}^{*} K_{0}$, which will be represented as follows $N_{i}=\left(N_{i 1}, N_{i 2}, N_{i 3}\right)$, where $N_{i j}$ are second order quadratic matrices. It is easy to verify that $N_{11}=M_{11}$ and $N_{22}=M_{22}$. When the
conditions (9) are violated, then the problem (5)-(8) is not posed correctly. For example, when $M_{11}=0, \operatorname{det} N_{12} \neq 0$, $\operatorname{det} N_{21} \neq 0, M_{22}=0$, then the initial conditions (6) of this problem should be removed from the problem statement, particularly, $u_{i}(x, 0)=\varphi_{i}(x), 0 \leq x \leq l$, when $i=2,3,5,6$ is completely redundant, and for the correctness of the problem we should keep only the initial conditions $u_{i}(x, 0)=\varphi_{i}(x), 0 \leq x \leq l, i=1,4$. In the same conditions $M_{11}=0, \operatorname{det} N_{12} \neq 0, \operatorname{det} N_{21} \neq 0, M_{22}=0$, if we keep the initial conditions (6), then for the correctness of the problem we should consider the initial conditions (7) and (8) on that part of the boundary, where $t \geq l$.

References

1. Courant, R. Partial Differential Equations. Interscience Publishers, 1962.
2. Rozhdestvenskij, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and their Applications to Gas Dynamics. 2nd ed. (Sistemy kvazilinejnykh uravnenij i ikh prilozehniya k gazovoj dinamike). Nauka, Glavnaya Redaktsiya Fiziko-Matematicheskoj Literatury, Moskva, 1978 (in Russian).
3. Godunov S.K. Equations of Mathematical Physics. Second edition, revised and augmented. "Nauka", Moscow, 1979 (in Russian).
4. Abolinya V.È.; Myshkis, A.D. A mixed problem for a linear hyperbolic system on the plane. Latvijas Valsts Univ. Zinätn. Raksti, 20, 3 (1958), 87-104 (in Russian).
5. Abolinya V.È.; Myshkis, A.D. Mixed problems for quasi-linear hyperbolic systems in the plane. Mat. Sb. (N.S.), 50, 92 (1960), 423-442 (in Russian).
6. Duff G.F.D. Mixed problems for linear systems of first order equations. Canadian J. Math., 10 (1958), 127-160.
