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Abstract

Dedicated to the memory of Professor Alexanderv Khvoles
Whitney partition is a very important concept in modern geomet-
ric analysis. We discuss here a quasiconformal version of Whitney
partition that can be useful for Sobolev spaces.
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1 Introduction

We start with a definition of a Whitney partition of domains in Rn. Clas-
sical Whitney partition is a partition of a bounded domain Ω into diadic
cubes with disjoint interiors and edges comparable to the distance to ∂Ω.
Its modern generalization that is called a Whitney partition is a partition
into convex polyhedra with similar properties. Let us give a more accurate
definition (see, for example [1]).

Let Ω be a bounded domain of Rn and Λ = Rn \Ω. Let Ei be a family
of convex closed n-dimensional polyhedra in Rn, disjoint from Λ, covering
Ω and with pairwise disjoint interiors. We will also need these polyhedra
to have uniformly bounded ratio KA of their exterior to interior radii. By
the interior radius of a set A with nonempty interior we mean the greatest
radius rA of a ball contained in A; similarly the exterior radius of a set A is
the smallest radius RA of a ball containing A. The ratio KA will be called
the dilatation of A.

Such families of polyhedra with uniformly bounded dilatation will be
called uniformly regular. We will also demand that the edges of these
polyhedra are long, i.e. they have lengths uniformly comparable to the
diameter of the polyhedron. As an example we can take a family of dyadic
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cubes disjoint from Λ. The diameter of Ei will be denoted by δ (Ei). The
set Λ will be called the residual set of the family {Ei} and Kint := supiKEi

will be called the interior dilatation of the family {Ei}.
There are two conditions which are usually imposed on such families:

1. δ (Ei) ≥ C dist (Ei,Λ),

2. δ (Ei) ≤ C−1 dist (Ei,Λ).

If a family Ei satisfies both of these conditions, it is called a Whitney family.

We generalize this definition for a more general setting under additional
assumption that the residual set Rn \Ω′ is unbounded and connected. We
will call such domains as simple domains.

Definition.(Rough Whitney family). Let Ω be a bounded subset of
Rn, Λ = Rn \ Ω and {Ei} be a family of closed sets in Rn with nonempty
interiors Vi = Int(Ei) and the closures of Vi coinciding with Ei. The sets Ei
are disjoint from Λ, covering Ω and their interiors Vi are pairwise disjoint.
The family {Ei} has bounded interior dilatation.

The family Ei should also satisfy two geometric regularity conditions
for some constant C > 0:

1.δ (Ei) ≥ C dist (Ei,Λ),

2.δ (Ei) ≤ C−1 dist (Ei,Λ).

If a family Ei satisfies all these conditions, we will call it as a rough
Whitney family.

The smallest possible constant C will be called the exterior dilatation
Kext of the rough Whitney family.

Our main result connects concepts of Whitney families and rough Whit-
ney families.

Theorem. For any simple domain Ω quasiconformal image of any its
Whitney family is a rough Whitney family.

More detailed formulation with corresponding estimates will be dis-
cussed later.

We prove this result with the help of classical estimates of a correspond-
ing capacity.

A two dimensional version of this result can be found in [3].

2 Quasiconformal Whitney family

A well-ordered triple (F0, F1; Ω) of nonempty sets, where Ω is an open set
in Rn, and F0, F1 are closed subsets of Ω, is called a condenser on the
Euclidean space Rn.
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The value

Capp(E) = Capp(F0, F1; Ω) = inf

∫
Ω

|∇v|pdx,

where the infimum is taken over all Lipschitz non-negative functions v :
Ω→ R, such that v = 0 on F0, and v = 1 on F1, is called p-capacity of the
condenser E = (F0, F1; Ω). For p = n it is the classical conformal capacity.
We will use notation Cap(F0, F1; Ω) for the conformal capacity. Of course
the set of admissible functions can be empty. In this case Capp(F0, F1; Ω) =
∞.

For 1 < p for a finite value of p-capacity 0 ≤ Capp(F0, F1; Ω) < +∞
there exists a unique continuous weakly differentiable function u0 (an ex-
tremal function) such that:

Capp(F0, F1; Ω) =

∫
Ω

|∇u0|pdx.

Definition. Let ϕ : Ω→ Ω′ be a homeomorphism between two domains
in Rn, n ≥ 2. Then ϕ is said to be Q-quasiconformal, Q ≥ 1, if

Q−1Cap(F0, F1; Ω) ≤ Cap(ϕ (F0) , ϕ (F1) ; Ω′) ≤ Q Cap(F0, F1; Ω)

for any condenser E = (F0, F1; Ω).
The minimal possible constant Q will be called the (quasiconformal)

dilatation of ϕ.
This geometric definition is a global requirement that quickly yields

many important properties of quasiconformal mappings. For example, the
inverse of a quasiconformal mapping is automatically quasiconformal, qua-
siconformal mappings are weakly differentiable and its weak derivatives are
integrable in degree n, etc...

For any Q-quasiconfromal homeomorphism ϕ : Rn → Rn images of
closed balls have uniformly bounded interior dilatation Kint that depends
only on n and Q [4]. Any Q-quasiconformal image of closed balls B̄(0, r)
will be called the closed Q-quasiconformal ball or Q-quasiball. For example
any convex polyhedra is a closed Q-quasiconfromal ball. The constant Q
depends on n and its interior dilatation. This collection of known facts can
be formalized as

Proposition 1. ([4]) For any Q-quasiconfromal homeomorphism ϕ :
Rn → Rn and any closed ball B := B(x0, r) the interior dilatation KB,Ω

is less or equal to a constant C(Q,n) that depends only on the dilatation Q
and n.
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This proposition will be generalized for balls in domains under an ad-
ditional conditions for balls.

We will use notations: B(x0, r) is an open ball of radius r and center
x0 and B̄(x0, r) is its closure.

Definition. Let Ω be a domain in Rn and a closed ball B(x0, r) ⊂ Ω.
Choose such concentric open ball B(x0,KB(x0,r),Ωr) ⊂ Ω that its closure
B̄(x0,KB(x0,r),Ωr) intersects ∂Ω. We will call the constant KB(x0,r),Ω ∈
(1,∞] the embedding coefficient of the ball B̄(x0, r) in Ω.

The embedding coefficient of any ball in Rn is ∞. In section 4 we will
prove the following property of quasiconformal homeomorphisms.

Proposition 2. Let ϕ : Ω → Rn be a Q-quasiconformal homeomor-
phism of a domain Ω ⊂ Rn and B(x0, r) is a closed ball with the embedding
coefficient KB(x0,r),Ω. Then the interior dilatation Kϕ(B(x0,r)) of its image
ϕ(B(x0, r) depends only on Q,KB(x0,r),Ω and n.

We will call a closed set E the closed relative Q-quasiball if there exist
a domain Ω ⊂ Rn, a closed ball B(x0, r) and a Q-quasiconformal homeo-
morphism ϕ : Ω→ Rn such that E = ϕ

(
B(x0, r)

)
. We let KE denote the

embedding coefficient KB(x0,r),Ω.

Definition (Q-quasiconfromal Whitney family). Let Ω be a bounded
domain in Rn and Ei be a family of closed relative Q-quasiballs in Rn. The
sets Ei are disjoint from Λ, covering Ω, with pairwise disjoint interiors Vi
and their embedding coefficients Ki := KEu are uniformly bounded.

If a family Ei satisfies this conditions, it is called a Q-quasiconformal
Whitney family.

Because any convex polyhedra is a quasiconformal image of the unit
ball, any Whitney family is aQ-quasiconformal Whitney family. Of course a
rough Whitney family is not necessary a Q-quasiconformal Whitney family.

3 Classical estimates of conformal capacity

We will need two estimates of the conformal capacity (see, for example [4,
2]). Because proofs are very simple we reproduce here slight modifications
of both estimates, using classical embedding theorems.

Choose an open ball B(x0, r) an open ball of radius r and center x0 and
a positive constant C0 > 1. Denote R := C0 r.

Lemma 1. Cap
(
B̄(x0, r),R

n \B(x0, R); Rn
)

= ωn−1 [ln (C0)]1−n .
Here ωn−1is the volume of the unit (n− 1)-dimensional sphere Sn−1.

Proof. Let u : Rn → R be an admissible smooth function for con-
densor E =

(
B̄(x0, r),R

n \B(x0, R); Rn
)
. By definition of an admissible

function u(x) ≡ 0 on B̄(x0, r) and u(x) ≡ 1 on Rn \B(x0, R). Using Hölder
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inequality for the spherical coordinate system (ρ, σ) we have

1 ≤
∫ R

r
∇u(ρ, σ)dρ ≤

(∫ R

r
|∇u(ρ, σ)|n ρn−1dρ

)1/n(∫ R

r
ρ−1dρ

)n−1
n

.

Here ρ := |x| and σ are spherical coordinates on the unit sphere Sn−1 :=
Sn−1(0, 1). By previos calculations

1

[ln (C0)]n−1 =
1[

ln
(
R
r

)]n−1 ≤
∫ R

r
|∇u(ρ, σ)|n ρn−1dρ

for any σ ∈ Sn−1.
Integrating this inequality over Sn−1 we obtain finally

ωn−1

[ln (C0)]n−1 ≤
∫
Sn−1

∫ R

r
|∇u(ρ, σ)|n ρn−1dρ =

∫
Rn

|∇u(x)|n dx

where ωn−1 is area of Sn−1.

The function u0(x) := ln
(
R
|x|

)
[ln (C0)]−1 for r ≤ |x| ≤ R , 0 for any

|x| ≥ R and 1 for any |x| ≤ r is the extremal function for condensor E. It
follows from direct calculations:∫

Rn

|∇u0(x)|n dx = ωn−1 [ln (C0)]−n
∫ R

r
ρ−1dρ = ωn−1 [ln (C0)]1−n .

Therefore

Cap
(
B̄(x0, r),R

n \B(x0, R); Rn
)

= ωn−1 [ln (C0)]1−n .

We will call a connected closed set a continuum. Choose two concentric
(n − 1)-dimensional spheres Sn−1(0, r) and Sn−1(0, R), R ≥ r and two
continua F0 and F1 that join spheres. We shall use notations R = C0 r,
C0 > 1 and Dr,R := ¯B(0, R) \B(0, r). In the next lemma we will prove a
below estimate of conformal capacity of condensor E = (F0, F1,R

n) using
embedding theorems for the unit sphere.

Lemma 2. Cap (F0, F1; Rn) ≥ C(n) ln (C0), where a constant C(n)
depends on n only.

Proof. Because continua F0, F1 join spheres Sn−1(0, r) and Sn−1(0, R)
intersections F0,ρ := Sn−1

ρ ∩ F0 and F1,ρ := Sn−1
ρ ∩ F1 are not empty for

any sphere Sn−1
ρ := Sn−1(0, ρ), r ≤ ρ ≤ R. Any function u admissible for

the conformal capacity of the condensor E is also admissible for conformal
capacity of any condensor Eρ = (F0,ρ, F1,ρ,S

n−1
ρ ) in the sphere Sn−1

ρ . By
elementary calculations in the spherical coordinates ρ, σ we have∫ R

r

(∫
Sn−1
ρ

|∇u(σ, ρ)|n dσ

)
dρ ≤

∫
DR,r

|∇u(x)|n dx ≤
∫
Rn

|∇u(x)|n dx

87



AMIM Vol.26 No.1, 2021 V. Gol’dshtein, N. Zobin

where DR,r is a closed ring between spheres Sn−1(0, r) and Sn−1(0, R).
Using similarities ϕρ(x) = ρx we get∫

Sn−1
ρ

|∇u(σ, ρ)|n dσ =
1

ρ

∫
Sn−1(0,1)

|∇ũ(σ)|n dσ,

where ũ(x) = u(ϕρ(x)).
By the classical Sobolev inequality for the unit sphere Sn−1 we have

1 =
∥∥ũ|L∞(Sn−1)

∥∥n ≤ K(n)

∫
Sn−1(0,1)

|∇ũ(σ)|n dσ

where constant K(n) depends on n only.
Combining these two estimates we obtain

1 =
∥∥u|L∞(Sn−1

ρ )
∥∥n =

∥∥ũ|L∞(Sn−1(0, 1))
∥∥n ≤ ρK(n)

∫
Sn−1
ρ

|∇u(σ, ρ)|n dσ.

Dividing by ρ and integrating we finally get

ln (C0)

K(n)
=

1

K(n)

∫ R

r

dρ

ρ
≤
∫ R

r

(∫
Sn−1
ρ

|∇u(σ, ρ)|n dσ

)
dρ

≤
∫
Rn

|∇u(x)|n dx

for any admissible function u of condensor E. By definition of conformal
capacity

ln (C0)

K(n)
≤ Cap (F0, F1; Rn) .

4 Local estimates of dilatations

Let ϕ : Ω → Ω′ be a Q-quasiconformal homeomorphism of a domain Ω ⊂
Rn onto a domain Ω′ ⊂ Rn. Choose a closed ball B̄(x0, r) ⊂ Ω with the
embedding coefficient Cr := KB{x0,r),Ω .

Our goal is to prove for Fr := ϕ(B̄(x0, r)) the following two inequalities:

1. There exists a constant C1(Q,Cr, n) such that

Kint(Fr) ≤ C1(Q,Cr,n)

2. There exists a constant C2(Q,Cr, n) such that

C−1 dist
(
Fr,Ω

′) ≤ δ (Fr) ≤ C dist
(
Fr,Ω

′)
,
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Constants C1, C2 depend only on Q,Cr, n and do not depend on choice of
domains Ω,Ω′ and the Q-quasiconformal homeomorphism ϕ.

Proposition 3. Suppose that Ω,Ω′ are domains in Rn and the resid-
ual set Λ = Rn \ Ω of Ω is unbounded and connected. Let ϕ : Ω → Ω′

be a Q-quasiconformal homeomorphism of a domain Ω ⊂ Rn onto a do-
main Ω′ ⊂ Rn and B̄(x0, r) ⊂ Ω be a closed ball with the embedding co-
efficient KB(x0,r),Ω . Then there exists such positive constant C1(Q,Cr, n)
that Kint(Fr) ≤ C1(Q,KB(x0,r),Ω, n).

The constant C1(Q,KB(x0,r),Ω, n) depends on Q,KB(x0,r),Ω and n only.
Proof. Denote by B̄r := B̄(y0, r̄) ⊂ Fr a closed ball of a maximal radius

that belongs to Fr := ϕ(B(xo, r)) and has the center at a point y0; = ϕ(x0),
by BR := B(y0, R̄) an open ball of a minimal radius whose closure contains
Fr, by CBR := Rn \BR, by Kr the interior dilatation Kint(Fr) and by Cr
the embedding coefficient KB(x0,r),Ω. By definition of the interior dilatation

Kr ≤ R̄
r̄ .

By definition of the conformal capacity and previous Lemma

Cap(BR, Ω̄
′ \B,Ω′) ≤ Cap(Br, CBR,R

n) = ωn−1

[
ln

(
R̄

r̄

)]1−n
(1)

≤ ωn−1 [ln (Kr)]
1−n . (2)

Because a homeomorphism ϕ−1 is Q-quasiconformal we have for two
compact sets F0 := ϕ−1(B̄r) ⊂ B̄(x0, r) and F1 = ϕ−1(Ω̄′ \ BR) ⊂ Ω \
B(x0, r) the following inequality

Cap(F0, F1,Ω) ≤ Q Cap(B̄r, Ω̄
′ \BR,Ω′) ≤ ωn−1 [ln (Kr)]

1−n . (3)

Let us estimate Cap(F0, F1,Ω) with the help of Lemma 2. By construc-
tion both sets F0, F1 have nonempty intersections S0, S1 with the sphere
S(x0, r). We distinguish two different cases:

1. dist(S0, S1) ≤ min
(
(Cr − 1) r2 ,

r
2

)
;

2. dist(S0, S1) > min
(
(Cr − 1) r2 ,

r
2

)
.

Let us use a short notation r̄ := min
(
(Cr − 1) r2 ,

r
2

)
.

Choose points yo ∈ S0 and ¯y1 ∈ S1 such that dist(S0, S1) = |y1 − y0|.
Let ỹ := y0 + y1−y0

2 and B1 := B̄(ỹ, r̄) be a closed ball with center at ỹ.
In the first case |y1 − y0| ≤ r̄ and continua F0, F1 intersect any sphere

S(ỹ, ρ) for any r̄ ≤ ρ ≤ 2r̄ . By Lemma 2

Cap (F0,F1; Ω) ≥ Cap (F0 ∩ B1,F1 ∩ B1; B1) ≥ C(n) ln 2. (4)

Combining this inequality and inequality 3 we obtain finally

C(n) ln 2 ≤ ωn−1 [ln (Kr)]
1−n . (5)
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The proposition is proved for the first case when

dist(S0, S1) ≤ min
(

(Cr − 1)
r

2
,
r

2

)
.

In the second case dist(S0, S1) ≤ min
(
(Cr − 1) r2 ,

r
2

)
we have |y1 − y0| > r̄. By definition of capacity

Cap (F0, F1; Ω) ≥ Cap (F0 ∩B(x0, Crr), F1 ∩B(x0, Crr);B(x0, Crr)) .

There exists a quasiconformal homeomorphism ψ that maps B(x0, Crr)
onto itself, maps any sphere S(x0, ρ), 0 < ρ < Crr onto itself and satisfies
conditions: ψ(y1) = y1, and image of y0 is the point y⊥0 := ψ(y0) opposite
to y0 on S(x0, r). The coefficient of quasiconformality Q1 of ψ can be easily
estimated Q1 ≤ πr

r̄ = 2
min(Cr−1,1) .

By definition of quasiconformal homeomorphism we have

Cap (F0 ∩B(x0, Crr), F1 ∩B(x0, Crr);B(x0, Crr)) ≥
1
Q1
Cap (ψ(F0) ∩B(x0, Crr), ψ(F1) ∩B(x0, Crr);B(x0, Crr)) .

Choose two closed balls

B2 := B̄

(
x0 +

y⊥0 − x0

2
,
r

2

)
and

B3 := B̄

(
x0 +

y⊥0 − x0

2
,
r

2
+ (Cr − 1)r

)
⊂ B(x0, Crr).

By construction continua ψ(F0) and ψ(F1) intersect any sphere S
(
x0 +

y⊥0 −x0
2 , ρ

)
for r

2 ≤ ρ ≤
r
2 + (Cr − 1)r. Therefore by Lemma 2

Cap (ψ(F0) ∩B(x0, Crr), ψ(F1) ∩B(x0, Crr);B(x0, Crr))

≥ C(n) ln (1 + 2(Cr − 1)) .

Finally we have

Cap (F0, F1; Ω) ≥ C(n) min(Cr − 1, 1) ln (1 + 2(Cr − 1)) . (6)

Combining this inequality and inequality 3 we obtain finally

C(n) min(Cr − 1, 1) ln (1 + 2(Cr − 1)) ≤ ωn−1 [ln (Kr)]
1−n . (7)

The proposition is proved for the second case:

dist(S0, S1) > min
(

(Cr − 1)
r

2
,
r

2

)
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Recall that Kr is the short notation for Kint(Fr). Combining inequali-
ties (3, 4, 6) we obtain finally the constant C1(Q,Cr, n)

C(n) min [ln 2,min(Cr − 1, 1) ln (1 + 2(Cr − 1))] ≤ ωn−1 [ln (Kr)]
1−n

i.e.

Kr ≤ exp

[{
ωn−1

C(n) min [ln 2,min(Cr − 1, 1) ln (1 + 2(Cr − 1))]

} 1
n−1

]
.

Remark. We proved a stronger estimate:

R̄

r̄
≤ exp

[{
ωn−1

C(n) min [ln 2,min(Cr − 1, 1) ln (1 + 2(Cr − 1))]

} 1
n−1

]
.

Let us return to estimates of δ (Fr) with the help of dist (Fr, ∂Ω′) i.e.
to estimates of Kext(Fr). We start with the upper estimate:

Proposition 4. Suppose that Ω,Ω′ are domains in Rn and the residual
set Λ = Rn \ Ω′ of Ω′ is unbounded and connected. Let ϕ : Ω → Ω′ be
a Q-quasiconformal homeomorphism of a bounded domain Ω ⊂ Rn onto a
bounded domain Ω′ ⊂ Rn, B̄(x0, r) ⊂ Ω be a closed ball with the embedding
coefficient KB(x0,r),Ω. Then

δ (Fr) ≤ C1(Q,Cr, n)dist
(
Fr,Λ

′) = C1dist
(
Fr, ∂Ω′

)
where a constant C2 := C2(Q,Cr, n) depends only on Q,Cr, n.

Proof. We will use notations: Fr = ϕ(B̄(x0, r)),Kr for the interior
dilatation Kint(Fr), Cr for the embedding coefficient KB(x0,r),Ω and FR :=

Ω
′ \ ϕ(B(x0, Crr)).

Because ϕ : Ω→ Ω′ is Q-quasiconformal

Cap(Fr, FR; Ω′) ≤ Q Cap(B̄(x0, r),Ω \B(x0, Crr)); Ω).

By definition of the conformal capacity

Cap(B̄(x0, r),Ω \B(x0, Crr)); Ω) = Cap(B̄(x0, r),R
n \B(x0, Cr)); R

n).

By Lemma 1

Cap(B̄(x0, r),R
n \B(x0, Cr)); R

n) = ωn−1 [ln (Cr)]
1−n .

Hence

Cap(Fr, FR; Ω′) ≤ ωn−1 [ln (Cr)]
1−n
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Choose points yo ∈ Frand y1 ∈ ∂Ω′ such that dist(Fr, ∂Ω′) = |y1 − y0|.
Let ỹ := y0 + y1−y0

2 and B̄(ỹ, ρ1) be a closed ball with center at ỹ.
By Proposition 3 Fr contains a closed ball of a radius ρ2 := 1

2Krδ(Fr).
Therefore both continuums Fr and FR intersect any sphere S(ỹ, ρ) for any
ρ ∈ [ρ1, ρ1 + ρ2]. By Lemma 2 we have

Cap(Fr, FR; Ω′) ≥ Cap(Fr, FR; B̄(ỹ, ρ2) \B(ỹ, ρ1)) ≥
C(n) ln

(
dist(Fr,∂Ω′)+Krδ(Fr)

dist(Fr,∂Ω′)

)
.

Combining both estimates for Cap(Fr, FR; Ω′) we obtain finally

C(n) ln

(
dist(Fr, ∂Ω′) + Krδ(Fr)

dist(Fr, ∂Ω′)

)
≤ Cap(Fr, FR; Ω′) ≤ ωn−1 [ln (Cr)]

1−n .

It means that

dist(Fr, ∂Ω′) +Krδ(Fr) ≤ dist(Fr, ∂Ω′) exp

[
ωn−1

C(n) [ln (Cr)]
n−1

]
.

Because Cr > 1 the number under exponent is positive and the exponent
value is bigger than 1. Therefore

δ(Fr) ≤
{
K−1
r exp

[
ωn−1

C(n) [ln (Cr)]
n−1

]}
dist(Fr, ∂Ω′).

The second estimate is an estimate from below with some additional
restriction on the domain Ω′. We suppose additionally that any component
of Rn \ Ω′ is unbounded. We call such domains simple domains.

Proposition 5. Suppose that Ω,Ω′ are domains in Rn and the residual
set Λ = Rn\Ω of Ω is unbounded and connected (i.e Ω is a simple domain).
Let ϕ : Ω → Ω′ be a Q-quasiconformal homeomorphism , B̄(x0, r) ⊂ Ω be
a closed ball with embedding coefficient KB(x0,r),Ω . Then

δ (Fr) ≥ C3(Q,KB(x0,r),Ω,n)dist
(
Fr,Λ

′)
where a constant C3 := C3(Q,KB(x0,r),Ω, n) depends only on
Q,KB(x0,r),Ω, n.

Proof. Denote by B̄r := B̄(y0, r̄) ⊂ Fr a closed ball of a maximal
radius that belongs to Fr := ϕ(B(xo, r)) and has the center at a point
y0; = ϕ(x0), by BR := B(y0, R̄) an open ball of a minimal radius whose

closure contains Fr, by CBR := Rn \ BR, by Kr the ratio Kr ≤ R̄
r̄ and

by Cr the embedding coefficient KB(x0,r),Ω. By definition of the interior

dilatation Kr ≤ Kr = R̄
r̄ .

By Proposition 3 Kr ≤ C̃r(Q,Cr, n) := C̃r. It means that δ (Fr) ≤
2C̃rr. Let Brd := B(y0, rd) be a greatest open ball such that S(y0, rd) ∩
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∂Ω′ 6= ∅ . By construction rd ≥ r + dist (Fr, ∂Ω′). By Lemma 1 and
monotonicity of the conformal capacity

Cap(B̄r,Ω
′ \Brd ; Ω′) = Cap(B̄r,R

n \Brd ; R
n) = ωn−1

[
ln
(rd
r

)]1−n

≤ ωn−1

[
ln

(
r + dist (Fr, ∂Ω′)

r

)]1−n
.

Using monotonicity of conformal capacity and quasi-invariance of con-
formal capacity under Q-quasiconformal homeomorphisms we obtain

Q−1Cap(B(x0, r),Λ; Ω) ≤ Cap(B̄r,Λ
′; Ω′) ≤ Cap(B̄r,R

n \ Brd ; Ω′)

≤ Cap(B̄r,Ω
′ \Brd ; Ω′).

Choose a point x1 ∈ ∂Ω closest to B(x0, r) and two balls

B1 := B

(
x0 +

x1 − x0

2
,
Cr − 1

2

)
and

B2 := B

(
x0 +

x1 − x0

2
,
Cr − 1

2
+ 2r

)
. Continuums F0 := B(x0, r) and F1 := Λ ∩ B

(
x0 + x1−x0

2 , Cr−1
2 r + 2r

)
join spheres Sn−1

(
x0 + x1−x0

2 , Cr−1
2 r + 2r

)
and B

(
x0 + x1−x0

2 , Cr−1
2 r

)
. By

monotonicity of capacity and Lemma 2 we get

C(n) ln

{
1 +

1

Cr − 1

}
≤ Cap(F0, F1;B2 \B1) ≤ Cap(B(x0, r),Λ; Ω)

Combining all previous estimates we get

ln

(
1 +

1

Cr − 1

)
≤ Qωn−1

C(n)
ωn−1

[
ln

(
r + dist (Fr, ∂Ω′)

r

)]1−n
.

It means that[
ln

(
1 +

dist (Fr, ∂Ω′)

r

)]n−1

≤ Qωn−1

C(n)
ωn−1

[
ln

(
1 +

1

Cr − 1

)]−1

The constant

C0(Q,Cr, n) :=
Qωn−1

C(n)
ωn−1

[
ln

(
1 +

1

Cr − 1

)]−1

is positive.
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After elementary calculations we have

dist (Fr, ∂Ω′)

r
≤ exp

(
C0(Q,Cr, n)

1
n−1

)
− 1.

Recall that Cr is a short notation for KB(x0,r),Ω and denote

C3(Q,KB(x0,r),Ω, n) :=
[
exp

(
C0(Q,Cr, n)

1
n−1

)
− 1
]−
.

Because r ≤ δ(Fr) we rewrite the last inequality as

C3(Q,KB(x0,r),Ω, n) dist
(
Fr, ∂Ω′

)
≤ r ≤ δ(Fr)

The main result of this paper can be formulated in more general way.
Theorem. For any simple domain Ω quasiconformal image of any its

Whitney family is a rough Whitney family.
Follows directly from Propositions 3,4,5.
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