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Abstract

In this work we consider equations of equilibrium of the isotropic
elastic plate. By means of Vekua’s method, the system of differential
equations for plates is obtained (approximation N = 1), when on
upper and lower face surfaces displacements are assumed to be known.
The general solution for approximations N = 1 is constructed. The
concrete problem is solved.
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1 Introduction

One of the theories of shallow shells was constructed by Vekua by using the
Cauchy-—Poisson method, which is based on the expansion of displacements
and stresses into series in terms of a system of functions with respect to the
thickness coordinate [1-2]. This method for non-shallow shells in case of
geometrical and physical nonlinear theory was generalized by T. Meunargia
3, 4].

By means of Vekua’s method, the system of differential equations for
thin and shallow shells was obtained, when on upper and lower face surfaces
displacements are assumed to be known [5].
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The systems of equilibrium equations and stress-strain relations (Hooke’s
law) of the plates in the case of N = 1 approximation may be written in

the following form [6]:
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A and p are Lame’s constants, ¢” are contravariant components of the

stress vectors, u' are contravariant components of the displacement vector,
. . 3

®* are contravariant components of the volume force, P, (%) are Legendre

polynomials, A is the semi-thickness.
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Substituting these expressions (3) and (4) into equation (1) and (2), we
obtain the system of second-order partial differential equations:
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where W; are the known values and
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Introducing the well-known differential operators
1 ) 1 ,
0, = 5(81 — 182), 0z = 5(81 + 282),
where z = x1 + ixo.

System (5) and (6) can be written in complex form:
a) for the tension-pressure of plates
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b) for the bending of plates
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The complex representation of the general solutions of the homogenous
systems (7) end (8) are written in the following form [2, 5]:
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where f(2), g(2), ¢(z) and ¥ (z) are any analytic functions of z, w(z, Z) and
X(z,Z) are the general solutions of the following Helmholtz’s equations,
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From egs. (3), (4) the following relations follow
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2 The Problem for the Infinite Plane with a Cir-
cular Hole

Now let us have an infinite plane with a circular hole (Fig. 2). Assume
that the origin of coordinates is at the center of the hole of radius R.

The boundary problem (in stresses) takes the form [3]:
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Figure 1:

Conditions at infinity are

(0) (0) 0)
o1 =I1, o=1I9, o012 =1_I43,

(1) (1) 1)
o11 =14, o99=1%5, o012 ="T%.

Use egs. (9) and (10) the boundary conditions are written as

( L - )\ -
A+ u)(f'(2) + f(2) + (2M2’f"(z) + 8(—;)—2u)fm(z)
; 2 = 400
i Gues) e
i (= g T @)
Ow(z,2)  AN+20R% 0 N\ e o=
_%<Zh wéz Z) + ( —;MN) f (Z)>eza _ ;Bnlezna7 r=R,
(13)
( / 3\ )
2u(¢(2) + 7' (2)) mxu, 7)

A 82x(z, %) —— ——\ _sia +00 o
+2M<2()\ +p) 922 2¢"(2) — ¢ (Z>>€ = Z;Anze , T=R,
aX(Z, 2) 2)\,uh —7 ia
(M 0z 3(3A+2p) (Z)>€

aX(Za 2) 2)‘/‘h Vi o = ino _
-l-(u 5, +3(3)\+2M)@ (z))e —_ZO:OBnge , T=R.

\
(14)
In this case the analytic functions
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Inside of the domain the analytic functions f(2), ¢'(2), ¢'(z), ¥'(z) and
the metaharmonic functions w(z, z), x(z, Z) are represented as a series:
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where K,,(+) is the modified Bessel function of the second kind of n-th order.

In the boundary conditions (13) we substitute the corresponding ex-
pressions (15), (17) and compare the coefficients at identical degrees. We
obtain the following system of equations
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From Conditions at infinity we have
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where I, IV are known quantities, specifying the stress distribution at in-
finity (It is also assumed that ag is a real value).

We use the condition of single-valuedness of the displacements which in
the present case is expressed as

a1+ by = 0. (21)
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Now by substituting (16), (18) into (14) obtain the system of algebraic
equations:
(
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where T'!, T2 are known quantities, specifying the stress distribution at
infinity (It is also assumed that ¢ is a real value).

We use the condition of single-valuedness of the displacements which in
the present case is expressed as

SA 4+ 6p
SA+2u
The coefficients a,, by, ¢n, dp, oy, and 3, are found by solving (19)-(24).
It is easy to prove that the absolute and uniform convergence of the

series obtained in the circle (including the contours) when the functions set
on the boundaries have sufficient smoothness.

c1+d; = 0. (24)
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