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Abstract

This paper is concerned to study the Dirichlet type quasi-static
boundary value problem of coupled theory of elasticity for porous
circular ring. The obtained solution is represented as absolutely and
uniformly convergent series.
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1 Introduction

Most of naturally or manufactured solids is not completely filled. In nearly
every body there are empty interspaces, which are called pores through
which the liquid or gas may flow. Many materials such as rocks, sand,
soil etc., which occur on and below the surface of the earth, are known as
porous materials. In some bodies there are immediately visible, in others
the pores are recognized only with a magnifier. For example, the human
skin has a larger number of pores, bone tissue could be assumed to be
transversely isotropic and most closely describes mechanical anisotropy of
bone and cancellous bone is considered as a porous material.

The foundations of the theory of elastic materials with voids were first
proposed by Cowin and Nunziato [1, 2]. They investigated the linear and
nonlinear theories of elastic materials with voids. In these theories the in-
dependent variables are displacement vector field and the change of volume
fraction of pores. Such materials include, in particular, rocks and soils,
granulated and some other manufactured porous materials.



AMIM Vol.27 No.1, 2022 L. Bitsadze

Elastic materials which contain a multi-porous structure has a multitude
of applications in real life. The history of development of porous body me-
chanics, the main results and the sphere of their application are set forth in
detail in the monographs [3-6] (see references therein). The generalization
of the theory of elasticity and thermoelasticity for materials with double
void pores belongs to Ieşan and Quintanilla [7]. In [8] Svanadze consider
the coupled linear model of porous elastic solids by combining the following
three variables: the displacement vector field the volume fraction of pores;
and the pressure of the fluid. The basic internal and external BVPs (bound-
ary value problems) of steady vibrations are investigated, Green’s formulas
are obtained, the uniqueness and the existence theorems are proved by
means of the potential method and the theory of singular integral equa-
tions (see references therein). In [9] the coupled linear quasi-static theory
of elasticity for porous materials is considered. The fundamental solution
is constructed, and its basic properties are established. Green’s formulas
are obtained, and the uniqueness theorems of the internal and external
boundary value problems are proved, the existence theorems for classical
solutions of the BVPs are proved by means of the potential method and
the theory of singular integral equations.

For applications, it is especially important to construct the solutions of
boundary value problems in explicit form. Questions related to this topic
are considered, for example, in the works [10-27], where the explicit solu-
tions are constructed for some boundary value problems of porous elasticity
for the concrete domains.

This paper is concerned to study the Dirichlet type quasi-static bound-
ary value problem of the coupled theory of elasticity for porous circular
ring. The obtained solution is represented as absolutely and uniformly
convergent series.

2 Basic Equations. Formulation of the Problems

Let x = (x1, x2) be a point in the Euclidean two-dimensional space E2. Let
us assume thatD is a circular ring, R1 < |x| < R2, centered at point O(0, 0)
in the space E2, S1 is a circumference of radius R1 , S2 is a circumference
of radius R2 and S = S1 ∪ S2. Let us assume that the domain D is filled
with an isotropic porous materials.

Following the ideas proposed by Svanadze [8] and Mikelashvili [9], the
basic system of equations of motion in the coupled linear quasi-static theory
of elasticity for porous elastic materials expressed in terms of the displace-
ment vector u, the changes of volume fraction φ(x) of pores and the
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change of fluid pressure in pore network p(x) has the following form [8,9]

µ∆u+ (λ+ µ)graddivu+ bgradφ− βgradp = 0,

(α∆− α1)φ− b divu+mp = 0,

(k∆+ iω a)p+ iωβ divu+ iω mφ = 0,

(1)

In the previous system u := (u1, u2)
⊤, is the displacement vector, λ and µ

are the Lame constants, β is the effective stress parameter, k = k′

µ′ , µ′ is

the fluid viscosity, k′ is the macroscopic intrinsic permeability associated
with the pore network, α, b, m, α1, are constitutive coefficients, the
value a is measures the compressibility of pores, ω > 0 is the oscillation
frequency, ∆ is the Laplacian. Throughout this paper assume that the
superscript ⊤ denotes transposition.

Definition 1. A vector-function U = (u, φ, p) defined in the domain
D is called regular if

U ∈ C2(D) ∩ C1(D),

For the system (1) we formulate the following BVP:
Problem 1. Find a regular solution U = (u, φ, p) to system (1) in the

domain D, satisfying the following boundary conditions on S :

u+(z) = F+(z), φ+(z) = f+3 (z), p+ = f+4 (z), z ∈ S2.

u−(z) = F−(z), φ−(z) = f−3 (z), p− = f−4 (z), z ∈ S1,

where the vector-function F(z) = (f1, f2), and the functions f3(z), f4(z)
are prescribed functions on S, at z, having the definite smoothness. The
symbol U+(U−) denotes the limits of U(x) = (u, φ, ψ) on z ∈ S from D

U+(z) = lim
D∋x→z∈S2

U(x), U−(z) = lim
D−∋x→z∈S1

U(x).

The following assertion holds [9]
Theorem 1. The Problem 1 has one regular solution in D.

The general solution of equations (1), which is useful in our subsequent,
may be found in the paper [13] and we cite it without proof.

Theorem 2. The regular solution U = (u, φ, p) of the system (1)
admits a representation[13]

u = Ψ− grad

[
(k0 − 1)h0 +

2∑
j=1

hj
λ2j

]
,

φ = B0h+
2∑

j=1
Bjhj , p = C0h+

2∑
j=1

Cjhj ,

divu = h+
2∑

j=1
hj , divΨ = k0h,

(2)
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where

∆h0 = h, ∆h = 0, (∆ + λ2j )hj = 0, ∆Ψ = 0,

B0 =
ab+mβ

δ0
, C0 =

βα1 −mb

δ0
, k0 =

A2

µδ0
,

Bj =
iωδ0B0 − bkλ2j

δj
, Cj = iω

δ0C0 + αβλ2j
δj

, j = 1, 2,

δ0 = −aα1 −m2, δj = −(α1 + αλ2j )(iωa− kλ2j )− iωm2,

µ0 + bB0 − βC0 =
A2

δ0
, bBJ − βCj = −µ0,

αkµ20δ1δ2 = −iωδ20K2
0 , K0 = kbC0 + iωαβB0.

(3)

λ2j , j = 1, 2, are roots of the following equation

αµ0kξ
2 −A1ξ + iωA2 = 0, µ0 = λ+ 2µ,

A1 = µ0(aαiω − α1k) + kb2 + iωαβ2,
A2 = µ0(−α1a−m2) + ab2 − α1β

2 + 2bmβ.
(4)

We assume that λ2j , (j = 1, 2) are distinct and different from zero. We

may assume without loss of generality that Imλ2j > 0. [9]

3 Explicit Solution of Problem 1

Let us introduce the polar coordinates

x1 = ρ cosϑ, x2 = ρ sinϑ, ρ =
√
x21 + x22, 0 ≤ ϑ ≤ 2π.

Taking into account the identity x · grad = ρ
∂

∂ρ
, from (2) we obtain

(x · u) = (x ·Ψ)− ρ
∂

∂ρ

(k0 − 1)h0 +
2∑

j=1

hj
λ2j

 . (5)

It is easily verified, that the function (x ·Ψ) is a solution of the equation

∆(x ·Ψ) = 2div Ψ = 2k0h.

Finding the function (x ·Ψ) yields:

(x ·Ψ) = Ω + 2k0h0, (6)

where Ω is an arbitrary harmonic function ∆Ω = 0 and ∆h0 = h.
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Substituting (6), into (5), gives

(x · u) = Ω + 2k0h0 − ρ
∂

∂ρ

(k0 − 1)h0 +

2∑
j=1

hj
λ2j

 ,
φ = B0h+

2∑
j=1

Bjhj , p = C0h+
2∑

j=1
Cjhj , divu = h+

2∑
j=1

hj .

(7)

Let us assume that functions h, hj , j = 1, 2, and Ω are sought in
the following form

h(x) = E′
0 +M ′

0 ln ρ+
∞∑
k=1

(
R1

ρ

)k

(E′
k cos kϑ+M ′

k sin kϑ)

+
∞∑
k=1

(
ρ

R2

)k

(Ek cos kϑ+Mk sin kϑ),

hj(x) = C0jJ0(λjρ) +B0jH
(1)
0 (λjρ)

+
∞∑
k=1

Jk(λjρ)(λjρ)(Cjk cos kϑ+ C ′
jk sin kϑ)

+
∞∑
k=1

H
(1)
k (λjρ)(Djk cos kϑ+D′

jk sin kϑ),

Ω(x) = a′0 + b′0 ln ρ+
∞∑
k=1

(
R1

ρ

)k

(a′k cos kϑ+ b′k sin kϑ)

+
∞∑
k=1

(
ρ

R2

)k

(ak cos kϑ+ bk sin kϑ),

(8)

respectively, where En, E′
n, Mn,M

′
n, .... are the unknown quantities,

Jk(λjρ) is the Bessel’s function, H
(1)
k (λjρ) = Jk(λjρ) + iNk(λjρ) is the

Hankel’s function with the index k; On the basis of equation ∆h0 = h, the
function h0 can be represented in the following form

h0 =
E′

0ρ
2

4
+
M ′

0ρ
2

4
(ln ρ− 1)

−ρ
2

4

∞∑
k=2

1

k − 1

(
R1

ρ

)k

(E′
k cos kϑ+M ′

k sin kϑ)

+
ρ2

4

∞∑
k=1

1

k + 1

(
ρ

R2

)k

(Ek cos kϑ+Mk sin kϑ).

(9)

For convenience we introduce the following functions

(x · F)± = g±1 , (divF)± = g±2 , φ± = g±3 , p± = g±4 .

In what follows we assume that the functions gk, k = 1, .., 4, can be
expanded into the Fourier series.
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From (7), passing to the limit as ρ −→ R2, and ρ −→ R1, we obtain

Ω+ + 2k0h
+
0 −

ρ ∂∂ρ
(k0 − 1)h0 +

2∑
j=1

hj
λ2j


ρ=R2

= g+1 ,

h+ +
2∑

j=1
h+j = g+2 , B0h

+ +
2∑

j=1
Bjh

+
j = g+3 ,

C0h
+ +

2∑
j=1

Cjh
+
j = g+4 ,

Ω− + 2k0h
−
0 −

ρ ∂∂ρ
(k0 − 1)h0 +

2∑
j=1

hj
λ2j


ρ=R1

= g−1 ,

h− +
2∑

j=1
h−j = g−2 , B0h

− +
2∑

j=1
Bjh

−
j = g−3 ,

C0h
− +

2∑
j=1

Cjh
−
j = g−4 ,

(10)

Following Theorem 1 we conclude that the determinant of system (10) is
different from zero and the system (10) is uniquely solvable and we can find
the functions h±, h±j and Ω±

h+ =
δ0
A2

[µ0g
+
2 + bg+3 − βg+4 ] = G+,

h+j =
(−1)j

σ

[
g+2 −G+ − B1B2

Bj
(g+3 −G+)

]
= G+

j , j = 1, 2,

Ω+ = g+1 − 2k0h
+
0 +R2

 ∂

∂ρ

(k0 − 1)h0 +

2∑
j=1

hj
λ2j


ρ=R2

= G+
3 ,

(11)

h− =
δ0
A2

[µ0g
−
2 + bg−3 − βg−4 ] = G−,

h−j =
(−1)j

σ

[
g−2 −G− − B1B2

Bj
(g−3 −G−)

]
= G−

j , j = 1, 2,

Ω− = g−1 − 2k0h
−
0 +R1

 ∂

∂ρ

(k0 − 1)h0 +
2∑

j=1

hj
λ2j


ρ=R1

= G−
3 ,

(12)

where

σ = −iω (λ
2
1 − λ22)K0A2

µ0δ1δ2
=
αkµ0(λ

2
1 − λ22)A2

δ20K0
,

K0 = kbC0 + αβiωB0, αkµ20δ1δ2 = −iωδ20K2
0 .

(13)
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On the other hand, it is evident that,when ρ = R1 we have

E′
0 +M ′

0 lnR1 +
∞∑
k=1

(E′
k cos kϑ+M ′

k sin kϑ)

+
∞∑
k=1

(
R1

R2

)k

(Ek cos kϑ+Mk sin kϑ) = G−,

C0jJ0(λjR1) +B0jH
(1)
0 (λjR1) +

∞∑
k=1

[Jk(λjR1)[Cjk cos kϑ+ C ′
jk sin kϑ]

+
∞∑
k=1

H
(1)
k (λjR1)[Djk cos kϑ+D′

jk sin kϑ] = G−
j ,

a′0 + b′0 lnR1 +
∞∑
k=1

(a′k cos kϑ+ b′k sin kϑ)

+
∞∑
k=1

(
R1

R2

)k

(ak cos kϑ+ bk sin kϑ) = G−
3 ,

(14)
when ρ = R2

E′
0 +M ′

0 lnR2 +
∞∑
k=1

(
R1

R2

)k

(E′
k cos kϑ+M ′

k sin kϑ)

+
∞∑
k=1

(Ek cos kϑ+Mk sin kϑ) = G+,

C0jJ0(λjR2) +B0jH
(1)
0 (λjR2)

+
∞∑
k=1

[Jk(λjR2)[Cjk cos kϑ+ C ′
jk sin kϑ]

+
∞∑
k=1

H
(1)
k (λjR2)[Djk cos kϑ+D′

jk sin kϑ] = G+
j ,

a′0 + b′0 lnR2 +
∞∑
k=1

(
R1

R2

)k

(a′k cos kϑ+ b′k sin kϑ)

+
∞∑
k=1

(ak cos kϑ+ bk sin kϑ) = G−
3 ,

(15)

From here we get

E′
0 +M ′

0 lnR1 = q−0 =
1

2π

2π∫
0

G−(η)dη,

E′
0 +M ′

0 lnR2 = q+0 =
1

2π

2π∫
0

G+(η)dη,

a′0 + b′0 lnR1 = q−3 =
1

2π

2π∫
0

G−
3 (η)dη,

(16)
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a′0 + b′0 lnR2 = q+3 =
1

2π

2π∫
0

G+
3 (η)dη,

E′
k +

(
R1

R2

)k

Ek = q−k =
1

π

2π∫
0

G−(η) cos kηdη,

(
R1

R2

)k

E′
k + Ek = q+k =

1

π

2π∫
0

G+(η) cos kηdη,

M ′
k +

(
R1

R2

)k

Mk = g−k =
1

π

2π∫
0

G−(η) sin kηdη,

(
R1

R2

)k

M ′
k +Mk = g+k =

1

π

2π∫
0

G+(η) sin kηdη,

(17)

a′k +

(
R1

R2

)k

ak = q−1 =
1

π

2π∫
0

G−
3 (η) cos kηdη,

(
R1

R2

)k

a′k + ak = q+1 =
1

π

2π∫
0

G+
3 (η) cos kηdη,

b′k +

(
R1

R2

)k

bk = g−1 =
1

π

2π∫
0

G−
3 (η) sin kηdη,

(
R1

R2

)k

b′k + bk = g+1 =
1

π

2π∫
0

G+
3 (η) sin kηdη,

(18)

CjkJk(λjR1) +DjkH
(1)
k (λjR1) =

1

π

2π∫
0

G−
j (η) cos kηdη = q−jk,

CjkJk(λjR2) +DjkH
(1)
k (λjR2) =

1

π

2π∫
0

G+
j (η) cos kηdη = q+jk,

C ′
jkJk(λjR1) +D′

jkH
(1)
k (λjR1) =

1

π

2π∫
0

G−
j (η) sin kηdη = g−jk,

C ′
jkJk(λjR2) +D′

jkH
(1)
k (λjR2) =

1

π

2π∫
0

G+
j (η) sin kηdη = g+jk,

(19)
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C0jJ0(λjR1) +B0jH
(1)
0 (λjR1)) =

1

2π

2π∫
0

G−
j (η)dη = q−j0,

C0jJk(λjR2) +B0jH
(1)
0 (λjR2)) =

1

2π

2π∫
0

G+
j (η)dη = q+j0,

(20)

The determinants of systems(16),(17),(18),(19) and (20) are the following

α0 = ln
R2

R1
̸= 0, αk = 1−

(
R1

R2

)2k

̸= 0, k = 1, 2, ..

dk = iJk(λjR1)Nk(λjR2)− iJk(λjR2)Nk(λjR1) ̸= 0, k = 0, 1, 2, ...

because λj is a complex number.

Thus, from the last systems, after making some elementary transfor-
mations, we uniquely define the unknown coefficients. Through inserting
the obtained values into (8),(2) we get the final form for solution of the
considered Problem 1.

We assume that the functions F±, f±j , j = 3, 4, satisfy the following
conditions on S

F±, fj ∈ C1,α(S), α < 1, j = 3, 4.

Under these conditions the resulting series are absolutely and uniformly
convergent.

Remark. The potential users of the obtained results will be the sci-
entists and engineers working on the problems of solid mechanics, micro
and nanomechanics, mechanics of materials, engineering mechanics, engi-
neering medicine, biomechanics, engineering geology, geomechanics, hydro-
engineering, applied and computing mechanics.

4 Conclusions

In this paper the coupled linear quasi-static equations of theory of elasticity
are considered for porous elastic materials, in which the basic equations are
expressed in terms of the displacement vector u, the changes of the volume
fraction φ of pores and the fluid pressure p in pore network. The following
results are obtained:

1. Efficient solutions of the Dirichlet type BVP are obtained for a porous
circular ring

2. The obtained solutions are represented as absolutely and uniformly
convergent series.
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