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Abstract

The present paper is devoted to the explicit solution of the Dirich-
let type BVP for an elastic circle with microtemperatures. The reg-
ular solution of the system of equations for an isotropic materials
with microtemperatures is constructed by means of the elementary
(harmonic, bi-harmonic and meta-harmonic) functions. The Dirich-
let type BVP for a circle is solved explicitly. The obtained solutions
are presented as absolutely and uniformly convergent series.
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1 Introduction

The linear theory of thermoelasticity for materials with inner structure
whose particles, in addition to the classical displacement and tempera-
ture fields, possess microtemperatures was established by Grot [1]. Iesan
and Quintanilla have formulated the boundary value problems and pre-
sented an uniqueness result and a solution of the Boussinesq-Somigliana-
Galerkin type [2]. The fundamental solutions of the equations of the three-
dimensional (3D) theory of thermoelasticity with microtemperatures were
constructed by Svanadze in [3]. The representations of the Galerkin type
and general solutions of the system of static of the above theory were ob-
tained by Scalia, Svanadze, and Tracina [4]. The linear theory for mi-
crostretch elastic materials with microtemperatures was constructed by
Iesan [5], where the uniqueness and existence theorems in the dynamical
case for isotropic materials are proved.

Some works of the 2D and 3D theories of elasticity for materials with
microstructures can be seen in [6-25], in which give the main results and
bibliographical data.
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The present paper is devoted to the explicit solution of the Dirichlet type
BVP for an elastic circle with microtemperatures. The regular solution of
the system of equations for an isotropic materials with microtemperatures
is constructed by means of the elementary (harmonic, bi-harmonic and
meta-harmonic) functions. The Dirichlet type BVP for a circle is solved
explicitly. The obtained solutions are presented as absolutely and uniformly
convergent series.

2 Basic Equations. Boundary Value Problems.

We consider an isotropic elastic circle D bounded by the circumference S
with center at the origin and radius R. Let us assume that the domain D
is filled with an isotropic thermoelastic materials with microtemperatures.
Let x = (x1, x2) ∈ D.

The governing homogeneous system of the theory of thermoelasticity
with microtemperatures has the form [1]-[3]

µ∆u + (λ+ µ)grad divu− βgradθ = 0 (1)

k6∆w + (k4 + k5)grad divw− k3gradθ − k2w = 0 (2)

k∆θ + k1divw = 0 (3)

where u := (u1, u2)
> denotes the displacement vector, w := (w1, w2)

> is
the microtemperature vector, θ is the temperature measured from the
constant absolute temperature T0 (T0 > 0) by the natural state (i.e. by
the state of the absence of loads), λ, µ, β, k, kj , j = 1, ..., 6, are
constitutive coefficients, ∆ is the 2D Laplace operator. The superscript
(.)> denotes transposition operation.

For the equations (1-3) we formulate the following BVP:
Problem 1: Find a regular solution U = (u,w, θ) to the equations

(1-3) in the domain D satisfying the following boundary conditions on S :

u+ = f+(z), w(x)+ = F+(z), θ+ = f+3 (z),

where the vector-functions F(z), f(z, ) and the function f3, are prescribed
functions on S, at z. The symbol U+ denotes the limits of U(x) on z ∈ S
from D

U+(z) = lim
D3x→z∈S

U(x).

3 Expansion of regular solutions of the system
(1), (3).

In [9] it is proved that the regular solution of the system (2),(3) can be
represented in the form
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w(x) = − k

k1
grad ϑ1(x)− k3

k2
grad ϑ(x) +

2
w (4)

θ(x) = ϑ1(x) + ϑ(x) (5)

where
∆ϑ = 0 (∆− s21)ϑ1 = 0 (6)

(∆− s22)
2
w = 0, div

2
w = 0. (7)

s21 :=
k2k − k1k3

k7k
> 0, s22 :=

k2
k6

> 0. (8)

From (1) we find
µ0∆divu = β∆θ = βs21ϑ1. (9)

divu = ψ +
β

µ0
ϑ1, (10)

where ∆ψ = 0
From (1) for u, after obvious transformations, we get the following

nonhomogeneous equation

∆u = −grad

[
λ+ µ

µ
ψ − β

µ
ϑ− β

µ0
ϑ1

]
. (11)

The general solution of the equation (11) has the form

u = Ψ + u0,

where Ψ is an arbitrary harmonic function, u0 is a particular solution of
equation (11)

u0 = −grad

[
λ+ µ

µ
ψ0 −

β

µ
ϑ0 −

β

s21µ0
ϑ1

]
, (12)

the functions Ψ, ψ0 and ϑ0 are chosen such that

∆Ψ = 0, ∆ϑ0 = ϑ, ∆ψ0 = ψ, divΨ =
µ0
µ
ψ − β

µ
ϑ.

From the above reasoning we have proved the following theorem:
Theorem 1. The regular solution U := (u,w, θ) of the equations(1)

-(3) admits in the domain of regularity a representation

u = Ψ− grad

[
λ+ µ

µ
ψ0 −

β

µ
ϑ0 −

β

s21µ0
ϑ1

]
,

w(x) = −grad

[
k3
k2
ϑ(x) +

k

k1
ϑ1(x)

]
+

2
w(x)

θ(x) = ϑ1(x) + ϑ(x),

(13)

16



Basic Problems of Thermoelasticity ... AMIM Vol.24 No.1, 2019

where

∆ϑ = 0, (∆− s21)ϑ1 = 0, ∆Ψ = 0, (∆− s22)
2
w = 0,

∆ϑ0 = ϑ, ∆ψ0 = ψ, ∆ψ = 0, divΨ =
µ0
µ
ψ − β

µ
ϑ,

div
2
w = 0, divu = ψ +

β

µ0
ϑ1, divw = − k

k1
s21θ1(x).

4 Solution of Problem 1 for the Circle

Let us introduce the polar coordinates

x1 = ρ cos η, x2 = ρ sin η, ρ =
√
x21 + x22, 0 ≤ η ≤ 2π,

First of all we find the functions ϑ, ϑ1, ψ.

We are looking for a solution of the system (1)-(3) in the form (13),where

ϑ(x) =
E0

2
+

∞∑
n=1

( ρ
R

)n
(En cosnη +Mn sinnη), ρ < R.

ϑ1(x) =
C10

2
J0(is1ρ) +

∞∑
n=1

Jn(is1ρ)(C1n cosnη +D1n sinnη), ρ < R.

ψ(x) =
A′

0

2
+

∞∑
n=1

( ρ
R

)n
(A′

n cosnη +B′
n sinnη), ρ < R,

Ψ(x) =
A0

2
+

∞∑
n=1

( ρ
R

)n
(An cosnη +Bn sinnη), ρ < R.

2
w(x) =

C10

2
J0(is2ρ) +

∞∑
n=1

Jn(is2ρ)(C ′
1n cosnη +D′

1n sinnη),

(14)
We introduce the following notations:

divf = h1, divF = h2, when ρ = R.

In what follows we assume that the functions hk, k = 1, 2 can be
expanded in the Fourier series.
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On the basis of equations ∆ϑ0 = ϑ, and ∆ψ0 = ψ, the functions ϑ0,
and ψ0 are represented in the following form

ϑ0(x) =
ρ2E0

8
+
ρ2

4

∞∑
n=1

1

n+ 1

( ρ
R

)n
(En cosnη +Mn sinnη), ρ < R.

ψ0(x) =
ρ2A′

0

8
+
ρ2

4

∞∑
n=1

1

n+ 1

( ρ
R

)n
(A′

n cosnη +B′
n sinnη), ρ < R,

(15)
Making use the latest notations, from (13), passing to the limit as ρ −→ R,
we obtain the following system of equations:

ϑ+ + ϑ+1 = f+3 , ψ+ +
β

µ0
ϑ+1 = h1, − k

k1
s21ϑ

+
1 (x) = h2 (16)

Solving system (16) we get

ϑ+1 = − k1
ks21

h2 = q1, ϑ+ = f+3 +
k1
ks21

h2 = q,

ψ+ = h1 +
β

µ0

k1
ks21

h2 = q2,

(17)

On the other hand taking into account (14),we obtain

E0

2
+

∞∑
n=1

(En cosnη +Mn sinnη) = q,

C10

2
J0(is1R) +

∞∑
n=1

Jn(is1R)(C1n cosnη +D1n sinnη) = q1,

A′
0

2
+

∞∑
n=1

(A′
n cosnη +B′

n sinnη) = q2,

(18)

where Ek, Mk, , ... are the Fourier coefficients of the functions q and qj
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respectively.

Ek =
1

π

2π∫
0

q(η) cos kηdη, Mk =
1

π

2π∫
0

q(η) sin kηdη,

C1n =
1

πJn(is1R)

2π∫
0

q1(η) cos kηdη, D1n =
1

πJn(is1R)

2π∫
0

q1(η) sin kηdη,

A′
k =

1

π

2π∫
0

q2(η) cos kηdη, B′
k =

1

π

2π∫
0

q2η) sin kηdη,

(19)
The substitution Ek, Mk, E

′
k, ... from (19) into (14) gives

ϑ(x) =
1

2π

2π∫
0

[
1 + 2

∞∑
k=1

( ρ
R

)k
cos k(η − η0)

]
q(η)dη

=
1

2π

2π∫
0

(R2 − ρ2)q(η)dη

R2 − 2Rρ cos(η − η0) + ρ2
,

ϑ1(x) =
1

2π

2π∫
0

[
J0(is1ρ)

J0(is1R)
+ 2

∞∑
k=1

Jk(is1ρ)

Jk(is1R)
cos k(η − η0)

]
q1(η)dη,

ψ(x) =
1

2π

2π∫
0

[
1 + 2

∞∑
k=1

( ρ
R

)k
cos k(η − η0)

]
q2(η)dη =

1

2π

2π∫
0

(R2 − ρ2)q2(η)dη

R2 − 2Rρ cos(η − η0) + ρ2
,

(20)

ϑ0(x) =
ρ2

8π

2π∫
0

[
1 + 2

∞∑
k=1

1

k + 1

( ρ
R

)k
cos k(η − η0)

]
q(η)dη.

ψ0(x) =
ρ2

8π

2π∫
0

[
1 + 2

∞∑
k=1

1

k + 1

( ρ
R

)k
cos k(η − η0)

]
q2(η)dη.
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Now let us find the functions Ψ and
2
w from (13) when ρ = R

Ψ = f + grad

[
λ+ µ

µ
ψ0 −

β

µ
ϑ0 −

β

s21µ0
ϑ1

]
= g, ρ = R

2
w(x) = F + grad

[
k3
k2
θ(x) +

k

k1
θ1(x)

]
= g1, ρ = R.

(21)

On the other fend

Ψ(x) =
A0

2
+

∞∑
n=1

(An cosnη +Bn sinnη) = g, ρ = R.

2
w(x) =

C ′
10

2
J0(is2R) +

∞∑
n=1

Jn(is2R)(C ′
1n cosnη +D′

1n sinnη) = g1,

(22)
where

C ′
1n =

1

πJn(is2R)

2π∫
0

g1(η) cos kηdη, D′
1n =

1

πJn(is2R)

2π∫
0

g1(η) sin kηdη,

Ak =
1

π

2π∫
0

g(η) cos kηdη, Bk =
1

π

2π∫
0

g(η) sin kηdη,

Thus, for Ψ and
2
w we get

Ψ(x) =
1

2π

2π∫
0

[
1 + 2

∞∑
k=1

( ρ
R

)k
cos k(η − η0)

]
g(η)dη,

2
w(x) =

1

2π

2π∫
0

[
J0(is2ρ)

J0(is2R)
+ 2

∞∑
k=1

Jk(is2ρ)

Jk(is2R)
cos k(η − η0)

]
g1(η)dη,

For the obtained series to converge absolutely and uniformly it is suffices
to require the following:

f,F, f3 ∈ C3(S).
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