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Abstract

We consider the problems of creating 2-dim models for thin-walled
structures and satisfaction of boundary conditions when the general-
ized stress vector is given on the surfaces for elastic plates and shells.
This problem was open also both for refined theories in the wide sense
and hierarchical type models.
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This paper is dedicated to the memory of a very dear person Alexander
(Iasha) Khvoles. First, we’d like to recall some typical moments from his
rich and exemplary life related to the activities around Ilya Vekuas Institute
of Applied Mathematics. For the demonstration of his mathematical level,
technique, and leadership talent, we believe the material of this paper is
sufficient. Among the scientific disciplines of applied mathematics at our
Institute are modeling and numerical implementation of problems in rigid
body mechanics. Al. Khvoles was one of the active participants in this topic
and achieved great success not only in solving, but also in implementing
contractual topics beneficial for the Institute.

I. Let us consider the equilibrium equations of the elastic body in the
form [1, 2]:

∂j(σij + σkjui,k) = fj , x ∈ Ωh = D(x, y)×]h−(x, y), h+(x, y)[, (1)

Boundary conditions:

Ti3 = σi3 + σj3ui,j = g±i , x ∈ S
± = D × h±, T3 = (T13, T23, T33)

T , (2)

l[∂1, ∂2, ∂3](x, u) = g, x ∈ S = ∂D×]h−, h+[. (3)
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Relation between the displacement vector u = (u1, u2, u3), symmetrical
strain ε and stress σ tensors satisfies the Cauchy formulae and Hooke’s law:

εij =
1

2
(ui,j + uj,i + ui,kuj,k), ε = Aσ, σ = Bε. (4)

The issues, we’ll consider here, present the problem of satisfying the
boundary conditions on surfaces S± of elastic plates. Although the main
focus of research on the related problems is given in decision [2, Ch. I],
some statements require a more careful attitude. This problem has to re-
ceive attention provisionally concerning all refined theories of von Kármán-
Mindlin-Reissner (KMR)-type, except Reissner [3] and Ambartsumian [4]
models. On the whole, these problems depend on the justification based
on the variational method. As is known, depending on the ”Dirichlet Prin-
ciple” by Riemann, after substantial examples given by Weierstrass and
Hadamard, this one was solved for the Dirichlet conditions by Hilbert[5]
(for bilinear functional) and Razmadze [6, 7] (for 1-dim problems in general
cases). With respect to (natural) Neumann conditions the resolving step
was made by Rektorys [8]. Taking a step in this direction we constructed
an example of elastic plates when the stress vector is given on the S±. If
we used the Legendre polynomials method of reduction, same to Vekua [9],
as a basis, it would define an unstable process; at the same time Rektorys
approach (when the differences from Legendre polynomials, with respect
to indexes, were chosen as a basic system) gave the exact solution. This
fact particularly demonstrates the existence of the ”Vekua-type problem”
concerning the satisfaction of boundary conditions on which Vekua stud-
ied carefully [9, ch.I,11,ch.II,2,] but incompletely. We studied this problem
for the isotropic homogeneous elastic plate [2, part 6.3], the characteristic
results are cited below.

Vekua spent more than 20 years considering the problem of creating
2-dim hierarchical models for an arbitrary integer N and separate ones
when N = 0, 1, 2 without using any of physical and geometrical hypoth-
esis,corresponding to the construction of different variances of the elastic
plates and shells theory [9]. You can see, i.e. [10], sufficient reach cor-
responding references where Vekuas models are immediately used. Vekua
worked the following way: thin-walled elastic structure (1)-(4) was consid-
ered for the linear, isotropic case; then the Galerkin method was applied
for constructing corresponding models, using the Legendre polynomial sys-
tem {pn(x), pn(±1) = (±1)n} for (1) and (3) by relations (4) used as the
base systems; in addition introducing new expressions type (7.2c), [9, ch. I,
point 7.2], named ”the normalized moments of the field of stresses” which
are coordinated with boundary conditions. On the basis of the expression
(8.4 a,b), (8.9) and (8.4 a,b) ,(8.9) [9, point 8.1]which represents 2-dim
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boundary value problems, Vekua constructed the approximate solution of
(1)-(4) in the form:

(u, σ) =
∞∑
s=0

(
s
u(x, y),

s
σ(x, y)

)
ps(z),

which ”are not compatible with boundary data on face surfaces S+, S−.
Therefore these approximations may prove to be rather rough values near
the face surfaces” [9, page 79]. We called it the ”Vekua problem”. In [9]
there were corrected the solution of corresponding to hierchical BVPs for
any intejer N by additional functions satisfying also the approximate sys-
tem of DEs. This function depends from the sum of differences of Legendre
polinomials with respect to indexes in the form (11.7) ([9, ch. 1]:

U0 = Am(x, y)(pm+1(ζ)− pm−1(ζ)) +Am+1(x, y)(pm+2(ζ)− pm(ζ)),

ζ =
z − h̄

2h
, m > N + 2.

When N , m tends to infinity, the problem is open.
The another way for investigated this problem see [9, ch. II, §2]. Here

for displacement vector and stress tensor are used Teylor series in point
z = 0 and approximately satisfied BC on the surfaces and consider case
when the approach has second order.

Example 1. Let us consider the case when the boundary value problem
of the theory of elasticity is a 1-dim problem and so, follows: u1 = u2 =
εαi = σαi = fα = 0, h = 1, σ33 = (λ + 2µ)u3,3. Then we get the following
boundary value problem:

−u′′(x) = f(x), u′(−1) = α, u′(1) = β. (5)

The DEs (8.4 a, b) [9] in this simple case have the following form: As

z(x) = u(x) − α+ β

2
x − β − α

4
x2 + u0, problem (5) is equivalent to the

following one:

−z′′(x) = f(x) +
β − α

2
, z′(−1) = z′(1) = 0. (6)

For simplicity we assume that f(x) − β − α
2

= p1(x) and consider the

following coordinate system:

qk(x) = −(2k + 1)

∫ x

−1
(x− t)pk(t)dt

=
1

2k + 3
(pk+2 − pk)−

1

2k − 1
(pk − pk−2), k = 2, 3, ...,
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−q0 =
1

3
(p2 − p0), −q1 =

1

5
(p3 − p1), q′(±1) = 0.

We will find the solution of (6) as the set: z(x) =
∞∑
k=0

zkqk(x). Then by

the projective method

(−z′′,−q0(x)) = z′(x)q0(x)|1−1 = 0,

(−z′′,−q1) =

∫ 1

−1
z′(p′3 − p′1)dx = (p1, p3 − p1) ⇒

−z1 +
3

7
z3 = −1,

(−z′′,−q2) = z′(x)q2|1−1 +
∫ 1
−1

∞∑
k=0

zkq
′
kp1dx ⇒

−1

3
z0 + 2

3 + 7

3 · 7
z2 −

1

7
z4 = 0,

− 1

4n− 1
z2n−2 + 2

4n+ 1

(4n− 1)(4n+ 3)
z2n −

1

4n+ 3
z2n+2 = 0, (n = 2, 4, ...),

z1 − z3 = −1

3
, −1

5
z1 +

14

5 + 9
z3 −

1

9
z5 =

1

15
,

− 1

4n− 1
z2n−1 +

2(4n+ 1)

(4n− 1)(4n+ 3)
z2n −

1

4n+ 3
z2n+1 = 0, (n = 1, 3, 5, ...) ⇒

z1 = −1

3
, z0 = zn = 0, (n = 2, 3, ...),

as matrices of both systems are irresoluble and by the generalising theorem
of Olga Taussky-Todd are nonsingular ones. Thus the solution of problem
(6) has the following form:

z(x) =
1

3
q1(x), i.e. − z′′(x) = p1, z

′(±1) = 0.

Example 2. If we assume in the initial boundary problem (5) that
f(x) = p1(x), α = β follow to [9] and pleriliminary his many other publica-
tions, using as basic system Legendre Polynomials and Projective method
we have:

u(x) =

∞∑
n=0

unpn(x) =

(
2

5
+ α

)
p1(x)− 1

15
p3(x).

Indeed

(−u”, p0)− (p1, p0) = −u′p0|1−1 +

∫ 1

−1
u′p′0dx = 0,

(−u”, p2n)− (p1, p2n) = 0 (n = 1, 2, ...)⇒
n−1∑
k=0

k(2k + 1)u2k + n(2n+ 1)

∞∑
k=n

u2k = 0 ⇒
∞∑
k=n

u2k = 0
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⇒ u2n = 0 (n = 1, 2, ...), ∀u0;

(−u”, p1)− (p1, p1) = 0 ⇒
∞∑
k=n

u2k+1 =
1

3
+ α,

(−u”, p2n+1)− (p1, p2n+1) = 0⇒
n−1∑
k=0

(k + 1)(2k + 1)u2k+1 + (n+ 1)(2n+ 1)
∞∑
k=n

u2k+1 = α,

⇒ u1 =
2

5
+ α, u3 = − 1

15
, u2n+1 = 0 (n = 2, 3, ...).

Note that v(x) = u(x) + c, ∀c = const determines the class of solutions of
(5). When |v − u| > c − ε, ∀c − ε > 0, c, ε > 0, the V-process developed
particular in §11 of [9] is unstable one and by well-known theorem of P.
Lax, nonconvergent.

In the [2, ch. II, p. 6.3] we investigated the problem of construction and
justification of Vekua type systems using methodology of [8] in case of native
conditions. By using Galiorkin method to DE (1) we have: the components
of stress vector σ3 for systems of DEs corresponding to [9] and [2] are
various; for models by [9] the condition (2) dont satisfy as underlined in §11
of [9]. Let us return to the initial problem (1)-(4) and consider the linear
case. In the above-mentioned works there was considered a case where
components of exterior vector tension σ3 were given at S∓. The problem of
satisfying these boundary conditions for any approximations were different
among proposed systems: for some models they are natural, for others they
appear to be the main ones, in the sense of variational methods (see, e.g.,
Rektorys [8]). We construct a class of operator equations, in fact, coinciding
with systems (7.9 a,b),(7.18 h,i) or (8.16) [9], for brevity, we shall denote
it as (V ).

Let us use this expansion into Fourier-Legendre for incomplete series
components of stress tensor. By virtue of boundary conditions on S± we
have:

σαβ =

∞∑
k=0

s
σαβ ps

( z
h

)
, (7)

σ3 =
(h+ z)g+ + (h− z)g−

2h
+

∞∑
s=1

s
σ3j

[
ps+1

( z
h

)
− ps−1

( z
h

)]
, (8)

At first we construct the basic Vekua type hierarchical 2-dim model which
approximates the linear boundary value problem for homogeneous isotropic
plates (for details see [2, Ch. II, part 6.3]). Then equilibrium equations in
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terms of components of the stress tensor will be equivalent to the following
infinite system

cmh
m
σαβ,β +(2m+ 1)cm

m
σαβ =

m
fα−hc0δm0

g+α − g−α
2

,

cmh
(
m−1
σα3,α−

m+1
σα3,α

)
+ (2m+ 1)cm

m
σ33 =

m
f3−hc0δm0

g+α,α + g−α,α
2

−hc1δm1

g+α,α − g−α,α
2

− hc0δm0
g+3 + g−3

2

(9)

where

m
f =

∫ h

−h
f(x1, x2, t)pm

(
t

h

)
dt, cm =

2

2m+ 1
, m = 0, 1, 2, · · ·.

Hooke’s law takes the following form:

cmh
m
σ11 = (λ+ 2µ)cmh

m
u1,1 +λcmh

m
u2,2 +λ(2m+ 1)cm

∑
k≥m(2)

k+1
u3,

cmh
m
σ12 = µhcm

(
m
u1,2 +

m
u2,1

)
,

cmh
m
σ22 = λcmh

m
u1,1 +(λ+ 2µ)cmh

m
u2,2 +λ(2m+ 1)cm

∑
k≥m(2)

k+1
u3,

cmh
(
m−1
σ3α−

m+1
σ3α

)
= µhcm

m
u3,α +µ(2m+ 1)cm

∑
k≥m(2)

k+1
uα

−hc0δm0
g+α + g−α

2
− hc1δm1

g+α − g−α
2

,

(10)

cmh
(
m−1
σ33−

m+1
σ33

)
= λhcm

m
uα,α +(λ+ 2µ)(2m+ 1)cm

∑
k≥m(2)

k+1
u3

−hc0δm0
g+3 + g−3

2
− hc1δm1

g+3 − g
−
3

2
.

Here and (often) below the following note is used:∑
k≥i(s)

k
u =

i
u+

i+s
u +

i+2s
u + · ··,

∑
k≤i(s)

k
u =

i
u+

i−s
u +

i−2s
u + · · · .

Formulae (9) and (10) make it possible to obtain an explicit form of Vekua
type system in displacement components. For this purpose we use Hooke’s
law for values σ3i and condition (2). We shall have:

g+α = µ

∞∑
k=0

(
k
u3,α +

k(k + 1)

2h

k
uα

)
,
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g−α = µ

∞∑
k=0

(−1)k
(
k
u3,α−

k(k + 1)

2h

k
uα

)
,

and

g+3 =

∞∑
k=0

(
λ
k
uα,α +(λ+ 2µ)

k(k + 1)

2h

k
u3

)
,

g−3 =
∞∑
k=0

(−1)k
(
λ
k
uα,α−(λ+ 2µ)

k(k + 1)

2h

k
u3

)
.

We define values g+ ± g−, entering (9). We shall have:

g+α + g−α = 2µ

∞∑
k=0

(
2k
u3,α +

(k + 1)(2k + 1)

h

2k+1
uα

)
,

g+α − g−α = 2µ

∞∑
k=0

(
2k+1
u3,α +

k(2k + 1)

h

2k
uα

)
,

g+3 + g−3 = 2

∞∑
k=0

(
λ
2k
uα,α +(λ+ 2µ)

(k + 1)(2k + 1)

h

2k+1
u3

)
,

g+3 − g
−
3 = 2

∞∑
k=0

(
λ
2k+1
uα,α +(λ+ 2µ)

k(2k + 1)

h

2k
u3

)
,

(11)

From equations (10), summing up the three last formulae, for values
m
σ3α

we obtain:∑
s≤m(2)

(
s−2
σ3α−

s
σ3α

)
= − m

σ3α = µ
∑

s≤m(2)

s−1
u3,α +

µ

h

∑
s≤m(2)

(2s− 1)
∑
k≥s(2)

k
uα

−1

2
(g+α + g−α )

∑
s≤m(2)

δs−1,0 −
1

2
(g+α − g−α )

∑
s≤m(2)

δs−1,1.

Similarly

−m
σ33 = µ

∑
s≤m(2)

s−1
uα,α +

λ+ 2µ

h

∑
s≤m(2)

(2s− 1)
∑
k≥s(2)

k
u3

−1

2
(g+3 + g−3 )

∑
s≤m(2)

δs−1,0 −
1

2
(g+3 − g

−
3 )

∑
s≤m(2)

δs−1,1.

In these expressions
−1
σ3α =

0
σ3α = 0 is assumed.

Now, by using formulae (11) from the latter representations after some
computations, we get

m
σ3α = µ

∑
s≥(m+1)(2)

[
s
u3,α +

1

2h
((s+ 1)(s+ 2)−m(m+ 1))

s+1
uα

]
,
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m
σ33 =

∑
s≥(m+1)(2)

[
λ
s
uα,α +

1

2h
(λ+ 2µ)((s+ 1)(s+ 2)−m(m+ 1))

s+1
u3

]
.

Taking into account the last formulae, as well as (10), after obvious
simplifications with respect to components of the displacement vector we
obtain the following infinite system of Vekua’s differential equations:

l2
m
u+ +(λ+ µ)h−1(2m+ 1)

∑
k≥m(2)

grad
k+1
u3 +µh−2

2m+ 1

2

×
∑

k≥m(2)

[k(k + 1)−m(m+ 1)]
k
u+ =

1

cmh

[
m
f+−

g++ − g−+
2

δm0

]
,

µ∆
m
u3 +(λ+ µ)h−1(2m+ 1)

∑
k≥m(2)

div
k
u+ +(λ+ 2µ)h−2

2m+ 1

2

×
∑

k≥m(2)

[k(k + 1)−m(m+ 1)]
k
u3 =

1

cmh

[
m
f3−

g+3 − g
−
3

2
δm0

]
,

Here
u+ = (u1, u2)

T , f+ = (f1, f2)
T , g+ = (g1, g2)

T ,

(l2u+, u+) = µ(∆uα, uα) + (λ+ µ)(graddivu+, u+).

From system (10), evidently, for values
m
σα3 we have:

m−1
σα3 =

m+1
σα3 +µ

m
u3,α +µ

2m+ 1

h

∑
k≥m(2)

k+1
uα−

1

2
δm0(g

+
α + g−α )− 1

2
δm1(g

+
α − g−α )

=
m+3
σα3 +µ

m+2
u3,α +µ

2m+ 5

h

∑
k≥m(2)

k+3
uα +µ

m
u3,α +µ

2m+ 1

h

∑
k≥m(2)

k+1
uα

−
∑

k≥m(2)

(
g+α + g−α

2
δk0 +

g+α − g−α
2

δk1

)
,

m
σα3 =

∑
k≥m(2)

k+1
u3,α +µh−1

∑
s≥(m+1)(2)

(2s+ 1)
∑

k≥m(2)

k+2
uα

−1

2

∑
k≥(m+1)(2)

(
(g+α + g−α )δk0 + (g+α − g−α )δk1

)
, m = 1, 2, ...

m
σα3 = µ

∑
k≥(m+1)(2)

(
k
u3,α +

1

2
((k + 1)(k + 2)−m(m+ 1))

k+1
uα

)
.

Analogously,

m
σ33 =

∑
k≥(m+1)(2)

(
λ
k
u3,α +

1

2h
(λ+ 2µ)((k + 1)(k + 2)−m(m+ 1))

k
u3

)
.
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Taking into account these formulae we obtain

1

2
(g+α + g−α )

∞∑
m=1

δm−1,0 +
1

2
(g+α − g−α )

∞∑
m=1

δm−1,1 −
m
σ3α

= µ
∑

k<(m+1)(2)

(
k
u3,α +

1

2h
(k + 1)(k + 2)

k+1
uα

)
.

Hence for values
m
σα3 we have:

m
σα3 =

1

2
(g+α + g−α )

∞∑
m≥1(1)

δm−1,0 +
1

2
(g+α − g−α )

∞∑
m≥1(1)

δm−1,1

−µ
∑

k≤(m−1)(2)

(
k
u3,α +

1

2h
(k + 1)(k + 2)

k+1
uα

)
.

Similarly for
m
σ33 we shall have:

m
σ33 =

1

2
(g+3 + g−3 )

∞∑
m≥1(1)

δm−1,0 +
1

2
(g+3 − g

−
3 )

∞∑
m≥1(1)

δm−1,1

−
∑

k≤(m−1)(2)

[
λ
k
uα,α +

λ+ 2µ

2h
(k + 1)(k + 2)

k+1
u3

]
.

Taking into account these expression in (9) we obtain the infinite system
of differential equations according to Vekua’s system (V ) in the following
form:

l2
n
u+ +h−1(2n+ 1)grad

λ ∑
i≥n(2)

i+1
u3−µ

∑
i≤n(2)

i+1
u3


−µh−2 2n+ 1

2

∑
i≤n(2)

i(i+ 1)
i
u+ =

1

hcn

[
n
f+

−

g++ − g−+
2

δn0 + (g++ + g−+)
∑
i≥1(1)

δi−1,0 + (g++ − g−+)
∑
i≥1(1)

δi−1,1

 ,
µ∆

n
u3 +h−1(2n+ 1)div

µ ∑
i≥n(2)

i+1
u+−λ

∑
i≤n(2)

i−1
u+


(12)

−(λ+ 2µ)h−2
2n+ 1

2

∑
i≤n(2)

i(i+ 1)
i
u3 =

1

hcn

[
n
f3

−

g+3 − g−3
2

δn0 + (g+3 + g−3 )
∑
i≥1(1)

δi−1,0 + (g+3 − g
−
3 )

∑
i≥1(1)

δi−1,1

 ,
74



On the Investigation of Isotropic ... AMIM Vol.26 No.1, 2021

n = 0, 1, 2, ..., N.

The comparison of equations (12), named as (V1), with the system
(V ) proves their identity for N = 0, 1, 2. When N ≥ 3, the main parts
(containing only second order partial derivatives) of systems (7.18 h, i) [9]
and (12) are different. Then [9, page 52] we read: the (7.18 h, i) is a strong
elliptic system of PDEs for N ≥ 3, ”but we do not rewrite this one in a
more expanded form and shall not deal with the investigation of problems
of existence and uniqueness in the general form”.

Evidently, in order to obtain effective values a priori in the form of en-
ergy inequalities for Vekua’s operator with fixed N together with highest
derivatives, we should pay attention to the explicit form of summands with
derivatives of zero and first order from unknown moments

n
ui(x1, x2) (n =

0, 1, 2, ...) appearing in system (12). Thus, we constructed (12) correspond-
ing to the equations (1). Reduced boundary conditions, originated by the
data on the lateral surfaces S and the construction of which is not difficult,
should be added to these systems. For this purpose we should multiply

equalities (3) by Legendre polynomials pi

( z
h

)
and integrate them between

−h and h. If Hooke’s law and other representations from (4) are used, then
we come up to the finite reduced boundary conditions, defined on ∂D.

II. This part dedicated to investgation of Vekua theory for isotropic
thick-walled shells of non-homogeneous structure are sited from [2, pp.
136-141] (see [12, 14-16] too).

Let on S the coordinate lines be lines of curvature:

Rα = (1− kαx3)rα, R3 = n, Rα =
1

1− kαx3
rα,

where kα denote principal curvatures of the midsurface, Ri and Ri are co-
variant and contravariant base vectors of the space, rα and rα are covariant
and contravariant base vectors of the midsurface, n the unit vector of the
normal of the surface S.

Then the equilibrium equations of shells have such form [9]:

1√
a
∂α(
√
aPα)− ∂3P 3 + ϑF = 0, ϑ = (1− k1x3)(1− k2x3). (13)

Using method of [9] in our case we have:

(k)

Pαβ =

∞∑
m=0

{
λkm3−α,γa

αβ

(
∇γ

m

uγ − bγγ
m
u3

)
+

1

h
λkm3−αa

αβ mu3

+µkm3−α,γ

[
aαλ

(
∇γ

m

uβ −bβγ
m
u3

)
+ aβλ

(
∇γ

m

uα−bαγ
m
u3

)]}
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(k)

Pα3 =
∞∑
m=0

[
µkm3−α,γa

αγ

(
∇γ

m
u3 + bγβ

m

uβ
)

+
1

h
µkm3−α

m

u′α
]

(k)

P 3α =

∞∑
m=0

[
µkm3−α,γa

αγ

(
∇γ

m
u3 + bγβ

m

uβ
)

+
1

h
µkm•

m

u′α
]

(k)

P 33 =

∞∑
m=0

[
λkm3−γ

(
∇γ

m

uγ − bγγ
m
u3

)
+

1

h
(λkm• + 2µkm• )

m

u′3

]
,

where

λkmαβ =

(
k +

1

2

)
1

h

∫ h

−h
λAβαPk(x

3/h)Pm(x3/h)dx3,

µkmαβ =

(
k +

1

2

)
1

h

∫ h

−h
µAβαPk(x

3/h)Pm(x3/h)dx3,

λkmα =

(
k +

1

2

)
1

h

∫ h

−h
λAαPk(x

3/h)Pm(x3/h)dx3,

µkmα =

(
k +

1

2

)
1

h

∫ h

−h
µAαPk(x

3/h)Pm(x3/h)dx3,

λkm• =

(
k +

1

2

)
1

h

∫ h

−h
λϑPk(x

3/h)Pm(x3/h)dx3,

µkm• =

(
k +

1

2

)
1

h

∫ h

−h
µϑPk(x

3/h)Pm(x3/h)dx3,

Aα = 1− kαx3, Aβα =
Aα
Aβ

.

Let g± are defined by [13, part 1.2]. Then we have

P 3(+) = ϑ(+)g+, P 3(−) = ϑ(−)g−, ϑ(±) = (1± k1h)(1± k2h).

The solution of (13), according to [12] has the form

Pα =

∞∑
k=0

(k)

PαPk(x
3/h),

P 3 =
1

2

[(
1 +

x3

h

)
ϑ(+)g+ +

(
1− x3

h

)
ϑ(−)g−

]

+

∞∑
k=0

(k)

P 3
∗ [Pk(x

3/h)− Pk+2(x
3/h)].

76



On the Investigation of Isotropic ... AMIM Vol.26 No.1, 2021

If we use the method of Vekua [9] we have

1

h
∂α

(
√
a
(k)

Pα

)
− 2k + 1

h

[ k−1
2

]∑
s=0

(k−2S−1)
P 3 +

(k)

F = 0, (k = 0, 1, ...) (14)

where
(k)

F =
2k + 1

2
(ϑ+g+3 − (−1)kϑ−g−3 ).

Cutting the infinite system (14) we have:

∇α
(k)

Pαβ − bβα
(k)

Pα3 − 2k + 1

h

[ k−1
2

]∑
s=0

(k−2S−1)
P 3β +

(k)

F β = 0,

∇α
(k)

Pα3 + bαβ

(k)

Pαβ − 2k + 1

h

[ k−1
2

]∑
s=0

(k−2S−1)
P33 +

(k)

F 3 = 0,

(k = 0, 1, ..., N)

(15)

where

(k)

Pαβ =

N∑
m=0

λkm3−α,γaαβ
(
∇γ

m

uγ − bγγ
m
u3

)
+

2m+ 1

h
λkm3−αa

αβ

[N−m−1]
2∑

S=0

m+2S+1
u3

+µkm3−α,γ

[
aαλ

(
∇γ

m

uβ −bβγ
m
u3

)
+ aβλ

(
∇γ

m

uα−bαγ
m
u3

)]}
(16)

(k)

Pα3 =
N∑
m=0

µkm3−α,γaαγ (∇γmu3 + bαβ

m

uβ
)

+
2m+ 1

h
µkm3−α

[N−m−1]
2∑

S=0

m+2S+1

uα

 ,
(k)

P 3α =
N∑
m=0

µkm3−α,γaαγ (∇γmu3 + bγβ

m

uβ
)

+
2m+ 1

h
µkm•

[N−m−1]
2∑

S=0

m+2S+1

uα


(k)

P 33 =

N∑
m=0

λkm3−γ (∇γmuγ − bγγ mu3)+
2m+ 1

h
(λkm• + 2µkm• )

[N−m−1]
2∑

S=0

m+2S+1
u3

 .
These equations (15-16) represent the closed system of differential equa-

tions with respect to
k

uj functions.
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Consider now when Ωh is the spherical shell with constant thickness
2h, R denotes the radius. Let x1 = x, x2 = y, x3 = x3. In our case we
evidently have:

a11 = a22 = Λ; a12 = a21 = 0.

If ν, ϕ are geographical coordinates of a sphere, then the isometrical
coordinate system it may be have

x = tan
ν

2
cosϕ, y = tan

ν

2
sinϕ,

and

Λ = R2Λ2
0, Λ0 =

2

1 + x2 + y2
= 2 cos2

ν

2
.

The system of equations (15-16) following to Vekua [9] has the following
complex form:

1

Λ

∂

∂z

(
(k)

P11 −
(k)

P22 + 2i
(k)

P21

)
+

∂

∂z̄

(
(k)

P 1
1 +

(k)

P 2
2

)

+
1

R

∂

∂z

(
(k)

P13 + i
(k)

P23

)

−2k + 1

h

[ k−1
2

]∑
s=0

(
(k−2S−1)
P31 + i

(k−2S−1)
P32

)
+

(k)

F1 + i
(k)

F2 = 0,

2Re

[
1

Λ

∂

∂z

(
(k)

P13 + i
(k)

P23

)
− 1

R

(
(k)

P 1
1 +

(k)

P 2
2

)]

−2k + 1

h

[ k−1
2

]∑
s=0

(k−2S−1)
P33 +

(k)

F3 = 0, (k = 0, 1, ..., N)

(17)

(k)

P11 −
(k)

P22 + 2i
(k)

P21 = 4
N∑
s=0

µkmΛ
∂

∂z̄

1

Λ

(
m
u1 + i

m
u2

)
,

(
(k)

P 1
1 +

(k)

P 2
2

)
= 2

N∑
s=0

{
(λkm + µkm)

(
m
θ +

2

R

m
u3

)

+
2m+ 1

h
λ
(1)
km

[N−m−1
2

]∑
s=0

m+2S+1
u3

 ,

(k)

P13 + i
(k)

P23 =

N∑
m=0

{
µkm

[
2
∂u3

m

∂z̄
− 1

R

(
m
u1 + i

m
u2

)]
(18)
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+
2m+ 1

h
λ
(1)
km

[N−m−1
2

]∑
s=0

(
m+2S+1
u1 + i

m+2S+1
u2

) ,

(k)

P31 + i
(k)

P32 =
N∑
m=0

{
µ
(1)
km

[
2
∂u3

m

∂z
− 1

R

(
m
u1 + i

m
u2

)]

+
2m+ 1

h
λ
(2)
km

[N−m−1
2

]∑
s=0

(
m+2S+1
u1 + i

m+2S+1
u2

) ,

(k)

P33 = 2
N∑
s=0

λ(1)km
(
m
θ +

2

R

m
u3

)
+

2m+ 1

h
(λ

(2)
km + 2µ

(2)
km)

[N−m−1
2

]∑
s=0

m+2S+1
u3

 ,

where
m
θ = ∇γ

m

uγ = 2Re

[
1

Λ

∂

∂z

(
m
u1 + i

m
u2

)]
,

z = x+ iy, z̄ = x− iy,
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

λkm = λkm11 , λ
(α)
km =

(
k +

1

2

)
1

2

∫ h

−h
λ

(
1 +

x3

R

)α
Pk(x3/h)Pm(x3/h)dx3,

µkm = µkm11 , µ
(α)
km =

(
k +

1

2

)
1

2

∫ h

−h
µ

(
1 +

x3

R

)α
Pk(x3/h)Pm(x3/h)dx3.

Assume that λ
(α)
km, µ

(α)
km are constants and

(k)

F1 =
(k)

F2 =
(k)

F3 = 0.

Below we use the equality:

1

Λ

∂

∂z
Λ
∂

∂z̄

1

Λ

∂

∂z̄
(·) =

1

4R2
(∇2 + 2)(·),

where ∇2 is Laplace’s operator on the sphere with unit radius:

∇2 =
1

Λ2
0

(
∂2

∂x2
+

∂2

∂y2

)
=

4

Λ2
0

∂2

∂z∂z̄
.

The solution of equations (17-18) we find in the following form:

m
u1 + i

m
u2 = R2 ∂

∂z̄
(Wk+1 + iΩk+1), (k = 0, 1, ..., N)
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where Wk+1, Ωk+1 are arbitrary real functions.
Let us introduce the definitions:

k
u3 = hWN+2+k, (k = 0, 1, ..., N).

Using these representations we finally have such a system:

N+1∑
j=1

Dkj∇2Wj −
N+1∑
j=1

LkjWj = 0, (k = 1, 2, ..., 2N + 2)

N+1∑
j=1

dkj∇2Ωj −
N+1∑
j=1

lkjΩj = 0, (k = 1, 2, ..., 2N + 1),

or in the matrix form:
D∇2W − LW = 0, (19)

d∇2Ω− lΩ = 0, (20)

where W, Ω are columns vectors. we can reduce matrix equations (19-20)
to the form:

∇2W −AW = 0, A = D−1L,

∇2Ω−BΩ = 0, B = d−1l.

We remark that for finding the general solution of this system it is
possible to apply Vekua’s method [17]. If we assume that matrices A and B
have simple eigenvalue numbers and vectors according to[14]: α1, ..., α2N+2,
β1, ..., β2N+1, X

(1), ..., X(2N+2), Y (1), ..., Y (N+1) respectively, then general
solutions of these equations have the form:

W =

2N+2∑
m=1

X(m)ψm, Ω =

N+1∑
m=1

Y (m)χm,

where ψm, χm are arbitrary solutions of the following scalar equations:

∇2ψm − αmψm = 0, (m = 1, ..., 2N + 2),

∇2χm − βmχm = 0, (m = 1, ..., N + 1).

Finally for
k
uj we have:

k
u1 + i

k
u2 = R2 ∂

∂z̄

(
2N+2∑
m=1

X
(m)
k+1ψm + i

N+1∑
m=1

Y
(m)
k+1χm

)
,

k
u3 = h

N+2+k∑
m=1

X
(m)
k+1ψm, (k = 0, 1, ..., N).
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