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Abstract

Is studied the pulsating flow of viscous incompressible liquid be-
tween porous walls with head transfer when in perpendicular of walls
is applied external uniform magnetic field. The flow of liquid is caused
due the pulsation drop of pressure and the pulsation movement of the
porous walls. The physical characteristics of liquid flow are found.
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1 Introduction

Is studied the pulsating flow of viscous incompressible liquid between porous
walls with head transfer when in perpendicular of walls is applied external
uniform magnetic field. The flow of liquid is caused due the pulsation
movement of the porous walls and pulsation drop of pressure that is given

by the formula: −1

ρ

∂P

∂z
= Ae−iωt. The temperature change on porous walls

of tube and in the tube is carried out by pulsating. In the heat transfer
equation is taken not account the dissipation of caused due friction energy

η

(
∂V

∂x

)
, as well as Joules heat σV 2.

Are obtained exact solutions of Navier-Stokes and heat transfer equa-
tions in the case of non-stationary motion of weak electroconductive viscous
incompressible liquid fluid is. The physical characteristics of motion and
heat transfer are studied by taking into account the impact of changes of
Hartman, Prandtl, Reynolds numbers and pulsating flow to the criteria of
similarity.
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Accordingly to the assessed problem are studied in the [3, 5, 7, 8] articles
and in the [4, 6, 10] works is considered laminar flow of fluid in pipe without
a heat transfer when on the walls carried out the intensive inflow or leakage.

2 Basic Part

Let’s consider the weak electroconductive viscous incompressible liquid flow
in planar porous pipe with taking into account the heat transfer when in
perpendicular of motion is applied the external homogeneous (H0) magnetic
field. The internal induction in comparison to external magnetic field is
comparatively small and due it is neglected. Is implied that the liquid
velocity has components ~V (u∗0, 0, vz(x, t)) along the oz and ox axles, and
the temperature T (x, t) represents a function of x and t. u∗0 = const is the
leakage rate.

The motion and heat transfer equations in the non-inductive approxi-
mation generally has the following form [1, 2, 9]:

∂~V

∂t
+
(
~V∆
)
~V = −1

ρ
gradp+ ν∆~V − σ

ρ

[
H
[
~V · ~H

]]
,

ρCν

(
∂T

∂t
+ (V∇)T

)
= k∆T + Φ + σ

[
~V · ~H

]2
,

div~V = 0, div ~H = 0,

(1)

where
[
~V · ~H

]2
is the Joules heat and Φ is the energy dissipation due the

friction that is equal to

Φ = 2η

{
1

2

[(
∂Vx
∂y

+
∂Vy
∂x

)2

+

(
∂Vy
∂z

+
∂Vz
∂y

)2

+

(
∂Vz
∂x

+
∂Vx
∂y

)2
]

+

(
∂Vx
∂x

)2

+

(
∂Vy
∂y

)2

+

(
∂Vz
∂z

)2
}
.

If we take into account the above mentioned from the (1) system would
receive in the dimensionless quantities

∂U

∂τ
− ∂2U

∂ξ2
−R∂U

∂ξ
+M2U = f(τ),

pr
∂θ

∂τ
− ∂2θ

∂ξ2
− prR

∂θ

∂ξ
=

(
∂U

∂ξ

)2

+M2U2,

(2)

where ξ =
x

L
, τ =

ν

L2
t, U =

V

V ∗0
, θ =

k

V ∗20

T , are the dimensionless quan-

tities, and V ∗0 and L in are accordingly characteristic velocity and char-

acteristic length. M = H0L

√
σ

η
is the Hartman’s number, α =

ωL2

ν
is
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the similarity criteria of steady pulsation motion, Pr =
ηCν
k

is the Prandtl

number, R =
u∗0L

ν
is the liquid leakage characteristic Reynolds number, σ

is the conductivity ratio, ν is the kinematic coefficient of viscosity, η is the
dynamic coefficient of viscosity, ω is the frequency, Cν is the specific heat
capacity, k is the coefficient of conductivity.

the (2) system the initial and boundary conditions generally would be
given in the following form:

U(ξ, 0) = 0, U(1, τ) = ϕ1(τ), U(−1, τ) = ϕ2(τ),
θ(ξ, 0) = θ1(ξ, 0) + θ2(ξ, 0) = 0,

(3)

θ(1, τ) = θ1(1, τ) + θ2(1, τ) = q
(1)
1 (τ) + q

(2)
1 (τ) = q1(τ),

θ(−1, τ) = θ1(−1, τ) + θ2(−1, τ) = q
(1)
2 (τ) + q

(2)
2 (τ) = q2(τ),

(4)

where θ1(ξ, τ) is the temperature, when in the heat conductivity equation
is considered only the friction heat, and θ2(ξ, τ) is the temperature, when
in the heat conductivity equation is considered only the Joule’s heat.

We imply that the liquid immediately begins to move (i.e. U(ξ, 0) = 0)
and the temperature change of the planar tube walls in the initial moment
is equal to zero.

If for the solution of (2)-(3) boundary problem we apply Laplase integral
transformation we will obtain

U
′′

+RU
′ − (M2 + s)U = −f(s) (5)

U(1, s) = ϕ1(s), U(−1, s) = ϕ2(s), (6)

where

U(ξ, s) =

∫ ∞
0

U(ξ, τ)e−sτdτ, f(s) =

∫ ∞
0

f(τ)e−sτdτ,

ϕ1(s) =

∫ ∞
0

ϕ1(τ)e−sτdτ, ϕ2(s) =

∫ ∞
0

ϕ2(τ)e−sτdτ.

The solution of (5)-(6) boundary conditions for velocity transformation
receives con

U(ξ, s) =

(
ϕ1(s)−

f(s)

M2 + s

)
e
R(1−ξ)

2
shβ(1 + ξ)/2

shβ

+

(
ϕ2(s)−

f(s)

M2 + s

)
e
R(1+ξ)

2
shβ(1− ξ)/2

shβ
+

f(s)

M2 + s
,

(7)

where
β =

√
R2 + 4(M2 + s).
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Let’s study the liquid flow that is caused due pulsating motion of porous

walls: U(±1, τ) = ϕ1,2(τ) = Ae−iατ , ϕ1,2(s) =
A1,2

s+ iα
and pulsating drop

of pressure: −1

ρ

∂p

∂z
= f1(t) = A−iωt, f1(s) =

A

s+ iα
.

If we consider the above mentioned in the (7) formula it would take the
following form:

U(ξ, s) =
A1e

R(1−ξ)
2 shβ(1 + ξ)/2

(s+ iα)shβ
+
A2e

−R(1+ξ)
2 shβ(1− ξ)/2

(s+ iα)shβ

+
D

(M2 + s)(s+ iα)shβ

×
(

shβ − e
R(1−ξ)

2 shβ(1 + ξ)/2− e−
R(1+ξ)

2 shβ(1− ξ)/2
)
,

(8)

where D =
AL2

νV ∗0
is the amplitude of pulsating drop of pressure and A1 and

A2 - are the amplitudes of walls motion.
If the (8) formula would be written down in originals then for the cal-

culation of velocity we receive the following formula:

U(ξ, τ) =

{(
A1 −

D

M2 − iα

)
e
R(1−ξ)

2 shβ(1 + ξ)/2

+

(
A2 −

D

M2 − iα

)
e−

R(1+ξ)
2 shβ(1− ξ)/2 +

Dshβ

M2 − iα

}
e−iατ

shβ

+
1

2

∞∑
n=1

(−1)n−1µne
−snτ

iα− sn

[(
A1 +

4D

R2 + µ2n

)
e
R(1−ξ)

2 sin
µn(1 + ξ)

2

+

(
A2 +

4D

R2 + µ2n

)
e−

R(1+ξ)
2 sin

µn(1− ξ)
2

]
= U1(ξ, τ) + U2(ξ, τ),

(9)

where sn = −µ
2
n +R2 + 4M2

4
, µn = πn, U1(ξ, τ) describes the steady pul-

sating flows between the porous walls and U2(ξ, τ) describes the oscillation
caused due porous walls pulsating motion and pulsating drop of pressure
in the liquid.

After the rather large interval in the liquid oscillations would be damped
(U(ξ, τ) → ∞), thus for the velocity the formula (9) takes the following
form:

U(ξ, τ) = U1(ξ, τ) =

{(
A1 −

D

M2 − iα

)
e
R(1−ξ)

2 shβ(1 + ξ)/2

+

(
A2 −

D

M2 − iα

)
e−

R(1+ξ)
2 shβ(1− ξ)/2 +

Dshβ

M2 − iα

}
e−iατ

shβ
.

(10)

If in the equation of heat conductivity (2) neglected firstly the Joule’s
heat and then the friction heat we accordingly will obtain the following
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equations:

Pr
∂θ1
∂τ
− ∂2θ1

∂ξ2
− PrR

∂θ1
∂ξ

=

(
∂U

∂ξ

)2

, (11)

Pr
∂θ2
∂τ
− ∂2θ2

∂ξ2
− PrR

∂θ2
∂ξ

= M2U2. (12)

If we in the equations (11)-(12) will consider the formula (10) of velocity
and apply the Laplace integral transformation formula then by taking into
account the (4) boundary conditions the temperature in the transforma-
tions would be expressed as:

θm(ξ, τ) =
(
q̄
(m)
1 (s)− q̄m(1)

)
e
PrR(1−ξ)

2
shγ(1 + ξ)/2

shγ

+
(
q̄
(m)
2 (s)− q̄m(1)

)
e−

PrR(1+ξ)
2

shγ(1− ξ)/2
shγ

+ q̄m(ξ),
(13)

where m = 1, 2; γ =
√
P 2
rR

2 + 4Prs,

β1,2 = −R
2
± 1

2

√
R2 + 4(M2 − iα),

2β3 = β1 + β2, 2β4 = β1, 2β5 = β2,
(14)

q̄1(ξ) = − 1

s+ 2iα

{
2∑

k=1

β2kake
2βkξ

4β2k + 2PrRβk − sPr
+

(M2 − iα)a3e
−Rξ

R2(1− Pr)− sPr

}
,

q̄2(ξ) = − M2

s+ 2iα

{
5∑

k=1

ake
2βkξ

4β2k + 2PrRβk − sPr
+

a6
sPr

}
, (15)

a1,2 =


(
A1 − D

M2−iα

)
e−β2,1 −

(
A2 − D

M2−iα

)
eβ2,1

2sh(β1 − β2)

2

, (16)

a3 =
1

2sh2(β1 − β2)

[(
A2 −

D

M2 − iα

)
e2β3 +

(
A1 −

D

M2 − iα

)2

,

−2

(
A2 −

D

M2 − iα

)(
A1 −

D

M2 − iα

)
ch(β1 − β2)

]
, (17)

a4,5 =
D

(M2 − iα)sh(β1 − β2)

[(
A2 −

D

M2 − iα

)
eβ2,1

−
(
A1 −

D

M2 − iα

)
e−β2,1

]
,

a6 =

(
D

M2 − iα

)2

.

(18)
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Let’s study the temperature changes at steady pulsating motion of liq-
uid, when the temperature change in the initial moment is equal to zero,
and on the planar walls of pipe changes by pulsating law:

q
(1)
1,2(τ) = B

(1)
1,2e

−2iατ , q
(2)
1,2(τ) = B

(2)
1,2e

−2iατ .

If we considered the above mentioned in the (13) formula, then for
the temperature in originals accordingly would be obtained the following
expressions:

θm(ξ, τ) =
[(
B

(m)
1 − qm(−1)

)
e
PrR(1−ξ)

2 shγ(1 + ξ)/2

+
(
B

(m)
2 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + qm(ξ)shγ

] e−2iατ
shγ

+
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[(
B

(m)
1 − q∗m(1)

)
e
PrR(1−ξ)

2 sinµn(1 + ξ)/2

+
(
B

(m)
2 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sinµn(1− ξ)/2

]
.

(19)

where m = 1, 2; µn = πn, sn = −µ
2
n + P 2

rR
2

4Pr
, γ =

√
P 2
rR

2 − 8iαPr,

q1(ξ) = −
2∑

k=1

β2kake
2βkξ

4β2k + 2PrRβk + 2iαPr
− (M2 − iα)a3e

−Rξ

R2(1− Pr) + 2iαPr
,

q2(ξ) = −M2
5∑

k=1

ake
2βkξ

4β2k + 2PrRβk + 2iαPr
+
M2a6
2iαPr

, (20)

q∗1(ξ) = −
2∑

k=1

β2kake
2βkξ

4β2k + 2PrRβk − snPr
− (M2 − iα)a3e

−Rξ

R2(1− Pr)− snPr
,

q∗2(ξ) = −M2
5∑

k=1

ake
2βkξ

4β2k + 2PrRβk − snPr
+
M2a6
2snPr

,

Let’s mention that at the q2(ξ) and q∗2(ξ) computation before the a3
and a4 coefficients would be implied the sign ”-”.

I. let’s consider the pulsating flow of liquid that is caused by the pul-
sating motion of walls. Let’s say the pulsating motion of walls occurs in
the same phase, by the same amplitude (A1 = A2 = U0), the temperature
change on the walls of tube carried out pulsating in the same phase, by

same amplitude, (B
(1)
1,2 = θ

(1)
1 = const, B

(2)
1,2 = θ

(2)
1 = const), and the drop

of pressure is equal to zero (D = 0).
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Due the consideration of above mentioned, for the velocity and temper-
ature by the (9) and (19) formulae we will obtain that

U I(ξ, τ)

U0
=
e−iατ

shβ

(
e
R(1−ξ)

2 shβ(1 + ξ)/2 + e−
R(1+ξ)

2 shβ(1− ξ)/2
)

+
1

2

∞∑
n=1

(−1)n−1µne
−(M2+

R2+µ2n
4

)τ

iα− sn

(
e
R(1−ξ)

2 sin
µn(1 + ξ)

2

+e−
R(1+ξ)

2 sin
µn(1− ξ)

2

)
= U I1 (ξ, τ) + U I2 (ξ, τ),

(21)

θIm(ξ, τ) =
[(
θ
(m)
1 − qm(1)

)
e
PrR(1−ξ)

2 shγ(1 + ξ)/2(
θ
(m)
1 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + qm(ξ)shγ

] e−2iατ
shγ

+
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[(
θ
(m)
1 − q∗m(1)

)
e
PrR(1−ξ)

2 sinµn(1 + ξ)/2

+
(
θ
(m)
1 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sinµn(1− ξ)/2

]
= θ∗m(ξ, τ) + θ∗∗m (ξ, τ),

(22)

where m = 1, 2, and q1,2(ξ) and q∗1,2(ξ) would be calculated due the (20)
formula.

If we calculate the friction force in liquid and on planar pipe’s walls, we
accordingly will obtain the following formulae:

F I =
U0e

−iατ

2shβ

[
β

(
e
R(1−ξ)

2 ch
β(1 + ξ)

2
− e

R(1+ξ)
2 ch

β(1− ξ)
2

)
−R

(
e
R(1−ξ)

2 sh
β(1 + ξ)

2
+ e

R(1+ξ)
2 sh

β(1− ξ)
2

)]

F I1,2 =
U0e

−iατ

2shβ

[
β
(
±chβµeµR

)
−Rshβ

]
,

and for the flow rate and average velocity we will have:

θI =
U0β(chβ/2− chR)e−iατ

(M2 − iα)sh(β1 − β2)
,

U I =
1

2

U0β(chβ/2− chR)e−iατ

(M2 − iα)shβ
.

When the pulsating fluid flow is caused by the porous walls pulsating
motion (the walls are moved in the same phase with the same amplitude),
the friction force on the pile walls takes the different, and the maximum
value of velocity makes at the pipe’s axis.
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II. Let’s say that walls pulsating motion and temperature changes on
the pipe walls is made by different signs of amplitude (A1 = V0, A2 = −V0,
B

(1)
1 = B

(1)
2 = θ

(1)
2 = const, B

(2)
1 = B

(2)
2 = θ

(2)
2 = const). The drop of

pressure in the pipe is still equal to zero (D = 0).
If we consider the above mentioned for the velocity and temperature we

will obtain

U ′′(ξ, τ)

V0
=
e−iατ

shβ

(
e
R(1−ξ)

2 shβ(1 + ξ)/2− e−
R(1+ξ)

2 shβ(1− ξ)/2
)

+
1

2

∞∑
n=1

(−1)n−1µne
−
(
M2+

R2+µ2n
4

)
τ

iα−M2 − R2+µ2n
4

(
e
R(1−ξ)

2 sin
µn(1 + ξ)

2

−e−
R(1+ξ)

2 sin
µn(1− ξ)

2

)
= U II1 (ξ, τ) + U II2 (ξ, τ),

(23)

θ′′m(ξ, τ) =
[(
θ
(m)
2 − qm(1)

)
e
PrR(1−ξ)

2 shγ(1 + ξ)/2(
θ
(m)
2 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + qm(ξ)shγ

] e−2iατ
shγ

+
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[(
θ
(m)
2 − q∗m(1)

)
e
PrR(1−ξ)

2 sinµn(1 + ξ)/2

−
(
θ
(m)
2 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sinµn(1− ξ)/2

]
= θ∗m+2(ξ, τ) + θ∗∗m+2(ξ, τ),

(24)

where q1,2(ξ) and q∗1,2(ξ) would be calculated due the formula (20).
If we calculate the friction force in fluid and on the planar pipe walls

accordingly we will obtain the following formulae:

F II =
V0e
−iατ

2shβ

[
β

(
e
R(1−ξ)

2 ch
β(1 + ξ)

2
+ e−

R(1+ξ)
2 ch

β(1− ξ)
2

)
−R

(
e
R(1−ξ)

2 sh
β(1 + ξ)

2
− e−

R(1+ξ)
2 sh

β(1− ξ)
2

)]
,

F II1,2 =
V0e
−iατ

2shβ

[
β(±chβ + eµR)µRshβ

]
,

and for the flow rate and average velocity we will have:

θII =
V0e
−iατ

(M2 − iα)sh
[β(chβ + chR) +RshR] ,

U II =
1

2

V0e
−iατ

(M2 − iα)sh
[β(chβ + chR) +RshR] .

When the fluid pulsating flow is caused by the walls pulsating motion
(the walls pulsating motion is carried out by reverse direction of sign),
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then on the planar pipes axis the friction force didn’t reach the maximal
value, and on the pipe walls don’t make the same values as in the case of
non-porous walls.

At pulsating motion of porous walls (I-II case) the transfer of pulsation
occurs throughout the whole liquid. As calculations show, the localization
of pulsating fluid flow becomes in adjacent of the walls. Thus the stabiliza-
tion of pulsating flow of liquid occurs very quickly. The fluid’s rate that
describes the process of pulsating stabilization, would be defined by the (21)
and (23) formulae; the smaller is the distance between the porous wall, the
sooner will be stabilized the pulsating motion of fluid and, conversely, the
greater is the distance between the walls, the more time is required for
stabilization of fluid pulsating motion.

The stabilization of fluid pulsating flow occurs after the long time from
fluid motion start i.e. when τ →∞, then the values

U I2 =
U0

2

∞∑
n=1

(−1)n−1µne
−
(
M2+

R2+µ2n
4

)
τ

iα−M2 − R2+µ2n
4

×
(
e
R(1−ξ)

2 sin
µn(1 + ξ)

2
+ e−

R(1+ξ)
2 sin

µn(1− ξ)
2

)
,

U II2 =
V0
2

∞∑
n=1

(−1)n−1µne
−
(
M2+

R2+µ2n
4

)
τ

iα−M2 − R2+µ2n
4

×
(
e
R(1−ξ)

2 sin
µn(1 + ξ)

2
− e−

R(1+ξ)
2 sin

µn(1− ξ)
2

)
,

tends to zero, and fluid steady pulsating flow would be calculated by fol-
lowing formula:

U I(ξ, τ)

U0
=
e−iατ

shβ

(
e
R(1−ξ)

2 shβ(1 + ξ)/2 + e−
R(1+ξ)

2 shβ(1− ξ)/2
)
,

U II(ξ, τ)

V0
=
e−iατ

shβ

(
e
R(1−ξ)

2 shβ(1 + ξ)/2− e−
R(1+ξ)

2 shβ(1− ξ)/2
)
.

At the steady pulsating fluid flow (I-II case) after some time the tem-
perature change in fluid occurs in pulsating mode, i.e. when τ →∞, then
the values

θ∗∗m (ξ, τ) =
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[(
θ
(m)
2 − q∗m(1)

)
e
PrR(1−ξ)

2

× sinµn(1 + ξ)/2 +
(
θ
(m)
2 − q∗m(1)

)
e−

PrR(1+ξ)
2 sinµn(1− ξ)/2

]
,

39



AMIM Vol.24 No.1, 2019 V. Tsutskiridze, L. A. Jikidze

θ∗∗m+2(ξ, τ) =
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[(
θ
(m)
2 − q∗m(1)

)
e
PrR(1−ξ)

2

× sinµn(1 + ξ)/2−
(
θ
(m)
2 − q∗m(1)

)
e−

PrR(1+ξ)
2 sinµn(1− ξ)/2

]
,

tends to zero, and at steady pulsating motion of fluid (that is caused by
the pulsating motion of porous walls) the fluid temperature changes law
will had the pulsating character that would be calculated by the following
formulae:

θ∗∗m (ξ, τ) =
[(
θ
(m)
1 − qm(1)

)
e
PrR(1−ξ)

2 shγ(1 + ξ)/2

+
(
θ
(m)
1 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + qm(ξ)shγ

] e−2iατ
shγ

,

θ∗∗m+2(ξ, τ) =
[(
θ
(m)
2 − qm(1)

)
e
PrR(1−ξ)

2 shγ(1 + ξ)/2

−
(
θ
(m)
2 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + qm(ξ)shγ

] e−2iατ
shγ

.

When the fluid motion is caused by the pulsating motion of porous
walls, then the friction heat impact on the weak conductive fluid will be
more important than at pulsating motion of non-porous walls, and the
action of Joule heat action in both cases is almost similar.

III. Let’s consider the pulsating flow of fluid that is caused only by
pulsating drop of pressure (D 6= 0). The pipe walls are motionless (A1 =
A2 = 0).

Let’s imply that temperature change on the porous pipe walls isn’t

occurring by pulsating law (B
(1)
1 = B

(1)
2 = B

(2)
1 = B

(2)
2 = 0).

If we consider the above mentioned, then for velocity and temperature
from (9) and (19) formulae we will obtain.

U III(ξ, τ)

D/(M2 − iα)
=
e−iατ

shβ

[
shβ − e

R(1−ξ)
2 shβ(1 + ξ)/2− e

R(1+ξ)
2

×shβ(1− ξ)/2] + 2
∞∑
n=1

(−1)n−1(M2 − iα)µne
−
(
M2+

R2+µ2n
4

)
τ(

iα−M2 − R2+µ2n
4

)
(R2 + µ2n)

×
[
e
R(1−ξ)

2 sin
µn(1 + ξ)

2
+ e−

R(1+ξ)
2 sin

µn(1− ξ)
2

]
= U III1 (ξ, τ) + U III2 (ξ, τ),

(25)
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θIIIm (ξ, τ) =
e−2iατ

shβ

[
qm(ξ, τ)shγ − qm(1)e

PrR(1−ξ)
2 shγ(1 + ξ)/2

−qm(−1)e−
PrR(1+ξ)

2 shγ(1− ξ)/2
]
− 1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

×
[
q∗m(1)e

PrR(1−ξ)
2 sinµn(1 + ξ)/2 + q∗m(−1)e−

PrR(1+ξ)
2

× sinµn(1− ξ)/2] = θ∗m+4(ξ, τ) + θ∗ ∗m+4 (ξ, τ),

(26)

where the qm(ξ) and q∗m(ξ) would be calculated from the (20) formulae.
Pulsating drop of pressure in fluid generates the pulsating flow and

oscillating motion that will be expressed by the (25) formula.
The stabilization of pulsating flow in liquid (that is caused by a pulsat-

ing drop of pressure) occurs after the rather long time from fluid oscillating
motion start, i.e. when τ →∞.

Then

U III2 (ξ, τ)

D/(M2 − iα)
= 2

∞∑
n=1

(−1)n−1(M2 − iα)µne
−
(
M2+

R2+µ2n
4

)
τ(

iα−M2 − R2+µ2n
4

)
(R2 + µ2n)[

e
R(1−ξ)

2 sin
µn(1 + ξ)

2
+ e−

R(1+ξ)
2 sin

µn(1− ξ)
2

]
the sum trends to zero and steady pulsating flow will be calculated by
following formula:

U III2 (ξ, τ)

D/(M2 − iα)
=
e−iατ

shβ

[
shβ − e

R(1−ξ)
2 shβ(1 + ξ)− e−

R(1+ξ)
2 shβ(1− ξ)

]
.

When in the porous pipe will be stabilized pulsating flow of liquid,
then the temperature change still occurs by pulsating law, as well as by
oscillating law, after a rather long time, i.e. when τ →∞. The values

θ∗∗m+4 = −1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[
q∗m(1)e

PrR(1−ξ)
2 sinµn(1 + ξ)/2

+q∗m(−1)e−
PrR(1+ξ)

2 sinµn(1− ξ)/2
]

trends to zero, and the temperature change occurs by the pulsating law
and will be calculated by (26) formula.

If we calculate the friction force in fluid, on the pipe porous walls ac-
cordingly obtain the following formula:

F III =
De−iατ

2(M2 − iβ)shβ

[(
Rsh

β(1 + ξ)

2
−Rch

β(1 + ξ)

2

)
e
R(1−ξ)

2

+

(
Rsh

β(1− ξ)
2

+Rch
β(1− ξ)

2

)
e
R(1+ξ)

2

]
,

F III1,2 =
De−iατ

2(M2 − iβ)shβ
[β(±e∓R ∓ ch) +Rshβ],
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and for flow rate and average velocity we will have:

θIII =
2De−iατ

M2 − iα

[
1− β(chβ − chR)

2(M2 − iα)shβ

]
,

U III =
De−iατ

M2 − iα

[
1− β(chβ − chR)

2(M2 − iα)shβ

]
.

When the fluid pulsating flow is caused by pulsating drop of pressure,
then the on porous pipe axis (ξ = 0) the velocity and temperature can not
reach the maximum value, and the friction force is not equal to zero on the
axis, as is the case, as it takes place in the case of non-porous pipe.

3 Conclusion

Conducted by the above mentioned formulae calculations show that the
action of external homogeneous magnetic field slows down fluid pulsating
flow. At increasing of magnetic field the fluid flow rate on the planar pipe
axis decreases, but at the walls is increasing, while the value of average
velocity in the planar pipe cross section is not changed.

The velocity, temperature, friction and flow rate related to the time has
periodic properties.

Each period starts with a strong fluid flow in front direction after that
occurs reverse flow, and then we have motionless state and repeatedly weak
counter flow.

1. When the fluid flow is caused by pulsating drop of pressure or walls
pulsating motion, then the increasing of external homogeneous magnetic

field and increasing of leakage Reynolds

(
R =

U∗0L

ν

)
number causes the

increasing of friction and reduction of flow rate.

2. When the fluid pulsating flow is caused by the walls pulsating motion
and pulsating drop of pressure, then the increasing of leakage Reynolds
number causes deceleration of fluid pulsating flow stabilization, and the
reduction of the leakage Reynolds numbers causes the acceleration of fluid
pulsating flow stabilization, and the temperature change in both cases is
slightly different from each other.

3. When the fluid flow is caused by the pulsating drop of pressure,
then the increasing of Hartman number causes reducing of temperature
in porous pipes. This result corresponds to obtained in the previous case
results according of that the increasing of Hartman causes the deceleration
of fluid pulsating flow.

In general, we can make such conclusion:
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a) The stabilization of fluid pulsating flow and temperature change by
pulsating law in non-porous pipes occurs faster than in porous pipes.

b) The impact of external magnetic field on fluid pulsating flow generally
causes increasing of temperature in planar pipe.
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