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Abstract

In this paper the micropolar porous elastic body is considered.
The two-dimensional system of equations corresponding to a plane
deformation case is written in a complex form and its general solution
is presented with using of two analytic functions of a complex variable
and two solutions of the Helmholtz equations. One boundary value
problems are solved for a circle.
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1 Introduction

The foundations of the theory of elastic materials with voids were first
proposed by Cowin and Nunziato [1, 2]. They investigated the linear and
nonlinear theories of elastic materials with voids. In these theories the in-
dependent variables are displacement vector field and the change of volume
fraction of pores. Such materials include, in particular, rocks and soils,
granulated and some other manufactured porous materials. In many cases,
it is also important to calculate porous materials based on the theory of
micropolar elasticity [3–8]
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Various questions of elastic equilibrium of porous bodies with empty
pores in the case of a classical elastic medium are further discussed in
[9–15]. The problems of porous elasticity for micropolar media with voids
were considered in [16, 17].

The present paper deals with plane strain problem for micropolar porous
elastic body with voids. The boundary value problem is solved for a circle.

2 Basic equations

Assume an elastic body with voids occupies the domain Ω ∈ R3. Denote
by x = (x1, x2, x3) a point of the domain Ω in the Cartesian coordinate
system. Assume the domain Ω is filled with an elastic Cosserat media
having voids. Denote the volume of the macro point of x by V (x), and the
volume of pores at this point by Vp(x). The value v(x), which is defined by
the equality v(x) = Vp(x)/V (x), is called the relative volume of pores. In
general, as a result of deformation of the body the relative volume of pores
changes, too. The solid body characterized by the displacement vector
u = (u1, u2, u3), the rotation vector ω = (ω1, ω2, ω3) and the change
in volume fraction from the reference volume fraction [1, 2]

φ(x) = v(x) − vR(x).

In this case, a system of static equilibrium equations is [2, 3, 16]

−∂iσij(x) = ρFj(x),
−∂iµij (x)− ∈jik σik (x) = ρGj (x) ,
−∂ihi (x)− g(x) = ρl(x),

(1)

where σij are stress tensor components; ρ is material density; Fj are the
components of the mass force vectors; µij are moment stress tensor compo-
nents; ∈ijk is the Levi–Civita symbol; Gj are the components of the mass
moment vectors; hi is the equilibrated stress vector; g is the intrinsic equi-
librated body force; l is the extrinsic equilibrated body force; ∂i ≡ ∂/∂xi.

In the above formulas, the Latin indices take the values 1, 2, 3 and it
is assumed that summation is carried out over the repeated indices. The
same is also assumed below.

Formulas that interrelate functions σij , µij , hi , g to the functions
uj , ωj and φ have the form [2, 3, 16]

σij = (λdiv u+ γϕ) δij + (µ+ α) ∂iuj + (µ− α) ∂jui − 2α∈jikωk,
µij = α div ω δij + (ν + β) ∂iωj + (ν − β) ∂jωi,
hi = δ∂iϕ,
g = −ξϕ− γdiv u,

(2)
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where λ and µ are the Lamé parameters; α, β, ν, σ are the constants
characterizing the microstructure of the discussed elastic media; δ, ξ, γ
are the constants characterizing the body porosity; δij is the Kronecker
delta.

From the basic three-dimensional equations, we obtain the basic equa-
tions for the case of plane deformation. Let Ω be a sufficiently long cylin-
drical body with generatrix parallel to the Ox3-axis. Denote by D the
cross-section of this cylindrical body, thus D ∈ R2 . In the case of plane de-
formation u3 = 0, ω1 = 0, ω2 = 0, while the functions u1, u2, ω3 and φ
do not depend on the coordinate x3 [18]. We also assume u1, u2, ω3, φ ∈
C2 (D) ∩ C1(D).

As follows from formula (2), in the case of plane deformation

σα3 = 0, σ3α = 0, µαβ = 0, µ33 = 0, h3 = 0, α = 1, 2, β = 1, 2.

Therefore the homogeneous system (Fα = 0, Gα = 0, l = 0) of equilibrium
Eqs. (2) takes the form

∂1σ11 + ∂2σ21 = 0,
∂1σ12 + ∂2σ22 = 0,
∂1µ13 + ∂2µ23 + (σ12 − σ21) = 0,
∂1h1 + ∂2h2 + g = 0,

(3)

where ∆2 ≡ ∂11 + ∂22 is the two-dimensional Laplace operator.
Relations (2) are rewritten as (4)

σ11 = γφ+ λθ + 2µ∂1u1,
σ22 = γφ+ λθ + 2µ∂2u2,
σ12 = (µ+ α) ∂1u2 + (µ+ α) ∂2u1 − 2αω3,
σ21 = (µ+ α) ∂2u1 + (µ− α) ∂1u2 + 2αω3,
σ33 = γφ+ λθ,
µ13 = (ν + β) ∂1ω3,
µ23 = (ν + β) ∂2ω3,
µ31 = (ν − β) ∂1ω3,
µ32 = (ν − β) ∂2ω3,
h1 = δ∂1φ,
h2 = δ∂2φ,
g = −ξφ− γθ,

(4)

where θ := ∂1u1 + ∂2u2.
If relations (4) are substituted into the system (3) then we obtain the

following system of equilibrium equations with respect to the functions
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u1, u2, ω3 and φ

(µ+ α)∆2u1 + (λ+ µ− α) ∂1θ + 2α∂2ω3 + γ∂1φ = 0,
(µ+ α)∆2u2 + (λ+ µ− α) ∂2θ − 2α∂1ω3 + γ∂2φ = 0,
(ν + β)∆2ω3 + 2α(∂1u2 − ∂2u1)− 4αω3 = 0,
(δ∆2 − ξ)φ− γθ = 0.

On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 =
reiα

(
i2 = −1

)
and the operators ∂z = 0.5 (∂1 − i∂2), ∂z = 0.5 (∂1 + i∂2) ,

z = x1 − ix2, ∆2 = 4∂z∂z.
To write system (3) in the complex form, the second equation of this

system is multiplied by i and summed up with the first equation

∂z(σ11 − σ22 + i(σ12 + σ21)) + ∂z(σ11 + σ22 + i(σ12 − σ21)) = 0
∂z(µ13 + iµ23) + ∂z(µ13 − iµ2,3) + σ12 − σ21 = 0,
∂z(h1 + ih2) + ∂z(h1 − ih2) + g = 0

(5)

where by formulas (4) we have

σ11 − σ22 + i(σ12 + σ21) = 4µ∂zu+
σ11 + σ22 + i(σ12 − σ21)
= 2(λ+ µ− α)θ − 4αiω3 + 2γϕ+ 4α∂zu+,
µ13 + iµ23 = 2(ν + β)∂zω3,
µ31 + iµ23 = 2(ν − β)∂zω3,
h1 + ih2 = 2δ∂zϕ,
u+ := u1 + iu2, u+ = u1 − iu2, θ = ∂z + ∂zu+

(6)

If relations (6) are substituted into system (5), then system (3) is written
in the complex form

2(µ+ α)∂z∂zu+ + (λ+ µ− α)∂zθ − 2αi∂zω3 + γ∂zϕ = 0,
2(ν + β)∂z∂zω3 + αi(θ − 2∂zu+)− 2αω3 = 0,
(4∂z∂z − ξ)ϕ− γθ = 0.

(7)

The general solution of the system of Eqs. (7) is represented using
formulas [17, 19]

2µu+ = (κ+κ0)φ(z)− (1−κ0)zφ′(z)−ψ(z)+4∂z̄(iχ(z, z̄)−γη(z, z̄)), (8)

2µω3 =
4µ

ν + β
χ(z, z)− κ+ 1

2
i(φ′(z)− φ′(z)) (9)

ϕ =
(λ+ 2µ)ξ − γ2

µδ
η(z, z)− γ

(λ+ µ)δζ22
(φ′(z) + φ′(z)) (10)
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where φ(z) and ψ(z) are the arbitrary analytic functions of z, χ(z, z̄) and
η(z, z̄) are the general solutions of the Helmholtz equations

∆2χ− ζ21χ = 0, ∆2η − ζ22η = 0

ζ21 =
4µα

(ν + β)(µ+ α)
> 0, ζ22 =

(λ+ 2µ)ξ − γ2

(λ+ 2µ)δ
> 0.

also

κ =
λ+ 3µ

λ+ µ
, κ0 =

γ2µ

(λ+ µ)((λ+ 2µ)ξ − γ2)
.

Assume that mutually perpendicular unit vectors l and s be such that

l× s = e3

where e3 is the unit vector directed along the x3-axis. The vector l forms the
angle α with the positive direction of the x1-axis. Then the displacement
components ul = u · l, us = u · s, as well as the stress and moment stress
components acting on an area of arbitrary orientation are expressed by the
formulas [18]

ul + ius = e−iαu+,
σll + iσls = 0.5[σ11 + σ22 + i(σ12 − σ21)
+(σ11 − σ22 + i(σ12 + σ21))e

−2iα]
µl3 = 0.5[(µ13 + iµ23)e

−iα + (µ13 − iµ23)e
iα]

hl = 0.5[(h1 + ih2)e
−iα + (h1 − ih2)e

iα].

(11)

3 The boundary value problem for a circle

Let us consider the elastic circle, consisting of Cosserat media with voids
bounded by the circumference of radius R (Fig. 1). The origin of coordi-
nates is at the center of the circle.

Figure 1: The elastic circle.

On the circumference, we consider the following boundary value prob-
lem

σrr − iσrα = N − iT, ω3 =M, ϕ = F, on r = R (12)
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where N , T , M and F are sufficiently smooth functions.
Substituting the formulas (8)–(10) into (6) and (11) we have

σrr − iσrα = (1− κ0)(φ
′(z) + φ′(z)) + ζ21 iχ(z, z) + γζ22η(z, z)

− e2iα[(1− κ0)zφ
′′(z) + ψ′(z) + 4∂z∂z(iχ(z, z) + γη(z, z))]. (13)

The analytic functions φ′(z), ψ′(z) and the metaharmonic functions
χ(z, z), η(z, z) are represented as the following series

φ′(z) =
∞∑
n=0

anz
n, ψ′(z) =

∞∑
n=0

bnz
n (14)

χ(z, z) =
+∞∑
−∞

αnIn(ζ1r)e
inα, η(z, z) =

+∞∑
−∞

βnIn(ζ2r)e
inα, (15)

where In(ζ1r) and In(ζ2r) are the modified Bessel function of the first kind
of n-th order.

Substituting (14), (15) in (9), (10), (13), taking into account the bound-
ary conditions (12) and assuming that the series converge on the circum-
ference r = R, one finds

(1− κ0)
∞∑
n=0

Rn((1− n)ane
inα + ane

−inα)−
∞∑
n=0

Rnbne
i(n+2)α

− 2

R

+∞∑
−∞

(n− 1)(ζ1In−1(ζ1R)iαn + ζ2γIn−1(ζ2R)βn)e
inα = N − iT (16)

4µ

ν + β

+∞∑
−∞

In(ζ1R)αne
inα+

κ+ 1

2
i

∞∑
n=0

Rn(ane
inα − ane

−inα) = 2µM, (17)

(λ+ 2µ)ξ − γ2

µδ

+∞∑
−∞

In(ζ2R)βne
inα

− γ

(λ+ µ)δζ22

+∞∑
n=0

Rn(ane
inα + ane

−inα) = F. (18)
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As a conclusion of the previous relations, we used the following well-
known formula

In−1(x)− In+1(x) =
2n

x
In(x).

Expand the function N− iT , 2µM and F , given on r = R, in a complex
Fourier series

N − iT =
+∞∑
−∞

Ane
inα, 2µM =

+∞∑
−∞

Bne
inα, F =

+∞∑
−∞

Cne
inα.

Comparing in (16)–(18) the coefficients of e0iα we have (it is also as-
sumed that a0 is a real value [18])

2(1− κ0)a0 +
2γ

R
ζ2I1(ζ2R)β0 = N0, (19)

− 2γ

(λ+ µ)δζ22
a0 +

(λ+ 2µ)ξ − γ2

µδ
I0(ζ2R)β0 = F0, (20)

α0 = − R

2ζ1I1(ζ1R)
T0 =

ν + β

4µI0(ζ1R)
M0.

In order for the problem to have a solution, the following condition must
be met

M0 = − 4µRI0(ζ1R)

2(ν + β)ζ1I1(ζ1R)
T0.

From Eqs. (19), (20) we determine the coefficients a0 and β0

a0 =

(λ+2µ)ξ−γ2

µδ I0(ζ2R)N0 − 2γ
R ζ2I1(ζ2R)F0

2(λ+2µ)((λ+µ)ξ−γ2)I0(ζ2R)
(λ+µ)µδ + 4γ2I1(ζ2R)

(λ+µ)δζ2R)

,

β0 =

2γ
(λ+µ)δζ22

N0 + 2(1− κ0)F0

2(λ+2µ)((λ+µ)ξ−γ2)I0(ζ2R)
(λ+µ)µδ + 4γ2I1(ζ2R)

(λ+µ)δζ2R)

.

comparing the coefficients of einα (n ̸= 0), we have

(1− n)(1− κ0)R
nan −Rn−2bn−2−

2

R
(n− 1)(ζ1In−1(ζ1R)iαn + ζ2γIn−1(ζ2R)βn) = Nn, n ≥ 2

(21)

(1− κ0)R
nan − 2

R
(n+ 1)(ζ1In+1(ζ1R)iαn − ζ2γIn+1(ζ2R)βn)

= N−n, n > 0
(22)

4µ

ν + β
In(ζ1R)αn +

κ+ 1

2
iRnan =Mn, n ≥ 1 (23)
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(λ+ 2µ)ξ − γ2

µδ
In(ζ2R)βn − γ

(λ+ µ)δζ22
Rnan = Fn, n ≥ 1. (24)

From (21)–(24) one finds

an =
N−n + k1nMn − k2nFn

(1− κ0)Rn − k3n + k4n
,

αn =
ν + β

4µIn(ζ1R)

(
Mn − κ+ 1

2
iRnan

)
, n ≥ 1

βn =
µδ

((λ+ 2µ)ξ − γ2)In(ζ2R)

(
Fn +

γ

(λ+ µ)δζ22
Rnan

)
, n ≥ 1.

bn−2 = R2−n((1− n)(1− κ0)R
nan

− 2

R
(n− 1)(ζ1In−1(ζ1R)iαn + ζ2γIn−1(ζ2R)βn)−Nn), n ≥ 2

where

k1n =
(n+ 1)ζ1In+1(ζ1R)(ν + β)i

2µRIn(ζ1R)
,

k2n =
2(n+ 1)ζ2γµδIn+1(ζ2R)

(2(λ+ 2µ)ξ − γ2)RIn(ζ2R)
,

k3n =
(n+ 1)ζ1(κ+ 1)(ν + β)RnIn+1(ζ1R)

4µRIn(ζ1R)
,

k4n =
2(n+ 1)γ2µIn+1(ζ2R)R

n

((λ+ 2µ)ξ − γ2)(λ+ µ)ζ2RIn(ζ2R)
.

It is easy to prove the absolute and uniform convergence of the series
obtained in the the circle (including the contours) when the functions set
on the boundaries have sufficient smoothness.
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