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Abstract

In the prezent work we consider the problem of finding an equally strong contour

for a rectangular plate weakened by a rectilinear cut which ends are cut out by convex

smooth arcs. It is assumed that absolutely smooth rigid punches are applied to every

link of the rectangular. The punches are under the action of normal stretching forces

with the given principal vectors and the internal part of the boundary is free from

external forces. Our problem is to find an elastic equilibrium of the plate and analytic

form of the unknown contour under the condition that the tangential normal stress on it

takes constant value (the condition of the unknown contour full-strength). For solution

of the problem using the method of complex analysis and Kolosov-Muskhelishvilis

potentials and the equation of the equally strong contour are constructed effectively

(analytically).

Key words and phrases: Kolosov-Muskhelishvili’s formulas, Conformal map-
ping, The Riemann-Hilbert problem, The Keldysh-Sedov problem.

AMS subject classification: 74B05.

1 Introduction

The boundary value problems of the plane theory of elasticity and plate
bending with a partially unknown boundary (or, which is the same, the
problems of finding an equally stable contour) was started [1-2] and always
was in the focus of attention of many scientists. Different methods were
introduced for researching these problems and among them one important
is the method of complex analysis.
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In the present paper we consider the problem of finding a partially
unknown boundary of the plane theory of elasticity for a rectangular domain
which is weakened by a rectilinear cut which ends are cut out by convex
smooth arcs (the unknown part of the boundary).

Analogous problems of plane elasticity are considered in [3-10].

2 Statement of the Problem

Let a middle surface of the homogeneous Isotropic plate on a plane z of
a complex variable occupy a doubly-connected domain S0 whose external
boundary is a rectangle and internal boundary is a rectilinear cut which
ends are cut out by convex smooth arcs (the unknown part of the boundary,
see Fig. 1). It is assumed that the sides of the rectangle are under the
action of constant normal tensile forces with a given principal vector P and
Q (we consider the symmetrical case), and the interior boundary is free
from stresses. Consider the problem: Find an elastic equilibrium of the

Fig. 1.

rectangular and analytic form of an unknown contour under the condition
that the tangential normal stress takes on that contour value σϑ = k0 =
const.

3 Solution of the problem

Due to the axial symmetry, we restrict ourselves to the consideration of
elastic equilibrium on a quarter of the plate only and denote it by S. By
L = L1 ∪ L2 we denote its boundary consisting of rectilinear segments

L1 =
5
∪

k=1
L
(1)
k =

5
∪

k=1
AkAk+1 and arc L2 = A6A1.
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It is not difficult to see that in this case the tangential stresses τns = 0 on
the whole boundary L = L1∪L2 of the domain S, the normal displacements

vn(t) = const, t ∈ A2A3 ∪A3A4 and vn(t) = 0 on L
(1)
1 ∪ L(4)

1 ∪ L2.
On the basis of the well-known Kolosov-Muskhelishvili’s formulas [11]

the problem under consideration is reduced to finding two holomorphic in
S functions φ(z) and ψ(z) with the following boundary conditions:

Re
[
e−iα(t)(φ(t) + tφ′(t) + ψ(t))

]
= C(t), t ∈ L1, (1)

Re
[
e−iα(t)(κφ(t)− tφ′(t)− ψ(t)

]
= 2µvn(t), t ∈ L1, (2)

φ(t) + tφ′(t) + ψ(t) = 0, t ∈ L2, (3)

Re
[
φ′(t)

]
=
k0
4
, t ∈ L2, (4)

where α(t) is the angle lying between the ox-axis and the external normal to

the boundary L1 at the point t ∈ L1, so α(t) = αk = −π
2
+
π(k − 1)

2
, t ∈

L
(1)
k (k = 1, 5). C(t) and vn(t) are the piecewise constant functions

C(t) = Re

t∫
A1

iσn(s0)exp i[α(t0)− α(t)]ds0

=

k∑
j=1

∫
L
(1)
j

σn(s0) sin(αk − αj ]ds0 =


0, t ∈ L

(1)
1 ∪ L(1)

4 ∪ L(1)
5 ,

P

2
, t ∈ L

(1)
2 ,

−Q
2
, t ∈ L

(1)
3 .

vn(t) = v(k)n = const, t ∈ L
(k)
1 (k = 2, 3)

vn(t) = 0 t ∈ L
(1)
k (k = 1, 4, 5).

Summing up the equalities (1) and (2), differentiating with respect to
the arc abscissa s and taking into account the fact that the functions c(t)
and vn(t) are piecewise constants, we obtain

Imφ′(t) = 0, t ∈ L1. (5)

The conditions (4) and (5) are the Keldysh-Sedov problem (see [12],
[13])

Re

[
φ′(t)− k0

4

]
= 0, t ∈ L2; Im

[
φ′(t)− k0

4

]
= 0 t ∈ L1. (6)
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After the conformal mapping of the domain S onto the circular ring, this

problem for the function ϕ0(ζ) = φ′[ω0(ζ)] −
k0
4

reduces to the Riemann-

Hilbert problem which has a unique solution

φ(z) =
k0
4
z (7)

(an arbitrary constant of integration is assumed to be equal to zero).
Let the function z = ω(ζ) map conformally the unit semi-circle D0 =

{|ζ| < 1, Imζ > 0} onto the region S. By ak, (k = 1, ..., 6) we denote
preimages of the points Ak and assume that a1 = 1, a3 = i, a5 = −1, i.e.
the contour A5A1 = A5A6 ∪A6A1 transforms into the segment [−1, 1] and
point A6 into the point −δ0 ∈ [−1, 1].

We easily observe that for t ∈ L
(1)
k (k = 1, 4) we have the equality

Re[e−iα(t)t] = Re[e−iα(t)A(t)], (8)

where A(t) = Ak, t ∈ L
(1)
k , (k = 1, 4).

The boundary conditions (1) and (3) with respect to the function ω(ζ)
and (7), (8), have the following forms

Re[e−iα(σ)ω(σ)] = Re[e−iα(σ)A(σ)], σ ∈ l1, (9)

Re[e−iα(σ)ψ0(σ)] = C(σ)− k0
2
Re[e−iα(σ)A(σ)], σ ∈ l1, (10)

k0
2
ω(σ) = ψ0(σ), σ ∈ l2 (11)

where l1 =
4∪

k=1

l
(k)
1 (l

(k)
1 are preimages of the segments L

(1)
k and l2 = [−1, 1]

is preimages of the segment A5A1), ψ0(ζ) = ψ[ω(ζ)].
Consider the fuction

W (ζ) =

{
k0
2
ω(ζ), |ζ| < 1, Imζ > 0,

−ψ0∗(ζ), |ζ| < 1, Imζ < 0,
(12)

where ψ0∗(ζ) = ψ0(ζ).
On the basis of (11) we conclude that W+(σ) =W−(σ), σ ∈ l2 and so

the function W (ζ) is holomorphic in the circle D = {|ζ| < 1}, continuously
extendable up to the boundary l = {|σ| = 1} and satisfies the boundary
conditions

Re[iW (σ)] = 0, σ ∈ l
(1)
1 ; Re[iW (σ)] = 0, σ ∈ l

(1)
1∗ ;

Re[W (σ)] =
k0
2
a, σ ∈ l

(1)
2 ; Re[W (σ)] =

P − k0a

2
, σ ∈ l

(1)
2∗ ;

Re[iW (σ)] = −k0
2
b, σ ∈ l

(1)
3 ; Re[iW (σ)] =

Q+ k0b

2
, σ ∈ l

(1)
3∗ ;

Re[W (σ)] = 0, σ ∈ l
(1)
4 ; Re[iW (σ)] = 0, σ ∈ l

(1)
4∗ ,

(13)
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where 2a and 2b are the length of the sides of the rectangle S0; l
(1)
j∗ (j = 1, 4)

are the image of the arc l
(1)
j under the mapping ζ = ζ̄.

We will seek for a bounded at points ak and āk (k = 1, 4) solution of
the problem (13) of the class h(a1, ..., ā4). The indices of this problems of
the given class are equal to −2 (see [12]).

Consider the functions Φ1(ζ) and Φ2(ζ) defined by the formulas

Φ1(ζ) =
1

2
[(ζ) +W∗(ζ)] ; Φ2(ζ) =

i

2
[W (ζ)−W∗(ζ)], (14)

where W∗(ζ) =W (ζ̄).

It is easily seen that the functions Φj(ζ) (j = 1, 2) satisfy the condition

Φj(ζ) = Φj∗(ζ), (j = 1, 2), (15)

and the function W (ζ) is defined through the above functions by the for-
mula

W (ζ) = Φ1(ζ)− iΦ2(ζ). (16)

From (13) the basis of (11) we conclude that the function Φj(ζ) (j =
1, 2) are holomorphic in the circle D, continuously extendable up to the
boundary l and satisfies the boundary conditions

Φ1(σ)− Φ1

(
1

σ

)
= 0, σ ∈ l

(1)
1 ;

Φ1(σ) + Φ1

(
1

σ

)
= H

(1)
2 , σ ∈ l

(1)
2 ;

Φ1(σ)− Φ1

(
1

σ

)
= H

(1)
3 , σ ∈ l

(1)
3 ;

Φ1(σ) + Φ1

(
1

σ

)
= 0, σ ∈ l

(1)
4 .

(17)

Φ2(σ) + Φ2

(
1

σ

)
= 0, σ ∈ l

(1)
1 ;

Φ2(σ)− Φ2

(
1

σ

)
= H

(2)
2 , σ ∈ l

(1)
2 ;

Φ2(σ) + Φ2

(
1

σ

)
= H

(2)
3 , σ ∈ l

(1)
3 ;

Φ2(σ)− Φ2

(
1

σ

)
= 0, σ ∈ l

(1)
4 .

(18)

where H
(1)
2 =

−P + 2k0a

2
; H

(1)
3 = −iQ

2
; H

(2)
2 = i

P

2
; H

(2)
3 =

Q− 2k0b

2
.
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The problems (17) and (18) are of the same type. For the solution of
these problems we use the method of conformal sewing (see [14]). Under
the sewing function we mean Zhukovski’s function ξ = ζ + 1

ζ which maps
the circle D onto the plane with a cut along the segment I = [−2; 2] of
the real axis in such a way that the upper semicircle l1 is mapped onto the
upper contour and the lower semicircle l1∗ onto the lower contour of the
segment I. The positive direction on I is assumed to coincide with that of
the real axis.

We introduce the functions

Φj(ξ) = Ψj [ζ(ξ)] = Ψj [(ξ −
√
ξ2 − 4)/2], (j = 1, 2), (19)

where under the square root is understood that branch which is positive
on the real axis outside the segment I. It is easily seen that points τ ∈ I,
we have

ζ+(τ) =
1

2
(τ −

√
τ2 − 4) = σ, σ ∈ l1,

ζ−(τ) =
1

2
(τ +

√
τ2 − 4) =

1

σ
, σ ∈ l1,

and so we obtain

Φj(σ) = Ψj

[
1

2

(
τ −

√
τ2 − 4

)]
= Ψj [ξ

+(τ)] = Ψ+
j (τ),

Φj

(
1

σ

)
= Ψj

[
1

2

(
τ +

√
τ2 − 4

)]
= Ψj [ξ

−(τ)] = Ψ−
j (τ),

(j = 1, 2).

(20)

From (20) and boundary conditions (17), (18) for the function Ψj(ξ) (j =
1, 2) we obtain the Keldysh-Sedov problems for the segment I:

Ψ+
1 (τ)−Ψ−

1 (τ) = 0, τ ∈ [δ2; 2];

Ψ1(τ) + Ψ−
1 (τ) = H

(1)
2 , τ ∈ [0; δ2];

Ψ+
1 (τ)−Ψ−

1 (τ) = H
(1)
3 , τ ∈ [−δ4; 0];

Ψ+
1 (τ) + Ψ−

1 (τ) = 0, τ ∈ [−2;−0; δ4],

(21)

Ψ+
2 (τ) + Ψ−

2 (τ) = 0, τ ∈ [δ2; 2];

Ψ+
2 (τ)−Ψ−

2 (τ) = H
(2)
2 , τ ∈ [0; δ2];

Ψ+
2 (τ) + Ψ−

2 (τ) = H
(2)
3 , τ ∈ [−δ4; 0];

Ψ+
2 (τ)−Ψ−

2 (τ) = 0, τ ∈ [−2;−δ4],

(22)
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where (−δ4) and δ2 are the images of the points a4 and a2, respectively,

under the mapping ξ = ζ +
1

ζ
.

We will seek for bounded at infinity solutions of problems (21) and (22)
of the class h(−2;−δ4; 0; δ2; 4), satisfying the condition

Ψj(ξ) = Ψj(ξ̄), (j = 1, 2). (23)

The canonical functions of problems (21) and (22) this class have the
following form (see [11], [12], [13])

χ1(ξ) =
√
(ξ + δ4)ξ(ξ − δ2)(ξ + 2),

χ2(ξ) =
√

(ξ + δ4)ξ(ξ − δ2)(ξ − 2).
(24)

The necessary and sufficient condition for the solvability of the problem
(21) has the form

H
(1)
3

0∫
−δ4

dτ

χ1(τ)
+H

(1)
2

δ2∫
0

dτ

χ1(τ)
= 0, (25)

and the solution itself is given by the formula

Ψ1(ξ) =
χ1(ξ)

2πi

H(1)
3

0∫
−δ4

dτ

χ1(τ)(τ − ξ)
+H

(1)
2

δ2∫
0

dτ

χ1(τ)(τ − ξ)

 . (26)

Analogous the necessary and sufficient condition for the solvability of
problem (22) has the form

H
(2)
3

0∫
−δ4

dτ

χ2(τ)
+H

(2)
2

δ2∫
0

dτ

χ2(τ)
= 0, (27)

and the solution itself is given by the formula

Ψ2(ξ) =
χ2(ξ)

2πi

H(2)
3

0∫
−δ4

dτ

χ2(τ)(τ − ξ)
+H

(2)
2

δ2∫
0

dτ

χ2(τ)(τ − ξ)

 . (28)

It is easy verify that the functions Ψj(ξ) (j = 1, 2) satisfy the condition
(23).

Having found the functions Ψj(ξ) (j = 1, 2), from (12) and (16) func-
tions ω0(ξ) = ω[ζ(ξ)] and ψ0(ξ) = Ψ[ω(ζ(ξ))] are represented by the for-
mulas

ω0(ξ) =
2

k0
[Ψ1(ξ)− iΨ2(ξ)] ψ0(ξ) = Ψ1(ξ) + iΨ2(ξ), (29)
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where Ψ1(ξ) and Ψ2(ξ) are represented by the formulas (26) and (28),
respectively.

From (29) the equation for part A6A1 of the unknown contour can be ob-

tained from the image of the function ω(ζ) for ξ ∈
[
−∞;−δ

2
0 + 1

δ0
∪ [2;∞)

]
.

The integrals appearing in formulas (25)-(28) are the first and third
kind elliptic integrals (see [15]).

0∫
−δ4

dτ

χ1(τ)
=

2√
2(δ2 + δ4)

F
[π
2
; K

(2)
1

]
;

δ2∫
0

dτ

χ1(τ)
=

−2i√
2(δ2 + δ4)

F
[π
2
; K

(1)
1

]
;

0∫
−δ4

dτ

χ2(τ)
=

−2i√
2(δ2 + δ4)

F
[π
2
; K

(2)
2

]
;

δ2∫
0

dτ

χ2(τ)
=

2√
2(δ2 + δ4)

F
[π
2
; K

(1)
2

]
;

0∫
−δ4

dt

χ1(t)(t− ξ)
= − 2

(ξ + δ4)(ξ + 2)
√
2(δ2 + δ4)

×
{
(2− δ4)Π

[π
2
; n

(2)
1 (ξ); K

(2)
1

]
+ (ξ + δ4)F

[π
2
; K

(2)
1

]}
;

δ2∫
0

dt

χ1(t)(t− ξ)
=

2i

(ξ − δ2)(ξ + 2)
√
2(δ2 + δ4)

×
{
(δ2 + 2)Π

[π
2
; n

(1)
1 (ξ); K

(1)
1

]
+ (ξ − δ2)F

[π
2
; K

(1)
1

]}
;

0∫
−δ4

dt

χ2(t)(t− ξ)
=

2i

(ξ − 2)(ξ + δ4)
√
2(δ2 + δ4)

×
{
−(δ4 + 2)Π

[π
2
; n

(2)
2 (ξ); K

(2)
2

]
+ (ξ + δ4)F

[π
2
; K

(2)
2

]}
;

δ2∫
0

dt

χ2(t)(t− ξ)
= − 2

(ξ − 2)(ξ − δ2)
√
2(δ2 + δ4)
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×
{
(δ2 − 2)Π

[π
2
; n

(1)
2 (ξ); K

(1)
2

]
+ (ξ − δ2)F

[π
2
; K

(1)
2

]}
,

where

K
(2)
1 =

√
δ4(δ2 + 2)

2(δ2 + δ4)
; K

(1)
1 =

√
δ2(2− δ4)

2(δ2 + δ4)
; K

(2)
2 =

√
δ4(2− δ2)

2(δ2 + δ4)
;

K
(1)
2 =

√
δ2(2 + δ4)

2(δ2 + δ4)
; n

(2)
1 (ξ) =

δ4(ξ + 2)

2(ξ + δ4)
; n

(1)
1 ξ =

−δ2(ξ + 2)

2(ξ − δ2)
;

n
(2)
2 (ξ) =

−δ4(ξ − 2)

2(ξ + δ4)
n
(1)
2 (ξ) =

δ2(ξ − 2)

2(ξ − δ2)
,

F [φ; k] =

φ∫
0

dφ√
1− k2 sin2 φ

is the elliptic integral of the first kind.

Π[φ;n; k] =

π∫
0

dφ

(1− n sin2 φ)
√
1− k2 sin2 φ

is the elliptic integral of the

third kind.
If the approximations

F [φ; k] =

φ∫
0

(
1 +

1

2
k2 sin2 φ

)
dφ =

π

2

4 + k2

4
;

Π[φ;n; k] =

φ∫
0

[
1 +

(
k2

2
+ n

)
sin2 φ

]
dφ =

π

2

[
1 +

k2 + 2n

4

]
,

are satisfied, then the equation of the unknown contour has the from

ω0(σ) =
χ1(σ)√

2(δ2 + δ4)kπi

{
−H(1)

3

(σ + δ4(σ + 2)

[
(2− δ4)

(
1 +

δ4(δ2 + 2)

8(δ2 + δ4)

+
δ4(σ + 2)

4(σ + δ4)

)
+ (σ + δ4)

8δ2 + 10δ4 + δ2δ4
8(δ2 + δ4)

]

+
iH

(1)
2

(σ − δ2)(σ + 2)

[
(δ2 + 2)

(
1 +

δ2(2− δ4)

8(δ2 + δ4)
− δ2(σ + 2)

4(σ − δ2)

)

+ (σ − δ2)
10δ2 + 8δ4 − δ2δ4

8(δ2 + δ4)

]}

+
χ2(σ)√

2(δ2 + δ4)kπi

{
H

(2)
3

(σ − 2)(σ + δ4)

[
−(δ4 + 2)

(
1 +

δ4(2− δ2)

8(δ2 + δ4)
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− δ4(σ − 2)

4(σ + δ4)

)
+

(σ + δ4)(8δ2 + 10δ4 − δ2δ4)

8(δ2 + δ4)

]

+
iH

(2)
2

(σ − 2)(σ − δ2)

[
(δ2 − 2)

(
1 +

δ2(2 + δ4)

8(δ2 + δ4)
+
δ2(σ − 2)

4(σ − δ2)

)

+ (σ − δ2)
10δ2 + 8δ4 + δ2δ4

8(δ2 + δ4)

]}
,

and the conditions (25) and (27) take the form

H
(1)
3 (4 +K

2(2)
1 )− iH

(1)
2 (4 +K

2(1)
1 ) = 0,

H
(2)
3 (4 +K

2(2)
2 ) + iH

(2)
2 (4 +K

2(2)
1 ) = 0.

Also one condition for determination of the parameters δ2, δ4, k0, we
obtain from condition ω0(−2) = 0, which from Π[φ; 0; k] = F [φ; k + 0] has
the form

H
(2)
3

2− δ4

[
(δ4 + 2)

(
1 +

δ4(2− δ2)

8(δ2 + δ4)
− δ4

2− δ4

)
+ (2− δ4)

8δ2 + 10δ4 − δ2δ4
8(δ2 + δ4)

+

iH
(2)
2

2− δ2

[
(2− δ2)

(
1 +

δ2(2− δ4)

8(δ2 + δ4)
+

δ2
2 + δ2

)
+ (2 + δ2)

10δ2 + 8δ4 + δ2δ4
8(δ2 + δ4)

]
= 0.

From the condition ω0

(
− δ20+1

δ0
= l

)
we can found δ0, where 2l is a length

of the rectilinear cut.
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