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Abstract

In the paper the shells consisting of binary mixtures are considered. Based on I.

Vekua’s works, the question of existence of neutral surfaces in such shells is studied.

By neutral surface is called a surface which belongs to a shell but is not subject to

tensions and compressions by the deformation of the elastic body.
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1 Introduction

In chapter 5 of Vekua’s monograph [1] (see also monograph [2]) the question
of existence of neutral surfaces in an elastic shells was studied. By neutral
surface I. Vekua calls a surface which belongs to a shell but is not subject
to tensions and compressions by the deformation of the shell. In other
words, under the deformation of the shell the linear elements of the neutral
surface are unchanged. On the neutral surface the tangential components
of the deformation tensor are zero. Our goal is to establish the conditions
for the existence of neutral surfaces in shells consisting of a mixture of two
isotropic elastic materials. In such shells on the neutral surface, in addition
to the tangential components of the two deformation tensors the tangential
components of the rotation tensor are also zero.

2 Tangential and transverse stress fields in shells
consisting of a binary mixture

In this paper we consider the Green-Naghdi-Steel model of a mixture of two
isotropic elastic materials [3-5]. In this case, the relations corresponding to
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the generalized Hooke’s law have the form

P i.
.j = Λθgij + 2Mεij − 2λ5h

i.
.j , i, j = 1, 2, 3, (1)

where P i.
.j = (P

/i.
.j , P

//i.
.j )T is a column-matrix consisting of mixed compo-

nents of stress tensors of two constituents of the mixture; εij = (ε
/i
j , ε

//i
j )T

is a column-matrix consisting of mixed components of deformations tensors
of two constituents of the mixture, which with the matrix of covariant com-
ponents of the displacement vectors of the two constituents of the mixture

uj = (u
/
j , u

//
j )T is connected by the formula

εij = 0.5(
◦
▽i uj+

◦
▽j u

i),

where
◦
▽i,

◦
▽j are symbols of a spatial covariant and contravariant deriva-

tives; ui = (u/i, u//i)T is a column-matrix of contravariant components of
displacement vectors of two constituents of the mixture;

θ ≡ ε11 + ε22 + ε33 = θ∗ + ε33; θ∗ ≡ ε11 + ε22. (2)

hi..j = (h
/i.
.j , h

//i.
.j )T are mixed components of rotation tensor of components

of mixture

h
/i.
.j = −h

//i.
.j = 0.5(

◦
▽i u

/
j−

◦
▽j u

/i+
◦
▽j u

//i−
◦
▽i u

//
j ),

Λ =

(
λ1 − αρ2

ρ λ3 − αρ1
ρ

λ4 +
αρ2
ρ λ2 +

αρ1
ρ

)
, M =

(
µ1 µ3

µ3 µ2

)
;

λ1, λ2, λ3, λ4, λ5, µ1, µ2, µ3 are the elasticity constants characterizing the
mechanical properties of the mixture, α = λ3 − λ4; ρ1, ρ2 are the densities
of two mixture components, ρ = ρ1 + ρ2; g

i
j are mixed components of the

metric tensor in space.

In the above formulas Latin indexes take the value 1,2,3. Below with
respect we assume summation on the repeating indexes. Greek indexes will
take the values 1,2.

When j = 3 from (1) we have

Pα.
.3 = 2Mεα3 − 2λ5h

α.
.3 , P 3.

.α = 2Mε3α − 2λ5h
3.
.α, (3)

P 3
3 = Λθ + 2Mε33 = Λθ∗ + (Λ + 2M)ε33. (4)

From (3) and (4)

εα3 = 0.25M−1(Pα.
.3 + P 3.

.α), (5)
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ε33 = (Λ + 2M)−1(P 3
3 − Λθ∗). (6)

By inserting expression (6) into (4), we obtain

θ = Λ−1Λ∗θ∗ + (Λ + 2M)−1P 3
3 , (7)

where

Λ∗ ≡ Λ− Λ(Λ + 2M)−1Λ = 2Λ(Λ + 2M)−1M. (8)

Substituting expression (7) into (1) we get

P i.
.j = T i.

.j +Qi.
.j , (9)

where

Tα.
.β = Λ∗θ∗gαβ + 2Mεαβ − 2λ5h

α.
.β , T i.

.3 = T 3.
.i = 0, (10)

Qα.
.β = Λ(Λ + 2M)−1P 3

3 g
α
β , Qi.

.3 = P 3.
.i , Q.i

3. = P .i
3.. (11)

From equalities (10) we easily derive relations

Mεαβ − λ5h
α.
.β = 0.5Tα.

.β − 0.25Λ∗(Λ∗ + 2M)−1T γ
γ g

α
β , (12)

θ∗ = 0.5(Λ∗ +M)−1T γ
γ . (13)

If we now insert (1) into formula [1]

P i = P i.
.jR

j (14)

we obtain

P α = T α +Qα P 3 = Q3, (15)

where

T α = Tα.
.β R

β, T 3 = 0, (16)

Qi = Qi.
.jR

j . (17)

The stress tensor is thus represented as the sum

P = T +Q, (18)

where

T = T α ⊗Rα, Q = Qi ⊗Ri. (19)

Formula (16) implies that the tensor at any point of the shell satisfies
the condition

nT α = 0, i.e. nT = 0. (20)
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In view of equalities (20) the stress forces P (n) acting on longitudinal areas
with the normal n are given by the formula

P (n) = P 3 ≡ Q3.

The tensor Q according to formulae (11) and (19) is expressed by

Q = Qα.
.βRα ⊗Rβ +Qi.

.3Ri ⊗ n+Q3.
.αn⊗Rα

= Λ(Λ+2M)−1P 3
3Rα ⊗Rα +Pα.

.3 Rα ⊗n+P 3
3n⊗n+P 3.

.αn⊗Rα. (21)

T and Q are the tangential and normal stress fields, respectively.
Differentiating the vector u = uiR

i with respect to Gaussian coordi-
nates xα when x3 = const, we have

∂αu = (∇̂αuβ − b̂αβu3)R
β + (∇̂αu3 − b̂βαuβ)n, (22)

where

∇̂αuβ = ∂αuβ − Γ̂ν
αβuν , ∇̂αu3 = ∂αu3. (23)

Here Γ̂ν
αβ are second-order Christoffel’s symbols of the coordinate sur-

face Ŝ : x3 = comst . b̂αβ, b̂βα are covariant and mixed coefficients of the
second fundamental quadratic form of this surface;

Γ̂ν
αβ = Γν

αβ +Aν.
.γ∇αA

γ.
β.,

where Γν
αβ are second-order Christoffel’s symbols of the surface S : x3 = 0;

Ai.
.j = ϑ−1[(1− 2Hx3)aij + x3bij + (x3)2ai3a

3
jK],

ϑ = 1− 2Hx3 +K(x3)2,

H = 0.5bγγ , K = b11b
2
2 − b21b

1
2 are the mean and Gaussian curvatures of the

surface S respectively. Then for the components εij and hi..j we have

εij = 0.5(Ri∂ju+Rj∂
iu), hi..j = 0.5S(Rj∂

iu−Ri∂ju), (24)

where ∂i ≡ gik∂k, S =

(
1 −1
−1 1

)
.

From (22) we obtain

εαβ = 0.5(∇̂αuβ + ∇̂βu
α)− b̂αβu3, hα..β = 0.5S(∇̂αuβ − ∇̂βu

α). (25)

This gives

θ∗ = εαα = ∇̂αu
α − 2Ĥu3. (26)
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Inserting expressions (25) and (26) into (10) we have

Tα.
.β = Λ∗(∇̂γu

γ−2Ĥu3)g
α
β+(M−λ5S)∇̂αuβ+(M+λ5S)∇̂βu

α−2Mb̂αβu3,
(27)

∇̂αu
β = ∂αu

β + Γ̂β
αγu

γ , ∇̂αuβ = ∂αuβ − Γ̂γ
αγuγ , ∇̂α = gαγ∇̂γ . (28)

Formula (27) yields

T γ
γ = 2(Λ∗ +M)∇̂γu

γ − 4(Λ∗ +M)Ĥu3. (29)

If Ĥ ̸= 0 then from (29) we get

u3 =
1

2Ĥ
∇̂γu

γ − 1

4Ĥ
(Λ∗ +M)−1T γ

γ . (30)

In view of (12) we may write relation (25) in the form

0.5[(M − λ5S)∇̂αuβ + (M + λ5S)∇̂βuα]− b̂αβMu3

= 0.5Tα.
.β − 0.25Λ∗(Λ∗ + 2M)−1T γ

γ gαβ. (31)

3 Conditions for the existence of a neutral surface
of a shell consisting of binary mixture

We now assume that on some coordinate surface Ŝ : x3 = const, , belonging
to the shell Ω the tangential stress field is identically zero, i.e.

Tαβ = 0 (Ŝ : x3 = const). (32)

Then relations (31) imply that the displacement field satisfies the system
of equations  0.5(∇̂αuβ + ∇̂βuα)− b̂αβu3 = 0,

0.5S(∇̂αuβ − ∇̂βuα) = 0.
(33)

The first two equations (33) are the equations of infinitesimal bendings of
the coordinate surface Ŝ : x3 = const. The third equation has the form

∇̂1u
/
2 − ∇̂2u

/
1 + ∇̂2u

//
1 − ∇̂1u

//
2 = 0.

The system (33) can be written in an expanded form
0.5(∇̂αu

/
β + ∇̂βu

/
α)− b̂αβu

/
3 = 0,

0.5(∇̂αu
//
β + ∇̂βu

//
α )− b̂αβu

//
3 = 0,

∇̂1u
/
2 − ∇̂2u

/
1 + ∇̂2u

//
1 − ∇̂1u

//
2 = 0.
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Conversely, if equations (33) hold on the coordinate surface Ŝ : x3 = const
then, according to (27), the tangential stress field in the shell consisting of
binary mixture identically vanishes on this surface.

Thus, the coordinate surface Ŝ : x3 = const for which this conditions
holds, is a neutral surfaces of the shell consisting of binary mixture.

We write the system of equilibrium equations for shells consisting of
binary mixture in the vector form

1
√
g
∂i(

√
gP i) +Φ = 0, (34)

where g is the discriminant of the relative metric square form.

In view of (15) system (34) may be written as

1
√
g
∂α(

√
gT α) +

1
√
g
∂i(

√
gQi) +Φ = 0, (35)

where
0

T α= (T α)x3=0,
0

Qα= (Qα)x3=0. (36)

Then on the middle surfaces S : x3 = 0 equations (35) becomes

1√
a
∂α

(√
a

0

T α

)
+

1√
a
∂α

(√
a

0

Qα

)
+

1
√
g
∂3
(√

gP 3
)
x3=0

+
0
Φ= 0, (37)

where
0
Φ= (Φ)x3=0. (38)

Let the middle surface S : x3 = 0 be the neutral surface of a shell. Then

0

Tα= 0 i.e.
0

Tαβ= 0 (onS), (39)

And equation (37) becomes

1√
a
∂α

(√
a

0

Qα

)
+

1
√
g
∂3
(√

gP 3
)
x3=0

+
0
Φ= 0, (40)

Thus, the satisfaction of this equation is the condition necessary for the
surface S : x3 = 0 to be neutral.

In the sequel we consider thin shells of constant thickness 2h . Denote

the stress forces acting of the face surfaces S+ and S− by
(+)

P and
(−)

P

(+)

P = −(P 3)x3=h,
(−)

P = (P 3)x3=−h. (41)
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If we approximately represent the transverse stress force by the formula

P 3(x1, x2, x3) ∼=
0

P 3 (x1, x2) + x3
1

P 3 (x1, x2), (42)

where
0

P 3= (P 3)x3=0 = 0,
1

P 3= (∂3P
3)x3=0. (43)

Due to (41) we have

0

P 3= 0.5(
(−)

P −
(+)

P ),
1

P 3= −0.5h−1(
(+)

P +
(−)

P ). (44)

Consequently

1
√
g
∂3(

√
gP 3)x3=0

∼= H(
(+)

P −
(−)

P )− 0.5h−1(
(+)

P +
(−)

P )

= 0.5h−1(2hH − 1)
(+)

P −0.5h−1(2hH + 1)
(−)

P . (45)

Here we have made use of the formula

1
√
g
∂3(

√
g)x3=0 = (∂3 lnϑ)x3=0 = −2H (46)

and the boundary conditions (41).

In view of equalities (21) and (44) we have

0

Qα= Λ(Λ + 2M)−1P 33rα + P 3.
.αn

∼= −0.5Λ(Λ + 2M)−1(
(+)

P 3 −
(−)

P 3)rα − 0.5(
(+)

Pα −
(−)

Pα)n, (47)

where
(+)

P i= (
(+)

P /i,
(+)

P //i)T and
(−)

P i= (
(−)

P /i,
(−)

P //i)T are the contravariant compo-

nents of the vectors
(+)

P and
(−)

P , respectively. In view of equalities (47) and
(44) we may write equation (40) as

1√
a
∂α[

√
aΛ(Λ + 2M)−1(

(+)

P 3 −
(−)

P 3)rα + 0.5(
(+)

Pα −
(−)

Pα)]n

+h−1(1− 2hH)
(+)

P +0.5h−1(1 + 2hH)
(−)

P −2
0
Φ= 0. (48)

where a is the discriminant of a quadratic form of the middle surface.
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Thus, if the middle surface of the thin shell consisting of a binary mix-

ture is neutral then the stresses
(+)

P and
(−)

P , applied to the face surfaces of
a shell, must satisfy the system of equations (48). It will be shown below
that if one of these vectors is given, the other may be defined by equation
(48).

In future therefore only one of these forces is assumed to be prescribed,

for example
(−)

P .

Then to define the vector field
(+)

P we have the equation

1√
a
[
√
a(Λ(Λ+2M)−1prα+pαn)]+h−1(1−2hH)(pn+pαrα)+Φ̃ = 0, (49)

where

p = (p/, p//)T , p =
(+)

P 3 −
(−)

P 3, pα =
(+)

Pα −
(−)

Pα, (50)

Φ̃ = −2
0
Φ +2h−1

(−)

P . (51)

Equation (49) is equivalent to the system of equations

Λ(Λ + 2M)−1∂αp+ h−1[(1− 2hH)aαβ − hbαβ]p
β + Φ̃α = 0, (52)

1√
a
∂α(

√
apα) + h−1[I − 2hH(I − Λ(Λ + 2M)−1)]p+ Φ̃3 = 0, (53)

where I =

(
1 0
0 1

)
;

Φ̃β = −2
0
Φβ +2h−1

(−)

Pβ , (54)

Φ̃3 = −2
0
Φ3 +2h−1

(−)

P3 . (55)

We assume that, on the face surface S− , only normal forces act, of the
form

(−)

P = qn, (56)

where q = (q/, q//)T is a column-matrix consisting of some scalar functions
of the point of the surface S− . Then formulas (54), (55) take the form

Φ̃β = −2
0
Φβ, Φ̃3 = −2

0
Φ3 +2h−1q. (57)

From the system of equations (52) it is easy to derive the formula

pα =
(+)

Pα −
(−)

Pα= −Λ(Λ + 2M)−1d̃αβ∂βp− d̃αβΦ̃β, (58)
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where

d̃αβ =
h[aαβ(1− 4hH) + hbαβ]

1− 2hH +Kh2 + 4hH(2hH − 1)
. (59)

Inserting (58) into (53) we obtain the equation

Λ(Λ+2M)−1∇α(d̃
αβ∇βp)−h−1[I−2hH(I−Λ(Λ+2M)−1)]p+Φ = 0, (60)

where
Φ = −Φ̃3 +∇α(d̃

αβΦ̃β)

= −2h−1
(−)

P 3 +2h−1∇α(d̃
αβ

(−)

P β) + 2
0
Φ3 −2∇α(d̃

αβ
0
Φβ). (61)

If the stresses S− on have the form (56) then, in view of (57), equality (61)
takes the form

Φ = −2h−1q + 2
0
Φ3 −2∇α(d̃

αβ
0
Φβ). (62)

Thus, to determine the
(+)

P 3= p+
(−)

P 3 we have the fourth-order system of
partial differential equations (60).

If the solution p = (p/, p//)T of system (60), then by virtue of the
formulae

(+)

P 3= p+
(−)

P 3 (63)

and
(+)

Pα=
(−)

Pα −Λ(Λ + 2M)−1d̃αβ∂βp− d̃αβΦ̃β (64)

we find the normal and tangential components of the unknown stress field.

Let the shell be subject to bush constraints and the stress field
(−)

P on the
face surface S− be assigned beforehand. Let us assume that the normal

and tangential components of the stress field
(+)

P on the surface S+ are
expressed by (63), (64), where p = (p/, p//)T is some solution of the non-
homogeneous equation (60). Then the middle surface of the shell consisting
of binary mixtures is neutral, i.e. it may be subject only to infinitesimal
bendings, if on it the boundary value problem

1√
a
∂α(

√
a

0

T α) ≡ 1√
a
∂α(

√
a

0

Tαβ rβ) = 0 (on S) (65)

and
0
Pls=

0

Tαβ lαlβ = 0 (on S)

has only the trivial solution
0

Tαβ= 0 .
If the shell in this case does not experience an infinitesimal bending,

then its middle surface is rigid.
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4 Closed convex shells consisting of binary mix-
tures

If Ω is a closed shell, then S is an ovaloid. We prove that in this case
system (60) may have only the unique regular solution, and hence, the
corresponding homogeneous equation has no non-zero solution on S .

By the regular solution (60) we understand the continuous and continu-
ously differentiable solution in the domain under consideration. The second
derivatives of the regular solution may, in general, exist only in the gen-
eralized sense, and the equation is satisfied in the domain under question
almost everywhere.

We write the homogeneous equation, corresponding to equation (60) in
the form

∇α(d̃
αβ∇βu)− Cu = 0, (66)

where C denotes the matrix

C = h−1Λ−1(Λ + 2M)[I − Λ(Λ + 2M)−1]. (67)

Let u = (u/, u//)T be the regular solution of equation (66) on S , i.e.
is the continuous function of the point of the surface and has continuous
partial derivatives with respect to Gaussian coordinates of this surface. We
represent the surface S as S = S1 ∪ S2 , where S1 and S2 are parts of
the surface with no common points S1 ∩ S2 = ∅ . Let L be the common
boundary of S1 and S2 . Denote the tangential normal to L by l directed to
S1 . If we transpose (66) and multiplying both sides of transpose equation
by u, we may rewrite it as

∇α(d̃
αβ(∇βu)

Tu)− d̃αβ(∇αu)
T∇βu− (Cu)Tu = 0. (68)

Integrating this equality with respect to the surfaces S1 and S2, and then
applying Green’s formula, we have∫

L

l̃αd̃
αβ(∇βu)

Tuds−
∫ ∫

S1

(
d̃αβ(∇αu)

T∇αu+ uTCu
)
dS1 = 0, (69)

−
∫
L

l̃αd̃
αβ(∇βu)

Tuds−
∫ ∫

S1

(
d̃αβ(∇αu)

T∇αu+ uTCu
)
dS2 = 0. (70)

C = CT is a symmetric matrix

C =

(
c11 c12
c12 c22

)
.
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Let’s say detC > 0 and c11 > 0 . By adding equalities (69) and (70) we
obtain ∫ ∫

S1

(
d̃αβ(∇αu)

T∇βu+ uTCu
)
dS = 0. (71)

Since d̃αβ(∇αu)
T∇βu ≥ 0, uTCu ≥ 0, from (71) it follows that u ≡ 0 which

was to be proved.

The problem under consideration in thus reduced to the determination
of the globally regular particular solution of the non-homogeneous equation
(60).

It remains to show that if equation (60) has a globally regular solution,
then the middle surface S : x3 = 0 of the shell is neutral. To do this we
have to show first that the tangential stress field vanishes on S , i.e. it
should be shown that the equation

1√
a
∂α(

√
a

0

T α) ≡ 1√
a
∂α(

√
a

0

Tαβ rβ) = 0. (72)

has no globally regular solution, except trivial
0

Tαβ. It is evident since,
with respect to isometric-conjugate coordinates x, y, equation (72) is equiv-
alent to the homogeneous generalized Cauchy-Riemann equation [1, Section
3.2.3]

∂z̄ω
/ −Bω/ = 0, z = x+ iy (i2 = −1), (73)

where

ω/ = 0.5aK
1
4 (

0

T 11 −
0

T 22 −i(
0

T 12 +
0

T 21)), (74)

0

T 11 +
0

T 22 +i(
0

T 12 −
0

T 21) = 0.

As has been proved above [1, Section 3.3.1], the complex stresses func-
tion ω/ is continuous on the whole plane E of the complex variable z = x+iy
and at infinity satisfies the condition

ω/ = O(|z|−4).

This implies, in view of the generalized Liuville theorem [2], that ω/ = 0.

Then from (74) it follows that
0

Tαβ≡ 0, which was to be proved. The system
of equations (33) therefore becomes{

∇αuβ +∇βuα − 2bαβu3 = 0,

S(∇αuβ −∇βuα) = 0.
(75)
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However, according to the Gaussian theorem, the ovaloid is rigid and system
(75) therefore has only the solution of the form

u/ = c/ ×R+ c
/
0, u// = c// ×R+ c

//
0 ,

where c/ = c// (This follows from the second equation of system (75)),

U = (u/,u//)T , C = (c/, c//)T , C0 = (c
/
0, c

//
0 )T

U = C ×R+C0, (76)

where c/, c
/
0, c

//
0 are the constant vector fields.

Thus the surface S allows only the rigid motion. It is therefore proved
that S is a rigid neutral surface.

Assume that the free term Φ of equation (60) is zero. Then from (61)
we have

(−)

P 3 −∇α(d̃
αβ

(−)

P β)− h
0
Φ3 −h∇α(d̃

αβ
0
Φβ) = 0. (77)

This equality may be regarded as the condition which must be satisfied

by the stress force
(−)

P applied to the face surface S−. If condition (77) is
satisfied, we obtain the homogeneous equation for p, which, as was shown
above has zero solution p = 0. Therefore, in view of (77) and (58)

(+)

P 3=
(−)

P 3= ∇α(d̃
αβ

(−)

Pβ) + h
0
Φ3 −h∇α(d̃

αβ
0
Φβ) = 0, (78)

(+)

Pα=
(−)

Pα −d̃αβ
0
Φβ≡

(−)

Pα −2h−1d̃αβ
(−)

P β +2d̃αβ
0
Φβ . (79)

In particular, if the normal stresses act on the inner face surface, then
(−)

Pα≡ 0 and (77) takes the form

(−)

P 3= h
0
Φ3 −h∇α(d̃

αβ
0
Φβ). (80)

Then the stress force acts on the external surface whose components are
defined by the equalities

(+)

P 3=
(−)

P 3= h
0
Φ3 −h∇α(d̃

αβ
0
Φβ). (81)

(+)

Pα= 2d̃αβ
0
Φβ . (82)

Thus, the normal stresses on face surfaces S+ and S− are equal and are
given by (80), the tangential stresses on S+ are not zero and are expressed
by (82).
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