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Abstract

The problem of finding an equally strong contour inside a rectan-
gular viscoelastic plate according to the Kelvin-Voigt model is con-
sidered. It is assumed that normal compressive forces with given
principal vectors (or constant normal displacements) are applied on
the sides of the rectangle by means of a linear absolutely rigid stamp,
and the unknown part of the boundary (the desired equal-strength
contour) is free from external forces. The equal strength of the de-
sired contour lies in the fact that at each point of the contour the
tangential normal stress takes on the same values. To solve the prob-
lem, methods of conformal mappings and boundary value problems
of analytic functions are used, and the equation of the desired con-
tour, as a function of point and time, is constructed effectively (in an
analytical form).

Keywords and phrases: The Kelvin-Voigt model, the Riemann-
Hilbert problem, Elliptic integrals
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1 Introduction

The problems of finding an equally strong contour both in the plane theory
of elasticity and in viscoelasticity can be attributed to an extensive class
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of problems of optimizing the form of elastic and viscoelastic bodies [see.
1]). In the case of elasticity theory, the mentioned problems for doubly
connected polygonal domains are considered in [2–4].

As is known, the presence of a hole in a plate causes an uneven dis-
tribution of stresses near the contour of the holes and the appearance of
plastic zones. The tangential normal stress plays an important role in this
process. As the hole expands, the values of these stresses increase, and
for viscoelastic bodies, arising from the process of stress relaxation, their
values decrease over time. Thus, it becomes interesting to regulate the
shape and size of the hole so that for each moment of time the stresses
mentioned remain constant. This paper is the subject of this work, based
on the Kelvin-Voigt model [5].

2 Statement of the Problem

Let the middle surface of a viscoelastic isotropic plate on the complex vari-
able plane z occupy a doubly connected domain S bounded by a rectangle
and a smooth closed contour L0 (see Fig. 1). Let us assume that rectilinear
smooth stamps with known main vectors of normal compressive forces act
on the sides of the rectangle (or constant normal displacements are given),
and the inner part of the boundary (the desired equal-strength contour) is
free from external forces. The equal strength of the desired contour lies in
the fact that the tangential normal stress acting on it at each point of this
contour takes a constant value, i.e. σϑ(σ, t) = K∗

0 = const (in the general
case, the voltages mentioned depend both on the point and on time). The
viscoelasticity of the region is understood by the Kelvin-Voigt model.

3 Solution of the problemm

Due to the axial symmetry, we restrict ourselves to the consideration of
elastic equilibrium on a quarter of the plate only and denote it by S (see
Fig. 1).

Let us introduce the notation L = L0
⋃
L1, where L0 = A5A1; L1 =⋃

L
(k)
1 (L

(k)
1 = AkAk+1, k = 1, 4).

Let us present some results of works [6-9], namely, the boundary condi-
tions of the first and second basic problems for a viscoelastic plate according
to the Kelvin-Voigt model have the form

φ(σ, t) + σφ′(σ, t) + ψ(σ, t) = i

∫ σ

A1

(Xn + iYn)ds, σ ∈ L1; (1)
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Figure 1:

∫ t
0

[
æ∗ek(τ−t)φ(σ, τ) + em(τ−t)

(
φ(σ, τ)− σφ′(σ, τ)− ψ(σ, τ)

)]
dτ

= 2µ∗(u+ iv), σ ∈ L1;
(2)

φ(σ, t) + σφ′(σ, t) + ψ(σ, t) = 0, σ ∈ L0; (3)∫ t
0

[
æ∗ek(τ−t)φ(σ, τ) + em(τ−t)

(
φ(σ, τ)− σφ′(σ, τ)− ψ(σ, τ)

)]
dτ

= 0, σ ∈ L0;
(4)

Re
[
φ′(σ, t)

]
= Re [Φ(σ, t)] =

K∗
0

4
= K0, σ ∈ L0. (5)

where

æ∗ =
2µ∗

λ∗ + µ∗
; k =

λ+ µ

λ∗ + µ∗
; m =

µ

µ∗
, (6)

(here and then the coordinate t is the parameter of the time).
From (1) and (2) we obtain the equality

Γ∗[φ(σ, t)] = M

[
i

∫ σ

A1

(Xn + iYn)ds

]
+ 2µ∗(u+ iv), σ ∈ L1, (7)

where Γ∗ and M are are operators of the time t.

Γ∗ [φ(σ, t)] =
∫ t
0

[
æ∗ek(τ−t) + 2em(τ−t)

]
φ(σ, τ)dτ ;

M
[
i
∫ σ
A1

(Xn + iYn)ds
]
=

∫ t
0 e

m(τ−t)
[
i
∫ σ
A1

(Xn + iYn)ds
]
dτ.

(8)

Considering that in the case under consideration

T (σ, t) = 0, σ ∈ L1; N(σ, t) = T (σ, t) = 0, σ ∈ L0,
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vn = v(k)n = const (k = 1, 4), vs = 0, σ ∈ L1; vn = vs = 0, σ ∈ L0,

and taking into account the equalities

Xn + iYn = (N + iT )eiα(σ), u+ iv = (vn + ivs)e
iα(σ)

(α(σ)- the angle between the axis Ox and the outer normal to the contour
L1), from (7) we obtain

Re
[
Γ∗[e−iα(σ)φ(σ, t)]

]
= C(σ)F (t) + 2µ∗vn(σ), σ ∈ L1; (9)

Re
[
φ′(σ, t)

]
= K0, σ ∈ L0, (10)

where

C(σ) = Re

[
i

∫ σ

A1

N(s0)e
i[α(s0)−α(s)]ds0

]
=

r∑
j=1

N(s0) sin(αj − αr)ds0 =

= Cr = const, σ ∈ L
(r)
1 , r = 1, 4,

F (t) =
1

m

[
1− e−mt

]
.

Mapping the domain S onto a unit circle using the function z = ω0(ζ),
and then differentiating (9) along the arc abscissa s, taking into account
the piecewise constancy (with respect to σ) of the right side of (9), with
respect to the function

Ω(z, t) = Γ∗ [φ′(z, t)−K0

]
= Γ∗ [Φ(z, t)−K0] ,

we obtain the Riemann-Hilbert boundary value problem for the circle

ImΩ(η, t) = 0, η ∈ l1; ReΩ(η, t) = 0, η ∈ l0, (11)

(l1 and l0 are arcs corresponding to lines L1 and L0).
Problem (11) has only a trivial solution and, thus, we will have

Γ∗ [Φ(z, t)−K0] = 0. (12)

It is easy to prove that equation (12) has only a trivial solution, and thus
for the function we obtain the formula

φ(z, t) = K0 · z (13)

(an arbitrary constant is assumed to be zero).
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Taking into account (13), the boundary conditions (1) and (2) are writ-
ten in the form

2K0σ + ψ(σ, t) = i

∫ σ

A1

(Xn + iYn)ds, σ ∈ L1, (14)

Γ[K0σ]−M[ψ(σ, t)] = 2µ∗(u+ iv), σ ∈ L1, (15)

2K0σ + ψ(σ, t) = 0, σ ∈ L0, (16)

Γ[K0σ]−M[ψ(σ, t)] = 0, σ ∈ L0, (17)

where Γ is a operator os the time.

Γ[K0σ] =

∫ t

0
æ∗K0σe

k(τ−t)dτ, (18)

and M is determined by formula (8).
From the boundary conditions (14), (15) and (17), after some transfor-

mations, with respect to the function

Φ1(z, t) = Γ[K0z] + M[ψ(z, t)] (19)

we obtain the boundary conditions

ImΦ1(σ, t) = 0, σ ∈ L0; ImΦ1(σ, t) = 0, σ ∈ L
(1)
1 ;

ReΦ1(σ, t) = Γ[2K0a] + 2µ∗v
(2)
n , σ ∈ L2;

ImΦ1(σ, t) = 2µ∗v
(3)
n , σ ∈ L

(3)
1 ; ReΦ1(σ, t) = 0, σ ∈ L

(4)
1 .

(20)

In addition, for normal displacements v2n and v3n we obtain the formulas

2µ∗v
(1)
n = − [Γ[K0a] + M[2K0a+ P/2]] ,

2µ∗v
(3)
n = − [Γ[K0b] + M[2K0b+Q/2]] .

(21)

Similarly, from (14)-(17), with respect to the function

Φ2(z, t) = i [Γ[K0z]−M[ψ(z, t)]] , (22)

we have

ImΦ2(σ, t) = 0, σ ∈ L0; ReΦ2(σ, t) = 0, σ ∈ L1;

ImΦ2(σ, t) = Γ[K0a] + M[2K0a+ P/2] σ ∈ L2;

ReΦ2(σ, t) = −Γ[K0b] + M[2K0b+Q/2] σ ∈ L3;

ImΦ2(σ, t) = 0, σ ∈ L4.

(23)
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Problems (20) and (23) are problems of the same type.
Let the function z = ω(ζ) map conformally the unit semi-circle D0 =

{|ζ| < 1; Imζ > 0} onto the region S. By ak (k = 1, . . . , 5) we denote
preimages of the points Ak and assume that a1 = 1, a3 = i, a5 = −1, i.e.
the contour L0 transforms into the segment [−1, 1].

Consider the functions

Wj(ζ, t) =

{
Φj(ζ, t), Imζ > 0;

Φj∗(ζ, t), Imζ < 0, j = 1, 2;
(24)

where Φj∗(ζ, t) = Φj

(
ζ, t

)
.

On the basis of (20) and (23) we conclude that the functionWj(ζ, t) (j =
1, 2) is holomorphic in the circle D = {|ζ| < 1}, continuously extendable
up to the boundary l = {|ζ| = 1} and satisfies the boundary conditions

W1(ω, t)−W1

(
1
ω , t

)
= 0, ω ∈ l

(1)
1

W1(ω, t) +W1

(
1
ω , t

)
= 2H11, ω ∈ l

(2)
1 ,

W1(ω, t)−W1

(
1
ω , t

)
= 2iH12, ω ∈ l

(3)
1 ;

W1(ω, t) +W1

(
1
ω , t

)
= 0, ω ∈ l

(4)
1 ,

(25)

W2(ω, t) +W2

(
1
ω , t

)
= 0, ω ∈ l

(1)
1 ;

W2(ω, t)−W2

(
1
ω , t

)
= 2iH21, ω ∈ l

(2)
1 ,

W2(ω, t) +W2

(
1
ω , t

)
= 2H22, ω ∈ l

(3)
1 ;

W2(ω, t)−W2

(
1
ω , t

)
= 0, ω ∈ l

(4)
1 ,

(26)

where, taking into account (21), we have

H11 = Γ[K0a]−M[2K0a+ P/2];

H12 = Γ[K0b] + M[2K0b+Q/2];

H21 = Γ[K0a] + M[2K0a+ P/2];

H22 = −Γ[K0b] + M[2K0b+Q/2],

(27)

(l
(k)
1 are the image of the L

(k)
1 (k = 1, 4)).

The problems (25) and (26) are of the same type. For the solution of
these problems we use the method of conformal sewing (see [10]). Under
the sewing function we mean Zhukovski’s function ξ = ζ + 1

ζ which maps
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the circle D onto the plane with a cut along the segment I = [−2; 2] of the
real axis in such a way that the upper semicircle l+ is mapped onto the
upper contour and the lower semicircle l− onto the lower contour of the
segment I. The positive direction on I is assumed to coincide with that of
the real axis and consider the inverse function

ζ(ξ) =
1

2

(
ξ −

√
ξ2 − 4

)
,

where the radical is understood to be its branch, which is positive on the
real axis outside the segment I. Then we will have

ζ+(η) =
1

2

(
η −

√
η2 − 4

)
, ω ∈ l+,

ζ−(η) =
1

2

(
η +

√
η2 − 4

)
,

1

ω
∈ l−.

Consider the functions

Wj0(ξ, t) =Wj [ζ(ξ), t] =Wj

[(
ξ −

√
ξ2 − 4

)
/2 , t

]
, (j = 1, 2).

we have

Wj(ω, t) =Wj

[
1

2

(
η −

√
η2 − 4

)
, t

]
=W+

j0(η, t), ω ∈ l+,

Wj(
1

ω
, t) =Wj

[
1

2

(
η +

√
η2 − 4

)
, t

]
=W−

j0(η, t),
1

ω
∈ l−, j = 1, 2,

and conditions (25) and (26) are written in the form

W+
10(η, t)−W−

10(η, t) = 0, η ∈ [δ; 2];

W+
10(η, t) +W−

10(η, t) = 2H11, η ∈ [0; δ];

W+
10(η, t)−W−

10(η, t) = 2iH12, η ∈ [−δ0; 0];

W+
10(η, t) +W−

10(η, t) = 0, η ∈ [−2;−δ0];

(28)

W+
20(η, t) +W−

20(η, t) = 0, η ∈ [δ; 2];

W+
20(η, t)−W−

20(η, t) = 2iH21, η ∈ [0; δ],

W+
20(η, t) +W−

20(η, t) = 2H22, η ∈ [−δ0; 0];

W+
20(η, t)−W−

20(η, t) = 0, η ∈ [−2;−δ0],

(29)

where −2, −δ0, 0, δ, 2 are the points of the segment I corresponding to
the points ak (k = 1, 5) under the mapping ξ = ζ + 1

ζ .
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We will seek for bounded at infinity solutions of problems (28) and (29)
of the class h(−2;−δ0; 0; δ; 2) [9], satisfying the condition

Wj0(ξ, t) =Wj0

(
ξ, t

)
(j = 1, 2). (30)

The indices of these problems of the mentioned class are equal to (-2).
Necessary and sufficient conditions for the existence of a solution of

problems (28) and (29) of class h(−2;−δ0; 0; δ; 2) bounded at infinity, re-
spectively, have the form

iH12

∫ 0

−δ0

dη

χ1(η)
+H11

∫ δ

0

dη

χ1(η)
= 0, (31)

H22

∫ 0

−δ0

dη

χ2(η)
+ iH21

∫ δ

0

dη

χ2(η)
= 0, (32)

where
χ1(ξ) =

√
(ξ + 2)(ξ + δ0)ξ(ξ − δ);

χ2(ξ) =
√

(ξ + δ0)ξ(ξ − δ)(ξ − 2).
(33)

Under conditions (31) and (32), the solution of problems (28) and (29)
is given by the formulas

W10(ξ, t) =
χ1(ξ)
πi

[
iH12

∫ 0
−δ0

dη
χ1(η)(η−ξ) +H11

∫ δ
0

dη
χ1(η)(η−ξ)

]
,

(34)

W20(ξ, t) =
χ2(ξ)

πi

[
H22

∫ 0

−δ0

dη

χ2(η)(η − ξ)
+ iH21

∫ δ

0

dη

χ2(η)(η − ξ)

]
. (35)

It is easy to check that the functions Wj0(ξ, t) = Wj [ζ(ξ), t] = (j = 1, 2)
satisfy condition (30).

The integrals involved in formulas (31)-(35) are expressed in terms of
elliptic integrals of the first and third kind, namely (see [11])∫ 0

−δ0
dη

χ1(η)
= 2√

2(δ+δ0)
F
[
π
2 ;
√

δ0(δ+2)
2(δ+δ0)

]
;∫ δ

0
dη

χ1(η)
= − 2i√

2(δ+δ0)
F
[
π
2 ;
√

δ(2−δ0)
2(δ+δ0)

]
;

(36)

∫ 0
−δ0

dη
χ1(η)(η−ξ) = − 2

ξ(ξ−δ)
√

2(δ+δ0)
×

×
{
−δ

∏[
π
2 ;

δ0(ξ−δ)
ξ(δ+δ0)

;
√

δ0(δ+2)
2(δ+δ0)

]
+ (ξ + δ0)F

[
π
2 ;
√

δ0(δ+2)
2(δ+δ0)

]}
;∫ δ

0
dη

χ1(η)(η−ξ) =
2i

ξ(ξ+δ0)
√

2(δ+δ0)
×

×
{
δ0

∏[
π
2 ;

δ(ξ+δ0)
ξ(δ+δ0)

;
√

δ(2−δ0)
2(δ+δ0)

]
+ ξF

[
π
2 ;
√

δ(2−δ0)
2(δ+δ0)

]}
;

(37)
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∫ 0
−δ0

dη
χ2(η)

= −2i√
2(δ+δ0)

F
[
π
2 ;
√

(2−δ)δ0
2(δ+δ0)

]
;∫ δ

0
dη

χ2(η)
= 2√

2(δ+δ0)
F
[
π
2 ;
√

δ(2+δ0)
2(δ+δ0)

]
;

(38)

∫ 0
−δ0

dη
χ2(η)(η−ξ) =

2i

ξ(ξ−δ)
√

2(δ+δ0)
×

×
{
−δ

∏[
π
2 ;

δ0(ξ−δ)
ξ(δ−δ0)

;
√

(2−δ)δ0
2(δ+δ0)

]
+ ξF

[
π
2 ;
√

(2−δ)δ0
2(δ+δ0)

]}
;∫ δ

0
dη

χ2(η)(η−ξ) =
−2

ξ(ξ+δ0)
√

2(δ+δ0)
×

×
{
δ0

∏[
π
2 ;

δ(ξ+δ0)
ξ(δ+δ0)

;
√

δ(2+δ0)
2(δ+δ0)

]
+ (ξ − δ)F

[
π
2 ;
√

δ(2+δ0)+
2(δ+δ0)

]}
;

(39)

where

F [φ; k] =

∫ ϕ

0

dφ√
1− k2 sin2 φ

;

∏
(φ, n, k) =

∫ φ

0

dφ

(1− n sin2 φ)
√

1− k2 sin2 φ

are elliptic integrals of the first and third kind, respectively.
If we are satisfied with approximations

F
[π
2
; k
]
≈ π

2

(
1 +

k2

4

)
;

∏[π
2
;n; k

]
≈ π

2

(
1 +

k2

4
+
n

2

)
,

conditions (31) and (32) are written in the form

H12

[
1 + δ0(δ+2)

8(δ+δ0)

]
−H11

[
1 + δ(2−δ0)

8(δ+δ0)

]
= 0;

H22

[
1 + δ0(2−δ)

8(δ+δ0)

]
−H21

[
1 + δ(2+δ0)

8(δ+δ0)

]
= 0.

Under these conditions, the functions W10(ξ, t) and W20(ξ, t) are given
by the formulas

W10(ξ, t) =
δ0δχ1(ξ)

[2(δ+δ0)]3/2ξ2
(H12 +H11) ;

W20(ξ, t) = − δ0δχ2(ξ)

[2(δ+δ0)]3/2ξ2
(H22 +H21) .

After finding the functions Wj0(ξ, t) (j = 1, 2), to determine the con-
formally mapping function z = ω[ζ(ξ), t] = ω0(ξ, t), based on (18), (19) and
(22) we obtain the integral equation

æ∗
∫ t

0
ekτω0(ξ, τ)dτ = ektN(ξ, t), (40)
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where

N(ξ, t) =
1

2K0
[W10(ξ, t)− iW20(ξ, t)] . (41)

From (40) by differentiation with respect to t we obtain

ω0(ξ, t) =
1

æ∗

[
kN(ξ, t) + Ṅ(ξ, t)

]
,

where N(ξ, t) is defined by formula (41) and Ṅ(ξ, t) denotes differentiation
with respect to t.
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