
SOLUTION OF SOME BOUNDARY VALUE
PROBLEMS OF TENSION-COMPRESSION AND

BENDING OF PLATES IN THE CASE OF THE N = 1
APPROXIMATION OF THE VEKUA THEORY

R. Janjgava1, M. Narmania2

1I. Vekua Institute of Applied Mathematics of
I. Javakhishvili Tbilisi State University
2 University Str., Tbilisi 0186, Georgia

roman.janjgava@gmail.com
2University of Georgia

77 M. Kostava Str., Tbilisi 0175, Georgia
miranarma19@gmail.com

(Received 12.02.2022; accepted 16.06.2022)

Abstract

In the article, using the method of fundamental solutions, approx-
imate solutions are constructed for some boundary-value problems of
tension-compression and bending of homogeneous isotropic plates of
constant thickness with holes. In this case, the elastic equilibrium of
the plates is described by the refined system of equations of I. Vekua
in the case of the N = 1 approximation.
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1 Introduction

The article considers a number of static, including mixed boundary value
problems of tension-compression and bending of plates of constant thick-
ness. The plates are considered homogeneous and isotropic, and their elas-
tic equilibrium is described by the system of differential equations of the
refined Vekua theory in the case of the approximation N = 1 [1-3].

The middle surface of the plates is a square with a circular hole. In
all the problems under consideration, the contour of the hole is free from
stresses (σrr = 0, σrθ = 0, σr3 = 0) and various boundary conditions are set
on the sides of the square. The stress states of the plates under such bound-
ary conditions are determined, and special attention is paid to studying the
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σθθ on the hole contour. The formulated problems are solved approximately
by the method of fundamental solutions [4, 5] and on the basis of works [6,
7].

2 Main Relations

Let Oxyz be a rectangular Cartesian coordinate system in space. A ho-
mogeneous isotropic plate occupies an domain Ω = ω × [−h;h], where ω
is a two-dimensional domain on a plane Oxy which is called the middle
surface of the plate, h is the half-thickness of the plate, which is a positive
constant.

As is known, for plates of constant thickness, the system of elastic
equilibrium equations breaks down into two independent systems: tension-
compression and bending. This article considers the case when displace-
ments and stresses are linear functions of the coordinate along the thickness.
This case corresponds to the approximation N = 1 of the Vekua theory.

In the case of approximation N = 1, the homogeneous system of equi-
librium equations for plates in a two-dimensional domain ω has the form
[1]:

System of Tension-Compression Equations ∂α
(0)
σαβ = 0, β = 1, 2

∂α
(1)
σα3 −

3

h

(0)
σ33 = 0;

(1)

System of bending equations ∂α
(1)
σαβ − 3

h

(0)
σ3β = 0, β = 1, 2

∂α
(0)
σα3 = 0,

(2)

where the Greek indices take the values 1, 2 and summation is assumed
over the repeated index; ∂1 ≡ ∂x ≡ ∂

∂x , ∂2 ≡ ∂y ≡ ∂
∂y ;

(0)
σαβ =

(0)
σβα =

1

2h

h∫
−h

σαβdz,
(1)
σ3β =

(1)
σβ3 =

3

2h2

h∫
−h

zσ3βdz,

(1)
σαβ =

(1)
σβα =

3

2h2

h∫
−h

zσαβdz,
(0)
σ3β =

(0)
σβ3 =

1

2h

h∫
−h

σ3βdz,

where σαβ, σ3β, σ33 are stress tensor components.
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Hooke’s law is written as follows

(0)
σαβ = λ

(
(0)

θ +
1

h

(1)
u3

)
δαβ + µ

(
∂α

(0)
uβ + ∂β

(0)
uα

)
,

(1)
σα3 = µ∂α

(1)
u3,

(0)
σ33 = λ

(0)

θ +
1

h
(λ+ 2µ)

(1)
u3;

(3)



(1)
σαβ = λ

(1)

θ δαβ + µ

(
∂α

(1)
uβ + ∂β

(1)
uα

)
,

(0)
σα3 = µ

(
∂α

(0)
u3 +

1

h

(1)
uα

)
,

(1)
σ33 = λ

(1)

θ ,

(4)

where λ and µ are Lamé constants; δαβ is the Kronecker delta;

(0)
uα =

1

2h

h∫
−h

uαdz,
(1)
u3 =

3

2h2

h∫
−h

zu3dz,
(1)
uα =

3

2h2

h∫
−h

zuαdz,

(0)
u3 =

1

2h

h∫
−h

u3dz,

u1, u2, u3 are components of the displacement vector, while

uj ∼=
(0)
uj +

z

h

(1)
uj ;

(k)

θ = ∂x
(k)
u1 + ∂y

(k)
u2, k = 0, 1.

Substituting relations (3) into the system of equations (1), we obtain
the system of equilibrium equations of tension-compression of the plates in
the components of the displacement vector

µ∆
(0)
u1 + (λ+ µ)∂x

(0)

θ +
λ

h
∂x

(1)
u3 = 0,

µ∆
(0)
u2 + (λ+ µ)∂y

(0)

θ +
λ

h
∂y

(1)
u3 = 0,

µ∆
(1)
u3 −

3λ

h

(0)

θ − 3(λ+ 2µ)

h2
(1)
u3 = 0.

(5)

Substituting relations (4) into the system of equations (2), we obtain the
system of equations of plate bending in the components of the displacement
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vector 
µ∆

(1)
u1 + (λ+ µ)∂x

(1)

θ − 3µ

h
∂x

(0)
u3 −

3µ

h2
(1)
u1 = 0,

µ∆
(1)
u2 + (λ+ µ)∂y

(1)

θ − 3µ

h
∂y

(0)
u3 −

3µ

h2
(1)
u2 = 0,

µ∆
(0)
u3 +

µ

h

(1)

θ = 0.

(6)

Thus, in the case of tension-compression
(0)
uα,

(1)
u3,

(0)
σαβ,

(1)
σα3 are the required

quantities, and in case of bending the required quantities are
(1)
uα,

(0)
u3,

(1)
σαβ,

(0)
σα3.

3 General solution of the system of equations (5)

The general solution of the system of equations (5) can be represented using
two harmonic functions and one metaharmonic function of two variables.

Differentiating the first equation of system (5) with respect to x and
the second with respect to y and summing the resulting equations, we will
have

∆

(
(λ+ 2µ)

(0)

θ +
λ

h

(1)
u3

)
= 0.

Differentiating the second equation of the system (5) by x and the first by
y and considering their difference, we will have

∆

(
µ

(
∂x

(0)
u2 − ∂y

(0)
u1

))
= 0.

We introduce the following notation

Θ := (λ+ 2µ)
(0)

θ +
λ

h

(1)
u3, K := µ(∂x

(0)
u2 − ∂y

(0)
u1). (7)

Thus, the functions Θ and K are harmonic functions

∆Θ = 0, ∆K = 0. (8)

From notation (7) we obtain

∂x
(0)
u1 + ∂y

(0)
u2 = − λ

(λ+ 2µ)h

(1)
u3 +

1

λ+ 2µ
Θ, (9)

∂x
(0)
u2 − ∂y

(0)
u1 =

1

µ
K. (10)

From (9) and (10) we will have

∆
(0)
u1 = − λ

(λ+ 2µ)h
∂x

(1)
u3 +

1

λ+ 2µ
∂xΘ− 1

µ
∂yK, (11)
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∆
(0)
u2 = − λ

(λ+ 2µ)h
∂y

(1)
u3 +

1

λ+ 2µ
∂yΘ+

1

µ
∂xK. (12)

Substituting relations (11), (12) and (9) into the first two equations of
system (5), we obtain the following Cauchy-Riemann system{

∂xΘ− ∂yK = 0,
∂yΘ+ ∂xK = 0.

(13)

Out of the system (13)

Θ = a(∂xφ+ ∂yψ), K = a(∂xψ − ∂yφ), (14)

where φ and ψ are arbitrary two-dimensional harmonic functions; a is an
arbitrary non-zero real constant.

Taking into account (14), from formula (9) we obtain the following

formula for
(0)

θ

(0)

θ = − λ

(λ+ 2µ)h

(1)
u3 +

1

λ+ 2µ
a(∂xφ+ ∂yψ). (15)

Substituting expression (15) into the third equation of system (5), we obtain

the following equation for
(1)
u3

∆
(1)
u3 −

12(λ+ µ)

(λ+ 2µ)h2
(1)
u3 =

3λ

µ(λ+ 2µ)h
a(∂xφ+ ∂yψ).

The general solution of the last equation is represented as

(1)
u3 = cχ− λh

4µ(λ+ µ)
a(∂xφ+ ∂yψ), (16)

where χ is the general solution of the following Helmholtz equation

∆χ− 12(λ+ µ)

(λ+ 2µ)h2
χ = 0. (17)

c is an arbitrary non-zero real constant.
As a result of substitution (16) into (15), we will have

∂x
(0)
u1 + ∂y

(0)
u2 = − λ

(λ+ 2µ)h
cχ+

λ+ 2µ

4µ(λ+ µ)
a(∂xφ+ ∂yψ)

= − λh

12(λ+ µ)
c(∂xxχ+ ∂yyχ) +

λ+ 2µ

4µ(λ+ µ)
a(∂xφ+ ∂yψ). (18)

45



AMIM Vol.27 No.1, 2022 R. Janjgava, M. Narmania

The second relation (14) is substituted into formula (10)

∂x
(0)
u2 − ∂y

(0)
u1 =

a

µ
(∂xψ − ∂yφ) (19)

We combine (15) and (16) into the system
∂x

(
(0)
u1 −

(λ+ 2µ)a

4µ(λ+ µ)
φ+

λhc

12(λ+ µ)
∂xχ

)
+∂y

(
(0)
u2 −

(λ+ 2µ)a

4µ(λ+ µ)
ψ +

λhc

12(λ+ µ)
∂yχ

)
= 0,

∂x
(0)
u2 − ∂y

(0)
u1 =

a

µ
(∂xψ − ∂yφ);

(20)

The second equation (20) is identically satisfied if
(0)
u1 and

(0)
u2 we take as

follows
(0)
u1 = ∂xΦ+

a

µ
φ,

(0)
u2 = ∂yΦ+

a

µ
ψ, (21)

We substitute equalities (21) into the first equation of system (20)

∆

(
Φ+

λhc

12(λ+ µ)
χ

)
= −(3λ+ 2µ)a

4µ(λ+ µ)
(∂xφ+ ∂yψ)

The general solution of the last equation can be written as

Φ = −(3λ+ 2µ)a

8µ(λ+ µ)
(x(φ+ ∂xΨ) + y(ψ + ∂yΨ)) +

a

µ
Ψ− λhc

12(λ+ µ)
χ, (22)

where Ψ is an arbitrary harmonic function.

We substitute (22) into formulas (21)
(
a = 4(λ+µ)

3λ+2µ , c =
6(λ+µ)

λµ

)
2µ

(0)
u1 =

5λ+ 6µ

3λ+ 2µ
φ∗ − x∂xφ

∗ − y∂xψ
∗ − h∂xχ,

2µ
(0)
u2 =

5λ+ 6µ

3λ+ 2µ
ψ∗ − y∂yψ

∗ − x∂yφ
∗ − h∂yχ,

where
φ∗ = φ+ ∂xΨ, ψ∗ = ψ + ∂yΨ.

Since φ∗ and ψ∗ are arbitrary harmonic functions, instead of them we will
again write φ and ψ , respectively

2µ
(0)
u1 =

5λ+ 6µ

3λ+ 2µ
φ− x∂xφ− y∂xψ − h∂xχ,
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2µ
(0)
u2 =

5λ+ 6µ

3λ+ 2µ
ψ − y∂yψ − x∂yφ− h∂yχ, (23)

2µ
(1)
u3 = − 2λh

3λ+ 2µ
(∂xφ+ ∂yψ) +

12(λ+ µ)

λ
χ.

Thus, the general solution of the system of equations (5) is represented using
two arbitrary harmonic functions φ and ψ, and one arbitrary solution χ of
the Helmholtz equation (17).

Substituting the last relation (23) into formula (15), we find

(0)

θ =
λ+ 2µ

µ(3λ+ 2µ)
(∂xφ+ ∂yψ)−

6(λ+ µ)

µ(λ+ 2µ)h
χ. (24)

Substituting (23) and (24) into formulas (3), we obtain the representations
of the stress components in terms of the functions φ , ψ and χ

(0)
σ11 =

4(λ+ µ)

3λ+ 2µ
∂xφ− x∂xxφ+

2λ

3λ+ 2µ
∂yψ

−y∂xxψ +
12(λ+ µ)

(λ+ 2µ)h
χ− h∂xxχ,

(0)
σ22 =

4(λ+ µ)

3λ+ 2µ
∂yψ − y∂yyψ +

2λ

3λ+ 2µ
∂xφ

−x∂yyφ+
12(λ+ µ)

(λ+ 2µ)h
χ− h∂yyχ,

(0)
σ12 =

λ+ 2µ

3λ+ 2µ
∂yφ− x∂xyφ+

λ+ 2µ

3λ+ 2µ
∂xψ − y∂xyψ − h∂xyχ, (25)

(1)
σ13 =

6(λ+ µ)

λ
∂xχ− λh

3λ+ 2µ
(∂xxφ+ ∂xyψ),

(1)
σ23 =

6(λ+ µ)

λ
∂yχ− λh

3λ+ 2µ
(∂xyφ+ ∂yyψ),

(0)
σ33 =

24(λ+ µ)2

λ(λ+ 2µ)h
χ.

4 General solution of the system of equations (6)

Similarly, we will show that the general solution of the system of equa-
tions (6) can also be represented using two harmonic functions and one
metaharmonic function of two variables.
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Differentiating the first equation of system (6) with respect to x and
the second with respect to y and summing the resulting equations, we have

(λ+ 2µ)∆
(1)

θ − 3µ

h

(
∆

(0)
u3 +

1

h

(1)

θ

)
.

Taking into account the third equation of system (6), from the last
equation we obtain

∆
(1)

θ = 0,

from here
(1)

θ = a(∂xφ+ ∂yψ), (26)

where φ and ψ are arbitrary harmonic functions of two variables; a is an
arbitrary non-zero real constant.

We differentiate the second equation of system (6) with respect to x and
subtract from the resulting equation the first equation of the same system
differentiated with respect to y . As a result, we obtain the following
equation

∆

(
∂x

(1)
u2 − ∂y

(1)
u1

)
− 3

h2

(
∂x

(1)
u2 − ∂y

(1)
u1

)
= 0.

It follows from the last equation that

∂x
(1)
u2 − ∂y

(1)
u1 = bχ, (27)

where χ is an arbitrary solution of the following Helmholtz equation

∆χ− 3

h2
χ = 0; (28)

b is an arbitrary non-zero real constant.
Comment. As in the case of a tension-compression system, in the case

of a bending system, the harmonic functions are denoted by φ and ψ , and
the metaharmonic function by χ But we will not confuse them, since the
problems of tension-compression and bending will be solved independently
from each other.

We combine equations (26) and (27) into the system ∂x
(1)
u2 + ∂y

(1)
u1 = a(∂xφ+ ∂yψ),

∂x
(1)
u2 − ∂y

(1)
u1 = bχ.

(29)

Differentiating the first equation of system (29) with respect to x and the
second with respect to y and subtracting the second equation from the first
equation, we obtain

∆
(1)
u1 = a(∂xxφ+ ∂xyψ)− b∂yχ. (30)
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Differentiating the first equation of system (29) with respect to y and the
second with respect to x and summing the resulting equations, we have

∆
(1)
u2 = a(∂xyφ+ ∂yyψ) + b∂xχ. (31)

From the third equation of system (6), taking into account formula (26),
we obtain the equation

∆
(0)
u3 = −1

h

(1)

θ = −a
h
(∂xφ+ ∂yψ). (32)

The general solution of equation (32) can be written as follows

(0)
u3 = − a

2h
(x(φ+ ∂xΦ) + y(ψ + ∂yΦ))−

h2(λ+ 2µ)a

3µ
(∂xxΦ+ ∂yyΦ). (33)

where Φ is an arbitrary harmonic function of two variables x and y.
Formulas (26), (30), (31), and (33) are substituted into the first and

second equations of system (6). As a result, we get

3µ

h2
(1)
u1 = (λ+ 2µ)a(∂xxφ+ ∂xyψ) +

3µa

h2
((φ+ ∂xΦ) + x∂x(φ+ ∂xΦ)

−µb∂yχ+ y∂x(ψ + ∂yΦ)) + (λ+ 2µ)a∂x(∂xxΦ+ ∂yyΦ), (34)

3µ

h2
(1)
u2 = (λ+ 2µ)a(∂xyφ+ ∂yyψ) +

3µa

h2
((ψ + ∂yΦ) + x∂y(φ+ ∂xΦ)

+µb∂xχ+ y∂y(ψ + ∂yΦ)) + (λ+ 2µ)a∂y(∂xxΦ+ ∂yyΦ). (35)

Let us introduce the notation

φ∗ = φ+ ∂xΦ, ψ∗ = ψ + ∂yΦ. (36)

It is clear that φ∗ and ψ∗ are arbitrary harmonic functions.
Taking into account notation (36), relations (34) and (35) can be written

as

3µ

h2
(1)
u1 = (λ+ 2µ)a(∂xxφ

∗ + ∂xyψ
∗) +

3µa

2h2
(φ∗ + x∂xφ

∗ + y∂xψ
∗)

−µb∂yχ,
3µ

h2
(1)
u2 = (λ+ 2µ)a(∂yyψ

∗ + ∂xyφ
∗) +

3µa

2h2
(ψ∗ + y∂yψ

∗ + x∂yφ
∗)

+µb∂xχ.
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Since ϕ∗ and ψ∗ are arbitrary harmonic functions, we will write them below
without asterisks. Then from the last two relations we easily obtain

2µ
(1)
u1 =

2(λ+ µ)h2

3
a(∂xxφ+ ∂xyψ) + µa (φ+ x∂xφ+ y∂xψ)

−2µh2

3
b∂yχ, (37)

2µ
(1)
u2 =

2(λ+ µ)h2

3
a(∂yyψ + ∂xyφ) + µa (ψ + y∂yψ + x∂yφ)

+
2µh2

3
µb∂xχ. (38)

We define arbitrary constants a and b as follows

a =
1

µ
, b =

3

2µh2
.

Then formulas (37), (38), and (33) take the form

2µ
(1)
u1 = φ+ x∂xφ+ y∂xψ +

2(λ+ 2µ)h2

3µ
(∂xxφ+ ∂xyψ)− ∂yχ,

2µ
(1)
u2 = ψ + y∂yψ + x∂yφ+

2(λ+ 2µ)h2

3µ
(∂yyψ + ∂xyφ) + ∂xχ, (39)

2µ
(0)
u3 = −1

h
(xφ+ yψ).

Formula (26) will be written as follows

(1)

θ =
1

µ
(∂xφ+ ∂yψ). (40)

Thus, we have represented the general solution of the system of equations
(6) using two arbitrary harmonic functions φ and ψ and one arbitrary
solution of the Helmholtz equation χ using formulas (39).

Substituting formulas (39), (40) into relations (4), we can express the

quantities
(1)
σαβ,

(0)
σα3 and

(1)
σ33 using the functions φ,ψ and χ

(1)
σ11 =

λ+ 2µ

µ
∂xφ+

λ

µ
∂yψ + x∂xxφ+ y∂xxψ

+
2(λ+ 2µ)h2

3µ
∂xx(∂xφ+ ∂yψ)− ∂xyχ,

(1)
σ22 =

λ+ 2µ

µ
∂yψ +

λ

µ
∂xφ+ y∂yyψ + x∂yyφ
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+
2(λ+ 2µ)h2

3µ
∂yy(∂xφ+ ∂yψ) + ∂xyχ,

(1)
σ12 = ∂yφ+ ∂xψ + x∂xyφ+ y∂xyψ +

2(λ+ 2µ)h2

3µ
∂xx(∂yφ− ∂xψ)

+
1

2
(∂xxχ− ∂yyχ), (41)

(0)
σ13 =

(λ+ 2µ)h

3µ
(∂xxφ+ ∂xyψ)−

1

2h
∂yχ,

(0)
σ23 =

(λ+ 2µ)h

3µ
(∂yyψ + ∂xyφ) +

1

2h
∂xχ,

(1)
σ33 =

λ

µ
(∂xφ+ ∂yψ).

5 Using a General Solution to Construct Approx-
imate Solutions to Boundary Value Problems of
Tension-Compression and Bending of Plates

The representation of general solutions found in the previous sections can be
used to construct approximate solutions to the boundary value problems
of tension-compression and plate bending. For this purpose, we use the
results of [5].

In the general solutions (23), (25) and (39), (41) for each index j =
1, 2, ..., n we take the harmonic functions φj and ψj as follows

(φj , ψj) = (aj , bj) ln
√
x2 + y2, (42)

and the solution of the Helmholtz equation χj can be represented as follows

χj = cjK0(η
√
x2 + y2), (43)

whereK0(η
√
x2 + y2) is the zero-order Macdonald function; η = 2

√
3

h

√
λ+µ
λ+2µ

in the case of tension-compression and η =
√
3
h in the case of bending.

According to formulas (42), the partial derivatives of the functions φj

and ψj will have the form

(∂xφj , ∂xψj) = (aj , bj)
x

x2 + y2
, (∂yφj , ∂yψj) = (aj , bj)

y

x2 + y2
. (44)

The partial derivatives of the functions χj are written as follows

∂xχj = −cj
ηxK1(η

√
x2 + y2)√

x2 + y2
, ∂yχj = −cj

ηyK1(η
√
x2 + y2)√

x2 + y2
(45)
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In addition, we need the second order derivatives of the functions φj , ψj

and χj

(∂xxφj , ∂xxψj) = −(∂yyφj , ∂yyψj) = (aj , bj)
y2 − x2

(x2 + y2)2
,

(∂xyφj , ∂xyψj) = −(aj , bj)
2xy

(x2 + y2)2
,

∂xxχj = cj
η2

2

(
K0(η

√
x2 + y2)− y2 − x2

x2 + y2
K2(η

√
x2 + y2)

)
, (46)

∂yyχj = cj
η2

2

(
K0(η

√
x2 + y2) +

y2 − x2

x2 + y2
K2(η

√
x2 + y2)

)
,

∂xyχj = cjη
2 xy

x2 + y2
K2(η

√
x2 + y2).

Substituting the corresponding formulas (42)-(46) into relations (23), we
obtain the following expressions for displacements in the case of tension-
compression

2µ
(0)
u1j =

(
5λ+ 6µ

3λ+ 2µ
ln r − x2

r2

)
aj −

xy

r2
bj +

ηhxK1(ηr)

r
cj ,

2µ
(0)
u2j =

(
5λ+ 6µ

3λ+ 2µ
ln r − y2

r2

)
bj −

xy

r2
aj +

ηhyK1(ηr)

r
cj , (47)

2µ
(1)
u3j = − 2λh

3λ+ 2µ

x

r2
aj −

2λh

3λ+ 2µ

y

r2
bj +

12(λ+ µ)

λ
K0(ηr)cj , (48)

where
r =

√
x2 + y2.

Substituting the corresponding formulas (42)-(46) into relations (25),
we obtain the following expressions for stresses in the case of tension-
compression

(0)
σ11j =

(
4(λ+ µ)

3λ+ 2µ

x

r2
− x(y2 − x2)

r4

)
aj +

(
2λ

3λ+ 2µ

y

r2
− y(y2 − x2)

r4

)
bj

+
6(λ+ µ)

(λ+ 2µ)h

(
K0(ηr) +

y2 − x2

r2
K2(ηr)

)
cj ,

(0)
σ22j =

(
4(λ+ µ)

3λ+ 2µ

y

r2
+
y(y2 − x2)

r4

)
bj +

(
2λ

3λ+ 2µ

x

r2
+
x(y2 − x2)

r4

)
aj

+
6(λ+ µ)

(λ+ 2µ)h

(
K0(ηr)−

y2 − x2

r2
K2(ηr)

)
cj ,
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(0)
σ12j =

(
λ+ 2µ

3λ+ 2µ

y

r2
+

2x2y

r4

)
aj +

(
λ+ 2µ

3λ+ 2µ

x

r2
+

2xy2

r4

)
bj

−η2hxy
r2
K2(ηr)cj , (49)

(1)
σ13j = − λh

3λ+ 2µ

y2 − x2

r4
aj +

λh

3λ+ 2µ

2xy

r4
bj −

6(λ+ µ)

λ

ηxK1(ηr)

r
cj ,

(1)
σ23j =

λh

3λ+ 2µ

2xy

r4
aj +

λh

3λ+ 2µ

y2 − x2

r4
bj −

6(λ+ µ)

λ

ηyK1(ηr)

r
cj ,

(0)
σ33j =

24(λ+ µ)2

λ(λ+ 2µ)h
K0(ηr)cj .

Substituting the corresponding formulas (42)-(47) into relations (39),
we obtain the following expressions for displacements in the case of plate
bending

2µ
(1)
u1j (x, y) =

(
ln r +

x2

r2
+

2(λ+ 2µ)h2

3µ

y2 − x2

r4

)
aj+

+

(
xy

r2
− 4(λ+ 2µ)h2

3µ

xy

r4

)
bj +

√
3yK1(

√
3h−1r)

hr
cj ,

2µ
(1)
u2j (x, y) =

(
xy

r2
− 4(λ+ 2µ)h2

3µ

xy

r4

)
aj+

+

(
ln r +

y2

r2
− 2(λ+ 2µ)h2

3µ

y2 − x2

r4

)
bj −

√
3xK1(

√
3h−1r)

hr
cj , (50)

2µ
(0)
u3j (x, y) = −1

h
(x ln r)aj −

1

h
(y ln r)bj .

By substituting the corresponding formulas (42)-(47) into relations (41),
we obtain the following expressions for stresses in the case of bending

(1)
σ11j(x, y) = x

(
λ+ 2µ

µ

1

r2
+
y2 − x2

r4
− 4(λ+ 2µ)h2

3µ

−x4 + 3y4 + 2x2y2

r8

)
aj

+y

(
λ

µ

1

r2
+
y2 − x2

r4
+

4(λ+ 2µ)h2

3µ

3x4 − y4 + 2x2y2

r8

)
bj

− 3xy

h2r2
K2(

√
3h−1r)cj ,

(1)
σ22j(x, y) = x

(
λ

µ

1

r2
− y2 − x2

r4
+

4(λ+ 2µ)h2

3µ

−x4 + 3y4 + 2x2y2

r8

)
aj

+y

(
λ+ 2µ

µ

1

r2
− y2 − x2

r4
− 4(λ+ 2µ)h2

3µ

3x4 − y4 + 2x2y2

r8

)
bj
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+
3xy

h2r2
K2(

√
3h−1r)cj

(1)
σ12j(x, y) = y

(
1

r2
− 2x2

r4
+

4(λ+ 2µ)h2

3µ

3x4 − y4 + 2x2y2

r8

)
aj

+x

(
1

r2
− 2y2

r4
+

4(λ+ 2µ)h2

3µ

−x4 + 3y4 + 2x2y2

r8

)
bj (51)

− 3

2h2
y2 − x2

r2
K2(

√
3h−1r)cj ,

(0)
σ13j(x, y) =

(λ+ 2µ)h

3µ

y2 − x2

r4
aj−

2(λ+ 2µ)h

3µ

xy

r4
bj+

√
3

2h2
yK1(

√
3h−1r)

r
cj ,

(0)
σ23j(x, y) = −2(λ+ 2µ)h

3µ

xy

r4
aj−

(λ+ 2µ)h

3µ

y2 − x2

r4
bj−

√
3

2h2
xK1(

√
3h−1r)

r
cj ,

(1)
σ33j (x, y) =

λ

µ

x

r2
aj +

λ

µ

y

r2
bj .

After that, each j-th function (48)-(51) is shifted by the value (ξj , ζj)
(fig.1). To do this, in formulas (48)-(51) ithe variables x and y are re-

placed by x − ξj and y − ζj , respectively. The functions 2µ
(k)
u1j(x − ξj , y −

ζj), ...,
(k)
σ33j (x − ξj , y − ζj), j = 1, 2, ..., n k = 0, 1, will have a singularity

at the point (ξj , ζj).

Figure 1: Shift of singular point

Next, we apply the method developed in [5]. Approximate solutions of
boundary value problems are sought in the form

µ
(k)
up(x; y) =

n∑
j=1

(k)
upj (x− ξj , y − ζj), (52)
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µ
(k)
σpq(x; y) =

n∑
j=1

(k)
σpqj(x− ξj , y − ζj), p, q = 1, 2, 3; k = 0, 1. (53)

Satisfying the corresponding boundary conditions at the ponts (xi, yj),
i = 1, 2, ..., n of the boundary of the considered two-dimensional domain
ω (fig.2), for the desired coefficients a1, a2, ..., an, b1, b2, ...bn,c1, c2, ..., cn,
we obtain a system of 3n linear algebraic equations with 3n unknowns

n∑
j=1

{A1ijaj +B1ijbj + C1ijcj} = f1(xi, yi),

n∑
j=1

{A2ijaj +B2ijbj + C2ijcj} = f2(xi, yi),

n∑
j=1

{A3ijaj +B3ijbj + C3ijcj} = f3(xi, yi), i = 1, 2, ..., n,

(54)

where fp(xi, yi), p = 1, 2, 3, values of functions specified on the boundary
of the domain ω at points (xi, yi) ∈ ∂ω.

Having solved the system of equations (54) and substituting the found
values of the coefficients a1, a2, ..., an, b1, b2, ..., bn, c1, c2, ..., cn into formulas
(53) and (54), we obtain analytical expressions for approximate solutions of
boundary value problems. Naturally, we can compare the boundary values
of the obtained approximate solution with the values of the corresponding
boundary function.

Figure 2: Domain surrounded by singular points

If the accuracy of approximation of the boundary functions satisfies us,
then based on the correctness of the solved boundary problems, we can
conclude that the constructed approximate solution that exactly satisfies
the system of equilibrium equations in the domain ω, is a good enough
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approximation for the exact solution of the corresponding boundary value
problem.

6 Solving boundary value problems for a system
of tension-compression equations

We will consider the domain ω = ω1 \ ω2, where

ω1 = {(x, y)| − 4 < x < 4,−4 < y < 4} ,

ω2 =
{
(x, y)|x2 + y2 < 2.25

}
.

In all the considered problems h = 0.2; We will assume that the plate
is made of steel and the Lamé constants are λ = 107.13 GPa, µ = 79.3
GPa. In all problems n = 88 and singular points (ξj , ζj) j = 1, 2, ..., 88 are
located as shown in Fig. 3. Thus, in the case of each problem, the system
of equations (54) will consist of 264 equations with the same number of
unknowns.

In addition, in all the problems considered in this section, it is assumed
that the contour of the hole is free from stresses, i.e., the following boundary
conditions are satisfied

(0)
σ rr = 0,
(0)
σ rθ = 0, on r = 1.5,
(1)
σ r3 = 0,

(55)

where (see fig. 4)

(0)
σ rr =

(0)
σ 11 cos

2 θ + 2
(0)
σ 12 sin θ cos θ +

(0)
σ 22 sin

2 θ,

(0)
σ rθ =

(
(0)
σ 22 −

(0)
σ 11

)
sin θ cos θ +

(0)
σ 12

(
cos2 θ − sin2 θ

)
,

(1)
σ r3 =

(1)
σ 13 cos θ +

(1)
σ 23 sin θ.

Of particular interest to us will be the distribution of stress
(0)
σ θθ along the

contour of the hole

(0)
σ θθ =

(0)
σ 11 sin

2 θ − 2
(0)
σ 12 sin θ cos θ +

(0)
σ 22 cos

2 θ.
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Figure 3: The considered domain ω

Figure 4: Vectors r and θ and angle θ

Problem 1. One-sided stretching of a plate or the Kirsch problem
(Fig. 5). Conditions (55) are set on the hole contour, and the following
boundary conditions are set on the sides of the square

x = ±4, −4 < y < 4 :
(0)
σ 11 = 1.0,

(0)
σ 12 = 0,

(1)
σ 13 = 0;

y = ±4, −4 < x < 4 :
(0)
σ 22 = 0,

(0)
σ 21 = 0,

(1)
σ 23 = 0;
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Figure 5: Problem 1. One-sided stretching of the plate

Solving the formulated boundary value problem by the approximate
method described above, we obtain analytical expressions for all stress com-
ponents. After that, it is not difficult to construct graphs of their bound-
ary values. Figures 6-8 show graphs of the boundary values of functions
(0)
σ 11,

(0)
σ 22 and

(0)
σ 12. As can be seen from these figures, any significant de-

viations of these stresses from the given boundary conditions are observed
only near the corner points. Figure 9 shows graphs of the boundary values

of stresses
(0)
σ rr,

(0)
σ rθ and

(1)
σ r3 on the contour of the hole.

Figure 6: Problem 1. Stress component
(0)
σ 11 at the boundary x =

4.0, −4.0 < y < 4.0

If the accuracy of approximation of the boundary functions is considered
satisfactory, then, based on the correctness of the solved boundary prob-
lem, we can conclude that the constructed approximate solution, which
exactly satisfies the system of equations (5) inside the domain, is a fairly
good approximation of the exact solution of the boundary problem under
consideration.
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Figure 7: Problem 1. Stress component
(0)
σ 22 at the boundary x =

4.0, −4.0 < y < 4.0

Figure 8: Problem 1. Stress component
(0)
σ 12 at the boundary x =

4.0, −4.0 < y < 4.0

Figure 9: Problem 1. Stress components
(0)
σ rr,

(0)
σ rθ,

(1)
σ r3 on the hole contour

Figure 10 shows the
(0)
σ θθ stress distribution on the hole contour. As

expected, the maximum values σθθ are obtained at the θ = ±π
2 . The stress

concentration factor

(
k = max|

(0)
σ θθ|
p , p = 1

)
as seen from figure 10, equals
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Figure 10: Problem 1. Distribution of stress
(0)
σ θθ on the contour of the hole

k = 4.5.
Problem 2. Conditions (55) are set on the hole contour, and the

following boundary conditions are set on the sides of the square

x = ±4, −4 < y < 4 :
(0)
σ 11 = 1.0,

(0)
σ 12 = 0,

(1)
σ 13 = 0;

y = ±4, −4 < x < 4 :
(0)
u 2 = 0,

(0)
u 1 = 0,

(1)
u 3 = 0;

This problem differs from the previous problem in that in this case the
upper and lower faces of the plate are rigidly clamped.

Figure 11: Problem 2. Distribution of stress
(0)
σ θθ on the contour of the hole

As expected, the stress concentration on the hole contour decreases

significantly. The maximum value
(0)
σ θθ = 2.6 is reached at θ = ±π

2 (see
Fig. 11).

Problem 3. Consider the problem when two adjacent faces are pinched,
the third face is stress-free, and a constant normal stress is set on the fourth
face

x = +4, −4 < y < 4 :
(0)
σ 11 = 1.0,

(0)
σ 12 = 0,

(1)
σ 13 = 0;
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y = +4, −4 < y < 4 :
(0)
σ 22 = 0,

(0)
σ 12 = 0,

(1)
σ 23 = 0;

x = −4, −4 < y < 4 :
(0)
u 1 = 0,

(0)
u 2 = 0,

(1)
u 3 = 0;

y = −4, −4 < y < 4 :
(0)
u 2 = 0,

(0)
u 1 = 0,

(1)
u 3 = 0;

Figure 12: Problem 3. Distribution of stress
(0)
σ θθ on the contour of the hole

As can be seen from Figure 12, the maximum value
(0)
σ θθ = 2.8 is reached

at is reached at θ ≈ 62◦.
Problem 4. In this problem, three faces of the plate are clamped, and

a constant normal stress is set on the fourth face

x = +4, −4 < y < 4 :
(0)
σ 11 = 1.0,

(0)
σ 12 = 0,

(1)
σ 13 = 0;

y = ±4, −4 < x < 4 :
(0)
u 2 = 0,

(0)
u 1 = 0,

(1)
u 3 = 0;

x = −4, −4 < y < 4 :
(0)
u 1 = 0,

(0)
u 2 = 0,

(1)
u 3 = 0;

Figure 13: Problem 4. Distribution of stress
(0)
σ θθ on the contour of the hole
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As can be seen from Figure 13, the maximum value
(0)
σ θθ = 2.1 is reached

at θ ≈ ±69◦.
Problem 5. In this problem, one face of the plate is clamped, a normal

stress is set on the opposite face, and the other two faces are stress-free.

x = +4, −4 < y < 4 :
(0)
σ 11 = 1.0,

(0)
σ 12 = 0,

(1)
σ 13 = 0;

y = ±4, −4 < x < 4 :
(0)
σ 22 = 0,

(0)
σ 21 = 0,

(1)
σ 23 = 0;

x = −4, −4 < y < 4 :
(0)
u 1 = 0,

(0)
u 2 = 0,

(1)
u 3 = 0;

Figure 14: Problem 5. Distribution of stress
(0)
σ θθ on the contour of the hole

As can be seen from Figure 14, the maximum value is
(0)
σ θθ = 3.1 reached

at θ ≈ ±75◦.
Problem 6. Plate bending in its own plane (Fig. 15). Conditions (55)

are again set on the hole contour, and the following boundary conditions
are set on the sides of the square

x = ±4, −4 < y < 4 :
(0)
σ 11 = −0.5y,

(0)
σ 12 = 0,

(1)
σ 13 = 0;

y = ±4, −4 < x < 4 :
(0)
σ 22 = 0,

(0)
σ 21 = 0,

(1)
σ 23 = 0.

Figure 15 shows a graph of the boundary value of the function
(0)
σ 11

on the side of the square: y = ±4, −4 < x < 4. We will not give the
boundary values of the remaining stress components at the boundary of
the domain under consideration; we only note that the found approximate
solution satisfies the given boundary conditions with sufficient accuracy.

As can be seen from Figure 16, the maximum values modulo σθθ are

obtained when θ = ±π
2 . In this case

(0)
σ θθ|θ=π

2
= −0.8 and

(0)
σ |θ=−π

2
= 1.6
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Figure 15: Problem 6. Plate bending in its own plane

Figure 16: Stress component
(0)
σ 11 at the boundary x = 4.0, −4.0 < y < 4.0

Figure 17: Problem 6. Distribution of stress
(0)
σ θθ on the contour of the hole

7 Solving boundary value problems for a system
of bending equations

In this section, we consider one problem of plate bending. The middle
surface of the plate is the domain ω, considered in the previous section. In
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both cases, the following homogeneous boundary conditions will be set on
the hole contour 

(1)
σ rr = 0,
(1)
σ rθ = 0, on r = 1.5,
(0)
σ r3 = 0

(56)

Problem 7. Consider now the problem of symmetrical bending of a
rectangular plate. In this case, boundary conditions (56) are specified on
the hole contour, and the following boundary conditions are specified on
the sides of the square

x = ±4, −4 < y < 4 :
(1)
σ 11 = 1.0,

(1)
σ 12 = 0,

(0)
σ 13 = 0;

y = ±4, −4 < x < 4 :
(1)
σ 22 = 0,

(1)
σ 21 = 0,

(0)
σ 23 = 0;

The problem posed is solved by the method described in this article.

Figure 18: Problem 7. Distribution
(1)
σ θθ on the contour of the hole

Figure 18 shows distribution
(1)
σ θθ on the hole contour. As expected, the

maximum values
(1)
σ θθ are obtained at the θ = ±π

2 . The stress concentration
factor as seen from figure 17, equals k = 2.28.
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