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Abstract

It is necessary to note that phenomenological turbulence theories
develop in the direction of obtaining such closing ratios that as pa-
rameters could possibly contain the constants being the same for the
widest class of flows. This turbulence theory is quite widely used in
practice as a basis for calculating characteristics of turbulent flows
considering the fact that the closed systems of transfer equations that
are managed to get within these theories are relatively simple and at
the same time give good coincidence of calculated and experimental
results.
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Application of the obtained system of transfer equations
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for averaged quantities when studying turbulent flows allows to avoid to use
information on irregular behavior of physical variables and at the same time
from the mathematical point of view to simplify the problem of research.
However, the system of transfer equations (1)-(3) is incomplete since its
equations at turbulent flows contain a number of additional terms (turbu-
lent stresses and turbulent heat flows) whose explicit forms are not known.
Thus, there arises a nontrivial problem of closure of the system of transfer
equations for averaged quantities that in turbulence theory is central. For
that it is necessary to set up additional dependences or accept some kind of
hypotheses on the relation between the seeming turbulent quantities (i.e.
turbulent flows and heat flows) and the averaged flow parameters [8].
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It is clear that mixing of macroscopic mass of medium inherent to tur-
bulent flows informs these flows the ability to intensive diffusion transfer
of substances contained in the medium. Wherefore, distributions of such
“substances” as a pulse, heat, substances dissolved or weighted in medium
are more smoothed in turbulent flow than in laminar one.

Detailed study of turbulent transfer processes shows that these processes
are much more complex than molecular diffusion process. Nevertheless, to
describe approximately these processes in the same way as was accepted
in phenomenological theory of molecular diffusion, more exactly, to assume
that the density of substance flow (i.e. the substance flow rate through unit
area per unit time) is proportional to the substance gradient.

Boussinesq first suggested determining turbulent tangential stress (i.e.
taken with the opposite sign of the pulse flow density) in plane-parallel flow
along the axis x by the formula [3-4]:

−ρu′xu′y = µT
∂ūx
∂y

, (4)

where µT is dynamic coefficient of turbulent viscosity (turbulent exchange).
Boussinesq considered that the turbulent exchange coefficientµT , unlike the
molecular viscosity coefficient µT is not a physical constant of the medium,
it represents some space coordinate function, the function in a complex
maner related to circumstances of the given turbulent flow.

Passing to the description of the spatial (three-dimensional) averaged
motion, it is natural to generalize the Boussinesq turbulence hypothesis (4)
similar to one as in the laminar flow equations the Newton hypothesis on
viscous friction was generalized, i.e. to assume that the tensor of turbulent
stresses is a homogeneous linear function of the tensor of averaged strain
rates [3-4]:

−ρu′iu′j = µT D̄ij , (5)

where D̄ij are components of the tensor averaged strain rates:

D̄ij =
∂ūi
∂xj

+
∂ūj
∂xi

. (6)

It should be noted that formula (5) for determining ρu′iu
′
j is efficient

for flows in boundary layers and in smoothly changing flows with small
Reynolds and Froude numbers, the turbulent energy release rate approx-
imately equals its dissipation rate (3). In more complex and developed
turbulent flows (i.e. for rather large Reynolds and Froude number), where
the convective turbulence transfer is essential, in order to determine ρu′iu

′
j
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academician A.N.Kolmogorov suggested the following generalized hypoth-
esis

−ρu′iu′j = µT D̄ij − δij
2

3
ρk, (7)

where δij is Kronecker’s symbol, k is kinetic energy of turbulence per unit
mass:
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Substituting formula (7) in dynamics equation (2), we get the system of
phenomenological equations of the averaged turbulent flow of incompress-
ible medium with external mass exchange (with source or drain of mass)
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(9)

The continuity equation of the averaged turbulent flow of incompressible
medium with source (or drain) of mass keeps the form

∂ūi
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= q̄. (10)

The system of equations (9) and (10) assuming in them (ū∗i − ūi) q̄ = 0
and q̄ = 0 (i.e. in the absence of reactive force arising from attachment
or detachment of the mass), matches exactly acad. A.N. Kolmogorov’s dy-
namics equation for a turbulent flow of incompressible medium with con-
stant mass [3]:
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To determine the kinetic energy of turbulence we use (according to
(k − ε) turbulence model) an equation in the form [7]
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where ε is turbulent energy dissipation rate
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Equations (13) and (14) are valid for µT >> µ.

Turbulent viscosity µT is expressed [1, 7] by local values of kinetic energy
of turbulence k and turbulent energy dissipation rate ε in the following way:

µT =
c0ρk

2

ε
. (15)

This turbulent viscosity µT is used to joint turbulent stresses. The
empiric coefficients c0, c1, c2, Prk , Prε contained in the above mentioned ad-
ditional equations (13) and (14) equal [1]

c0 = 0, 09 ; c1 = 1, 45 ; c2 = 1, 90 ;Prk = 1, 0 ;Prε = 1, 3. (16)

It should be noted that there are also another turbulence models with
two equations (i.e. to determine k andε), the Nga-Spolding, Wilcocks-Tracy
models are the most used ones. Rebzin compared the (k − ε) turbulence
models for an incompressible medium and concluded that they all work
well enough [1].

Thus, the system of averaged equations of dynamics (9) and continuity
(10) with regard to additional relations of (k − ε) turbulence model (13)-
(15) represent a complete system of equations of motion of highly turbulent
flow of incompressible medium with external source (or drain) of the mass.

In a number of applied problems, the so-called algebraic models of tur-
bulence based on the Boussinesq hypothesis may be more effective [1]. For
engineering calculations of many flows this hypothesis corresponds to real-
ity with sufficient accuracy [7]. In slowly changing flows with small Froude
numbers when normal turbulent stresses (it turns out that it is much smaller
than other terms and they are simply ignored) may not be taken into ac-
count. In these conditions the difference between the Boussinesq hypoth-
esis and Kolmogorov-Prandtle generalized theory disappears. Then the
Kolmogorov-Prandtle hypothesis may be replaced by the simpler Boussi-
nesq hypothesis [7].

It is known that in Boussinesq’s phenomenological theory of turbulence
it is assumed that the turbulent stresses tensor (by analogy of the New-
ton law on viscous friction in laminar flow) is a homogeneous function of
averaged rates of deformation

u′iu
′
j = νT D̄ij , (17)

where νT is a kinematic coefficient of turbulent viscosity.

Turbulent heat flow ρcu′jT
′ is connected with turbulent viscosity and

averaged flow parameters. It is determined (by means of algebraic model
in the form of Reynolds analogy based on similarity between heat transfer
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and pulse) by the formula

−ρcu′jT ′ = λT
∂T̄

∂xj
, (18)

where λT is a turbulent heat conductivity coefficient.

In turbulent flow the additional heat transfer ρcu′jT
′ is stipulated by

turbulent flow. Experimental studies [1] confirm that the ratio of turbulent
heat conductivity aT to turbulent viscosity νT called Prandtle’s turbulent
number, PrT = µT c

λT
= νT

aT
is a function with “good” behavior. Usually,

it is considered that PrT = 0, 9. For the wall-mounted flows PrT changes
from 0, 5−0, 7 in the outer part of the boundary layer to 1, 5 near the wall.
The turbulent heat flow ρcu′jT

′ is connected with turbulent viscosity µT
and aversged flow parameters by means of the Prandtle turbulent number
(PrT ) in the following way:
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∂T̄
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or
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From comparison (18) and (19) we have:
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PrT

ρc. (21)

Allowing for above expressions for the turbulent stress −ρcu′iu′j and

turbulent heat flow −ρcu′jT ′ we get a system of flow motion equation of a
medium with heat mass exchange
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Here a and aT are the molecular and turbulent heat conductivity coef-
ficients:

a = λ/ρc = ν/Pr, (25)

aT = λT /ρc = νT /PrT . (26)
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System (22)-(26) is not complete, i.e. νT and aT are unknown. In
mathematical modeling of turbulent flows the most complex problem is to
determine turbulent transfer coefficients (to complete the system of turbu-
lent flow motion equations), in particular, the turbulent viscosity coefficient
νT contained in the dynamics equation (23), and turbulent heat conductiv-
ity coefficient aT contained in the energy equation (24).

It was established [7] that a great majority of algebraic models of turbu-
lence work well when the Prandtle turbulent number PrT is close to a unit,
i.e. it is accepted PrT = 1 [1]. Therefore, provided PrT = 1 (by analogy
with laminar flow where Pr = 1 is accepted), we can obtain a = ν and
aT = νT . Then we can rewrite the system (22)-(24) in the following form
[9]
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∂ūi
∂t

+ ūj
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To determine the turbulent viscosity coefficient we can use algebraic
model of turbulence based on the Boussinesq hypothesis. One of the most
successive models of this type was suggested by L.Prandtle

νT = l2
dū

dy
, (30)

where l is the displacement (mixing) path length; ū is an averaged rate
component in the direction of the main flow; dūdy is an averaged rate gradient;
y is a transverse coordinate (distance from the wall).

Calculation of l contained in (30) depends on the type of the flow under
consideration: a boundary layer, jet, trace, etc. For wall mounted flows
(internal or external) good results are given by [2,7]

l = χy
(

1− e−y/A
)
, (31)

whereχ = 0, 41 ; A = 26. The expression in the brackets [1− exp (−y/A)]
is Van Drist’s damping function used to throw a bridge between completely
developed boundary layer, where l = χy and viscous sublayer, where l→ 0
[1].

Thus, allowing for (30) and (31), the system (27)-(29) is complete. It
should be noted that algebraic models of turbulence have well established
for relatively simple flows. And the structure of turbulence remains al-
most unchanged to the Max numbersMa < 5. Conseqrently, change of
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physical features of the medium (density and other feature) need not to be
taken into account in the equations of motoin used together with turbulence
model. When solving some applied problems (for example, turbulent jet
spreaded in unlimited space, or turbulence in atmosphere), behaving sim-
ilar to Boussinesq, Townsend, Ibadzade, Makkaveev and others, turbulent
viscosity coefficient may be replaced by its averaged value in flow’s cross
section (i.e. to accept νT = const) and the system of equations of motion
of turbulent flow of incompressible medium with heat mass exchange is
simplified and takes the form:

∂ūi
∂xi

= q̄, (32)
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∂ūi
∂xj
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1
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)
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In this form the turbulent motion equation coincides with the equa-
tion of incompressible medium with heat mass exchange. The difference is
only in the viscosity value. Consequently, this system with regard to cor-
responding boundary conditions is a mathematical model of turbulent flow
of incompressible viscous medium with heat mass exchange. Their analysis
shows that in the absence of external sources (or drains) of mass q̄ = 0, the
amount of motion (ū∗i − ūi) q̄ = 0 and heat energy

(
T̄∗ − T̄

)
q̄ = 0, and as

a special case from them one can obtain the known equations of matemat-
ical model of averaged turbulent flow of incompressible viscous medium of
constant mass [1, 6, 7].
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