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Abstract

In this work we consider equations of equilibrium of the isotropic
elastic plate. By means of Vekua’s method, the system of differential
equations for plates is obtained (approximation N = 1), when on
upper and lower face surfaces displacements are assumed to be known.
The general solution for approximations N = 1 is constructed. The
concrete problem is solved.
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1 Introduction

One of the theories of shallow shells was constructed by Vekua by using the
Cauchy-–Poisson method, which is based on the expansion of displacements
and stresses into series in terms of a system of functions with respect to the
thickness coordinate [1-2]. This method for non-shallow shells in case of
geometrical and physical nonlinear theory was generalized by T. Meunargia
[3, 4].

By means of Vekua’s method, the system of differential equations for
thin and shallow shells was obtained, when on upper and lower face surfaces
displacements are assumed to be known [5].
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The systems of equilibrium equations and stress-strain relations (Hooke’s
law) of the plates in the case of N = 1 approximation may be written in
the following form [6]:
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λ and µ are Lame’s constants, σij are contravariant components of the
stress vectors, ui are contravariant components of the displacement vector,

Φi are contravariant components of the volume force, Pm

(
x3

h

)
are Legendre

polynomials, h is the semi-thickness.
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Substituting these expressions (3) and (4) into equation (1) and (2), we
obtain the system of second-order partial differential equations:
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Introducing the well-known differential operators
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where z = x1 + ix2.
System (5) and (6) can be written in complex form:
a) for the tension-pressure of plates
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b) for the bending of plates
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The complex representation of the general solutions of the homogenous
systems (7) end (8) are written in the following form [2, 5]:
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where f(z), g(z), ϕ(z) and ψ(z) are any analytic functions of z, ω(z, z̄) and
χ(z, z̄) are the general solutions of the following Helmholtz’s equations,
respectively:
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From eqs. (3), (4) the following relations follow
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2 The Problem for the Infinite Plane with a Cir-
cular Hole

Now let us have an infinite plane with a circular hole (Fig. 2). Assume
that the origin of coordinates is at the center of the hole of radius R.

The boundary problem (in stresses) takes the form [3]:
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Figure 1:

Conditions at infinity are
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Use eqs. (9) and (10) the boundary conditions are written as
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In this case the analytic functions

27



AMIM Vol.24 No.1, 2019 B. Gulua, T. Kasrashvili

Inside of the domain the analytic functions f ′(z), g′(z), ϕ′(z), ψ′(z) and
the metaharmonic functions ω(z, z̄), χ(z, z̄) are represented as a series:
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where Kn(·) is the modified Bessel function of the second kind of n-th order.
In the boundary conditions (13) we substitute the corresponding ex-

pressions (15), (17) and compare the coefficients at identical degrees. We
obtain the following system of equations
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From Conditions at infinity we have

a0 = Γ, b0 = Γ′, (20)

where Γ, Γ′ are known quantities, specifying the stress distribution at in-
finity (It is also assumed that a0 is a real value).

We use the condition of single-valuedness of the displacements which in
the present case is expressed as

a1 + b̄1 = 0. (21)
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Now by substituting (16), (18) into (14) obtain the system of algebraic
equations:
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From Conditions at infinity we have

c0 = Γ1, d0 = Γ2, (23)

where Γ1, Γ2 are known quantities, specifying the stress distribution at
infinity (It is also assumed that c0 is a real value).

We use the condition of single-valuedness of the displacements which in
the present case is expressed as

5λ+ 6µ

3λ+ 2µ
c1 + d̄1 = 0. (24)

The coefficients an, bn, cn, dn, αn and βn are found by solving (19)-(24).
It is easy to prove that the absolute and uniform convergence of the

series obtained in the circle (including the contours) when the functions set
on the boundaries have sufficient smoothness.
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