ON ONE PROBLEM FOR THE PLATE

B. Gulua¹, T. Kasrashvili²

 ¹ I. Vekua Institute of Applied Mathematics and Faculty of Exact and Natural Sciences of Iv. Javakhishvili Tbilisi State University
 ² University Str., Tbilisi 0186, Georgia Sokhumi State University
 ⁶ Anna Politkovskaia Str., Tbilisi 0186, Georgia bak.gulua@gmail.com
 ² Department of Mathematics, Georgian Technical University
 ⁷ N. Kostava Str., Tbilisi 0175, Georgia
 I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University
 ² University Str., Tbilisi 0186, Georgia tamarkasrashvili@yahoo.com

(Received 15.01.2019; accepted 06.05.2019)

Abstract

In this work we consider equations of equilibrium of the isotropic elastic plate. By means of Vekua's method, the system of differential equations for plates is obtained (approximation N = 1), when on upper and lower face surfaces displacements are assumed to be known. The general solution for approximations N = 1 is constructed. The concrete problem is solved.

Keywords and phrases: The stress vector, the displacement vector. AMS subject classification (2010): 74K25, 74B20.

1 Introduction

One of the theories of shallow shells was constructed by Vekua by using the Cauchy-–Poisson method, which is based on the expansion of displacements and stresses into series in terms of a system of functions with respect to the thickness coordinate [1-2]. This method for non-shallow shells in case of geometrical and physical nonlinear theory was generalized by T. Meunargia [3, 4].

By means of Vekua's method, the system of differential equations for thin and shallow shells was obtained, when on upper and lower face surfaces displacements are assumed to be known [5]. The systems of equilibrium equations and stress-strain relations (Hooke's law) of the plates in the case of N = 1 approximation may be written in the following form [6]:

$$\begin{cases} \partial_{\alpha} \stackrel{(0)}{\sigma_{\alpha\beta}} + \frac{1}{h} \stackrel{(1)}{\sigma_{\beta3}} + \stackrel{(0)}{\Phi_{\beta}} = 0, \\ \partial_{\alpha} \stackrel{(0)}{\sigma_{\alpha3}} + \frac{1}{h} \stackrel{(1)}{\sigma_{33}} + \stackrel{(0)}{\Phi_{3}} = 0, \end{cases}$$
(1)

$$\begin{cases} \partial_{\alpha} \stackrel{(1)}{\sigma_{\alpha\beta}} + \stackrel{(1)}{\Phi_{\beta}} = 0, \\ \partial_{\alpha} \stackrel{(1)}{\sigma_{\alpha3}} + \stackrel{(1)}{\Phi_{3}} = 0, \end{cases}$$
(2)

$$\begin{cases} \begin{pmatrix} 0 \\ \sigma_{\alpha\beta} = \lambda \left(\partial_{\gamma} \stackrel{(0)}{u_{\gamma}} \right) \delta_{\alpha\beta} + \mu \left(\partial_{\beta} \stackrel{(0)}{u_{\alpha}} + \partial_{\alpha} \stackrel{(0)}{u_{\beta}} \right) \\ + \frac{\lambda}{h} \left(\stackrel{(+)}{u_{3}} - \stackrel{(-)}{u_{3}} \right) \delta_{\alpha\beta}, \\ \begin{pmatrix} 0 \\ \sigma_{\alpha3} = \mu \left(\partial_{\alpha} \stackrel{(0)}{u_{3}} \right) + \frac{\mu}{h} \left(\stackrel{(+)}{u_{\alpha}} - \stackrel{(-)}{u_{\alpha}} \right), \\ \begin{pmatrix} 0 \\ \sigma_{33} = \lambda \left(\partial_{\gamma} \stackrel{(0)}{u_{\gamma}} \right) + \frac{\lambda + 2\mu}{h} \left(\stackrel{(+)}{u_{3}} - \stackrel{(-)}{u_{3}} \right), \end{cases} \end{cases}$$
(3)
$$\begin{pmatrix} \begin{pmatrix} 1 \\ \sigma_{\alpha\beta} = \lambda \left(\partial_{\gamma} \stackrel{(1)}{u_{\gamma}} - \frac{3}{h} \stackrel{(0)}{u_{3}} \right) \delta_{\alpha\beta} + \mu \left(\partial_{\beta} \stackrel{(1)}{u_{\alpha}} + \partial_{\alpha} \stackrel{(1)}{u_{\beta}} \right) \\ + \frac{3\lambda}{h} \left(\stackrel{(+)}{u_{3}} + \stackrel{(-)}{u_{3}} \right) \delta_{\alpha\beta}, \\ \begin{pmatrix} 1 \\ \sigma_{\alpha3} = \mu \left(\partial_{\alpha} \stackrel{(1)}{u_{3}} - \frac{3}{h} \stackrel{(0)}{u_{\alpha}} \right) + \frac{3\mu}{h} \left(\stackrel{(+)}{u_{\alpha}} + \stackrel{(-)}{u_{\alpha}} \right), \\ \begin{pmatrix} 0 \\ \sigma_{33} = \lambda \left(\partial_{\gamma} \stackrel{(1)}{u_{\gamma}} \right) - \frac{3(\lambda + 2\mu)}{h} \stackrel{(0)}{u_{3}} + \frac{3(\lambda + 2\mu)}{h} \left(\stackrel{(+)}{u_{3}} + \stackrel{(-)}{u_{3}} \right), \end{cases}$$
(4)

where

$$\begin{pmatrix} {}^{(m)}_{ij}, {}^{(m)}_{u}{}^{i}, {}^{(m)}_{0}{}^{i} \end{pmatrix} = \frac{2m+1}{2h} \int_{-h}^{h} (\sigma^{ij}, u^{i}, \Phi^{i}) P_{m} \left(\frac{x_{3}}{h}\right) dx_{3},$$

$$(m = 0, 1)$$

$${}^{(\pm)}_{u}{}^{i} = u^{i}(x^{1}, x^{2}, \pm h),$$

 λ and μ are Lame's constants, σ^{ij} are contravariant components of the stress vectors, u^i are contravariant components of the displacement vector, Φ^i are contravariant components of the volume force, $P_m\left(\frac{x^3}{h}\right)$ are Legendre polynomials, h is the semi-thickness.

Substituting these expressions (3) and (4) into equation (1) and (2), we obtain the system of second-order partial differential equations:

$$\begin{cases} \mu \Delta \overset{(0)}{u_1} + (\lambda + \mu) \partial_1 \overset{(0)}{\theta} + \frac{1}{h} \left(\mu \partial_1 \overset{(1)}{u_3} - \frac{3\mu}{h} \overset{(0)}{u_1} \right) = \overset{(0)}{\Psi_1}, \\ \mu \Delta \overset{(0)}{u_2} + (\lambda + \mu) \partial_2 \overset{(0)}{\theta} + \frac{1}{h} \left(\mu \partial_2 \overset{(1)}{u_3} - \frac{3\mu}{h} \overset{(0)}{u_2} \right) = \overset{(0)}{\Psi_2}, \quad (5) \\ \mu \Delta \overset{(0)}{u_3} + \frac{1}{h} \left(\lambda \overset{(1)}{\theta} - \frac{3(\lambda + 2\mu)}{h} \overset{(0)}{u_3} \right) = \overset{(0)}{\Psi_3}, \\ \begin{cases} \mu \Delta \overset{(1)}{u_1} + (\lambda + \mu) \partial_1 \overset{(1)}{\theta} - \frac{3\lambda}{h} \partial_1 \overset{(0)}{u_3} = \overset{(1)}{\Psi_1}, \\ \mu \Delta \overset{(1)}{u_2} + (\lambda + \mu) \partial_2 \overset{(1)}{\theta} - \frac{3\lambda}{h} \partial_2 \overset{(0)}{u_3} = \overset{(1)}{\Psi_2}, \\ \mu \Delta \overset{(1)}{u_3} - \frac{3\mu}{h} \overset{(0)}{\theta} = \overset{(1)}{\Psi_3}, \end{cases} \end{cases}$$

where $\stackrel{(m)}{\Psi_i}$ are the known values and

$$\overset{(m)}{\theta} = \partial_1 \overset{(m)}{u}_1 + \partial_2 \overset{(m)}{u}_2, \quad m = 0, 1.$$

Introducing the well-known differential operators

$$\partial_z = \frac{1}{2}(\partial_1 - i\partial_2), \quad \partial_{\bar{z}} = \frac{1}{2}(\partial_1 + i\partial_2),$$

where $z = x_1 + ix_2$.

System (5) and (6) can be written in complex form:

a) for the tension-pressure of plates

$$\begin{cases} \mu \Delta \overset{(0)}{u_{+}} + 2(\lambda + \mu)\partial_{\bar{z}} \overset{(0)}{\theta} + \frac{1}{h} \left(2\mu \partial_{\bar{z}} \overset{(1)}{u_{3}} - \frac{3\mu}{h} \overset{(0)}{u_{+}} \right) = \overset{(0)}{\Psi_{+}}, \\ \mu \Delta \overset{(1)}{u_{3}} - \frac{3\mu}{h} \overset{(0)}{\theta} = \overset{(1)}{\Psi_{3}}, \end{cases}$$
(7)

b) for the bending of plates

$$\begin{cases} \mu \Delta \overset{(1)}{u_{+}} + 2(\lambda + \mu)\partial_{\bar{z}} \overset{(1)}{\theta} - \frac{6\lambda}{h}\partial_{\bar{z}} \overset{(0)}{u_{3}} = \overset{(1)}{\Psi_{+}}, \\ \mu \Delta \overset{(0)}{u_{3}} + \frac{1}{h} \left(\lambda \overset{(1)}{\theta} - \frac{3(\lambda + 2\mu)}{h} \overset{(0)}{u_{3}}\right) = \overset{(0)}{\Psi_{3}}, \end{cases}$$
(8)

where $\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ and

The complex representation of the general solutions of the homogenous systems (7) end (8) are written in the following form [2, 5]:

$$\begin{cases} \begin{array}{l} \overset{(0)}{u_{+}} = f(z) + z\overline{f'(z)} + \frac{4(\lambda + 2\mu)h^{2}}{3\mu}\overline{f''(z)} + \overline{g'(z)} - \frac{ih}{3}\frac{\partial\omega(z,\bar{z})}{\partial\bar{z}}, \\ \overset{(1)}{u_{3}} = \frac{3}{2h}\left(\bar{z}f(z) + z\overline{f(z)}\right) + \frac{3}{2h}\left(g(z) + \overline{g(z)}\right), \\ \\ \left\{ \begin{array}{l} \overset{(1)}{u_{+}} = \frac{5\lambda + 6\mu}{3\lambda + 2\mu}\varphi(z) - z\overline{\varphi'(z)} - \overline{\psi(z)} + \frac{\lambda h}{2(\lambda + \mu)}\frac{\partial\chi(z,\bar{z})}{\partial\bar{z}}, \\ \overset{(0)}{u_{3}} = \chi(z,\bar{z}) + \frac{2\lambda h}{3(3\lambda + 2\mu)}\left(\varphi'(z) + \overline{\varphi'(z)}\right), \end{array} \right.$$
(9)

where f(z), g(z), $\varphi(z)$ and $\psi(z)$ are any analytic functions of z, $\omega(z, \bar{z})$ and $\chi(z, \bar{z})$ are the general solutions of the following Helmholtz's equations, respectively:

$$\Delta \omega - \gamma^2 \omega = 0, \quad \left(\gamma^2 = \frac{3}{h^2}\right),$$
$$\Delta \chi - \nu^2 \chi = 0, \quad \left(\chi^2 = \frac{12(\lambda + \mu)h^2}{\lambda + 2\mu}\right).$$

From eqs. (3), (4) the following relations follow

$$\begin{pmatrix}
 (0) \\
 \sigma_{11} + \sigma_{22}^{(0)} = 2(\lambda + \mu) \\
 \theta, \\
 (0) \\
 \sigma_{11} - \sigma_{22} + 2i \\
 \sigma_{12}^{(0)} = 4\mu \partial_{\bar{z}} \\
 (u_{+}, \\
 (1) \\
 \sigma_{11} + \sigma_{22}^{(0)} = 2(\lambda + \mu) \\
 \theta - \frac{6\lambda}{h} \\
 (u_{3}, \\
 (1) \\
 \sigma_{11} - \sigma_{22}^{(0)} + 2i \\
 \sigma_{12}^{(1)} = 4\mu \partial_{\bar{z}} \\
 (u_{+}, \\
 (1) \\
 \sigma_{13}^{(1)} + i \\
 \sigma_{23}^{(0)} = 2\mu \partial_{\bar{z}} \\
 (u_{3}, \\
 (1) \\
 \tau_{13}^{(1)} + i \\
 \sigma_{23}^{(1)} = 2\mu \partial_{\bar{z}} \\
 (1) \\
 \tau_{13}^{(0)} - \frac{3\mu}{\sigma_{23}} \\
 (1) \\
 \eta_{23}^{(1)} - \frac{3\mu}{h} \\
 (0) \\
 \eta_{+}.
 (11)$$

2 The Problem for the Infinite Plane with a Circular Hole

Now let us have an infinite plane with a circular hole (Fig. 2). Assume that the origin of coordinates is at the center of the hole of radius R.

The boundary problem (in stresses) takes the form [3]:

$$\begin{cases} {}^{(m)}_{\sigma rr} + i {}^{(m)}_{\sigma r\alpha} \\ = \frac{1}{2} \left[{}^{(m)}_{\sigma 11} + {}^{(m)}_{\sigma 22} - \left({}^{(m)}_{\sigma 11} - {}^{(m)}_{\sigma 22} + 2i {}^{(m)}_{\sigma 12} \right) \left(\frac{d\bar{z}}{ds} \right)^2 \right] = {}^{(m)}_{F+}, \quad (12) \\ {}^{(m)}_{\sigma rn} = -\mathrm{Im} \left({}^{(m)}_{\sigma + 3} \frac{d\bar{z}}{ds} \right) = {}^{(m)}_{F3}, \quad \left({}^{(m)}_{\sigma + 3} = {}^{(m)}_{\sigma 13} + i {}^{(m)}_{\sigma 23} \right). \end{cases}$$

Figure 1:

Conditions at infinity are

Use eqs. (9) and (10) the boundary conditions are written as

$$\begin{cases} (\lambda + \mu)(f'(z) + \overline{f'(z)}) + \left(2\mu z \overline{f''(z)} + \frac{8(\lambda + 2\mu)}{3} \overline{f'''(z)} + \frac{8(\lambda + 2\mu)}{3} \overline{f'''(z)} + 2\mu \overline{g''(z)} - \frac{2\mu i h}{3} \frac{\partial^2 \omega(z, \overline{z})}{\partial \overline{z}^2} \right) e^{-2i\alpha} = \sum_{-\infty}^{+\infty} A_{n1} e^{in\alpha}, \quad r = R, \\ \frac{\mu}{2h} \left(ih \frac{\partial \omega(z, \overline{z})}{\partial \overline{z}} - \frac{4(\lambda + 2\mu)h^2}{3\mu} \overline{f''(z)} \right) e^{-i\alpha} \\ - \frac{\mu}{2h} \left(ih \frac{\partial \omega(z, \overline{z})}{\partial z} + \frac{4(\lambda + 2\mu)h^2}{3\mu} f''(z) \right) e^{i\alpha} = \sum_{-\infty}^{+\infty} B_{n1} e^{in\alpha}, \quad r = R, \end{cases}$$

$$(13)$$

$$\begin{cases}
2\mu(\varphi'(z) + \overline{\varphi'(z)}) - \frac{3\lambda\mu}{(\lambda+2\mu)h}\chi(z,\bar{z}) \\
+2\mu\left(\frac{\lambda h}{2(\lambda+\mu)}\frac{\partial^2\chi(z,\bar{z})}{\partial\bar{z}^2} - z\overline{\varphi''(z)} - \overline{\psi'(z)}\right)e^{-2i\alpha} = \sum_{-\infty}^{+\infty}A_{n2}e^{in\alpha}, \quad r = R, \\
\left(\mu\frac{\partial\chi(z,\bar{z})}{\partial\bar{z}} + \frac{2\lambda\mu h}{3(3\lambda+2\mu)}\overline{\varphi''(z)}\right)e^{-i\alpha} \\
+\left(\mu\frac{\partial\chi(z,\bar{z})}{\partial z} + \frac{2\lambda\mu h}{3(3\lambda+2\mu)}\varphi''(z)\right)e^{i\alpha} = \sum_{-\infty}^{+\infty}B_{n2}e^{in\alpha}, \quad r = R.
\end{cases}$$
(14)

In this case the analytic functions

Inside of the domain the analytic functions f'(z), g'(z), $\varphi'(z)$, $\psi'(z)$ and the metaharmonic functions $\omega(z, \bar{z})$, $\chi(z, \bar{z})$ are represented as a series:

$$f'(z) = \sum_{n=0}^{+\infty} \frac{a_n}{z_n}, \quad g'(z) = \sum_{n=0}^{+\infty} \frac{b_n}{z_n},$$
(15)

$$\varphi'(z) = \sum_{n=0}^{+\infty} \frac{c_n}{z_n}, \quad \psi'(z) = \sum_{n=0}^{+\infty} \frac{d_n}{z_n},$$
 (16)

$$\omega(z,\bar{z}) = \sum_{-\infty}^{+\infty} \alpha_n K_n(\gamma r) e^{in\alpha}, \qquad (17)$$

$$\chi(z,\bar{z}) = \sum_{-\infty}^{+\infty} \beta_n K_n(\nu r) e^{in\alpha}, \qquad (18)$$

where $K_n(\cdot)$ is the modified Bessel function of the second kind of *n*-th order.

In the boundary conditions (13) we substitute the corresponding expressions (15), (17) and compare the coefficients at identical degrees. We obtain the following system of equations

$$\begin{cases} (\lambda + \mu)\frac{a_{n}}{R^{n}} - \frac{\mu i h \gamma^{2}}{6} K_{-n+2}(\gamma R) \alpha_{-n} = A_{-n1}, & n \geq 3\\ \frac{i\mu\gamma}{4} \Big(K_{n-1}(\gamma R) - K_{n+1}(\gamma R) \Big) \alpha_{n} - \frac{2(\lambda + 2\mu)hn}{3} \frac{\bar{a}_{n}}{R^{n+1}} = B_{n1}, \\ \Big[(\lambda + \mu)\frac{1}{R^{n}} + 2\mu n \frac{1}{R^{n}} + \frac{8(\lambda + 2\mu)}{3} \frac{n(n+1)}{R^{n+2}} \Big] \bar{a}_{n} \\ + 2\mu \frac{\bar{b}_{n+2}}{R^{n+2}} - \frac{\mu i h \gamma^{2}}{6} K_{n+2}(\gamma R) \alpha_{n} = \bar{A}_{n1}, & n \geq 0\\ (\lambda + \mu)\frac{a_{1}}{R} + 2\mu \frac{b_{1}}{R} - \frac{\mu i h \gamma^{2}}{6} K_{1}(\gamma R) \alpha_{-1} = A_{-11}, \\ (\lambda + \mu)\frac{a_{2}}{R^{2}} + 2\mu \bar{b}_{0} - \frac{\mu i h \gamma^{2}}{6} K_{0}(\gamma R) \alpha_{-2} = A_{-21}. \end{cases}$$
(19)

From Conditions at infinity we have

$$a_0 = \Gamma, \quad b_0 = \Gamma', \tag{20}$$

where Γ , Γ' are known quantities, specifying the stress distribution at infinity (It is also assumed that a_0 is a real value).

We use the condition of single-valuedness of the displacements which in the present case is expressed as

$$a_1 + \bar{b}_1 = 0. \tag{21}$$

Now by substituting (16), (18) into (14) obtain the system of algebraic equations:

$$\begin{cases} 2\mu \frac{c_n}{R^n} + \left(\frac{3\lambda\mu}{4(\lambda+2\mu)}K_{-n+2}(\nu R) - \frac{3\lambda\mu}{(\lambda+2\mu)h}K_{-n}(\nu R)\right)\beta_{-n} \\ = A_{-n2}, \quad n \ge 3 \\ 2\mu(n+1)\frac{\bar{c}_n}{R^n} + \left(\frac{3\lambda\mu}{4(\lambda+2\mu)}K_{n+2}(\nu R) - \frac{3\lambda\mu}{(\lambda+2\mu)h}K_n(\nu R)\right)\beta_n \\ -2\mu\frac{\bar{d}_{n+2}}{R^{n+2}} = A_{n2}, \quad n \ge 0 \\ -\frac{\mu\nu}{2}\left(K_{n+1}(\nu R) + K_{n-1}(\nu R)\right)\beta_n - \frac{2\lambda\mu hn}{3(3\lambda+2\mu)}\frac{\bar{c}_n}{R^{n+1}} = B_{n2}, \qquad (22) \\ 2\mu\frac{c_1}{R} + \left(\frac{3\lambda\mu}{4(\lambda+2\mu)}K_1(\nu R) - \frac{3\lambda\mu}{(\lambda+2\mu)h}K_{-1}(\nu R)\right)\beta_{-1} \\ -2\mu\frac{\bar{d}_1}{R} = A_{-21}, \\ 2\mu\frac{c_2}{R^2} + \left(\frac{3\lambda\mu}{4(\lambda+2\mu)}K_0(\nu R) - \frac{3\lambda\mu}{(\lambda+2\mu)h}K_{-2}(\nu R)\right)\beta_{-2} \\ -2\mu\bar{d}_0 = A_{-22}. \end{cases}$$

From Conditions at infinity we have

$$c_0 = \Gamma^1, \quad d_0 = \Gamma^2, \tag{23}$$

where Γ^1 , Γ^2 are known quantities, specifying the stress distribution at infinity (It is also assumed that c_0 is a real value).

We use the condition of single-valuedness of the displacements which in the present case is expressed as

$$\frac{5\lambda + 6\mu}{3\lambda + 2\mu}c_1 + \bar{d}_1 = 0.$$
(24)

The coefficients a_n , b_n , c_n , d_n , α_n and β_n are found by solving (19)-(24).

It is easy to prove that the absolute and uniform convergence of the series obtained in the circle (including the contours) when the functions set on the boundaries have sufficient smoothness.

Acknowledgement

The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14). Any idea in this publication is possessed by the author and may not represent the opinion of Shota Rustaveli National Science Foundation itself.

References

1. Vekua I. N. Shell Theory: General Methods of onstruction, Pitman Advanced Publishing Program, Boston-London-Melbourne (1985).

- Vekua I. Theory on Thin and Shallow Shells with Variable Thickness (Russian). Tbilisi, Metsniereba, 1965
- Meunargia T.V. On one method of construction of geometrically and physically nonlinear theory of non-shallow shells. *Proc. A. Razmadze Math. Inst.*, **119** (1999), 133-154.
- 4. Meunargia T.V. A small-parameter method for I. Vekua's nonlinear and non-shallow shells. *Proceeding of the IUTAM Symposium, Springer Science* (2008), 155-166.
- Gulua B. About one boundary value problem for nonlinear non-shallow spherical shells. *Rep. Enlarged Sess. Semin. I. Vekua Appl. Math.* 28 (2014), 42--45.
- 6. Gulua B. One boundary value problem for the plates. Seminar of I. Vekua Institute of Applied Mathematics, REPORTS, 42 (2016), 3–9.