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Abstract

The purpose of this paper is to consider the two-dimensional version of the linear

theory of elasticity for solids with triple-porosity in the case of an elastic Cosserat

medium. Using the analytic functions of a complex variable and solutions of the

Helmholtz equation the Dirichlet boundary value problem are solved explicitly for the

concentric circular ring.
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1 Introduction

The first mathematical formulation of flow through triple porosity media is
introduced by Liu [1] and several new triple porosity models for single-phase
flow in a fracture-matrix system are presented by Liu et al. [2], Abdassah
and Ershaghi [3], Al Ahmadi and Wattenbarger [4], Wu et al. [5]. Recently,
The full coupled linear theories of elasticity and thermoelasticity for triple
porosity materials are presented in [6, 7]. It should be noted that all the
papers mentioned above dealt with a classical (symmetric) medium. We
consider the problem of elasticity for solids with triple-porosity in the case
of an elastic Cosserat medium.
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2 Basic equations

Let D be a bounded domain in the Euclidean two-dimensional space R2

bounded by the contour S. Suppose that S ∈ C1,β, 0 < β < 1, i.e., S is

a Lyapunow curve. Let x = (x1, x2) is point of space, ∂α =
∂

∂xα
. Let the

domain D be filled with an isotropic triple-porosity material.
The basic homogeneous system of equations for isotropic materials with

triple porosity has the form [8]

(µ+ α)∆u1 + (λ+ µ− α)∂1θ + 2α∂2ω − ∂1(β1p1 + β1p3 + β1p3) = 0,
(µ+ α)∆u2 + (λ+ µ− α)∂2θ + 2α∂1ω − ∂2(β1p1 + β1p3 + β1p3) = 0,
(ν + β)∆ω + 2α(∂1u2 − ∂2u1)− 4αω = 0,

(1)
θ = ∂1u1 + ∂2u2,

where uα are components of the displacement vector, ω is the component
of the rotation vector, pi (i = 1; 2; 3) are the pressures in the fluid phase,
λ and µ are the Lam parameters, α, β, µ are the constants characterizing
the microstructure of the considered elastic medium, βi (i = 1; 2; 3) are the
effective stress parameters, ∆ is the 2D Laplace operator.

In the stationary case, the values p = (p1, p2, p3)
T satisfy the following

equation

∆p−Ap = 0, A =

 b1/a1 −a12/a1 −a13/a1
−a21/a2 b2/a2 −a23/a2
−a31/a3 −a32/a3 b3/a3

 (2)

where ai = ki
µ′ (for the fluid phase, each phase i carries its respectively

permeability ki, µ
′ is fluid viscosity), aij is the fluid transfer rate between

phase i and phase j, b1 = a12 + a13, b2 = a21 + a23, b3 = a31 + a32.
On the plane x1x2, we introduce the complex variable z = x1 + ix2 =

reiϑ, (i2 = −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2),
z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

The system (1) is written in the complex form

2(µ+ α)∂z̄∂zu+ + (λ+ µ− α)∂z̄θ − 2αi∂z̄ω

−∂z̄(β1p1 + β2p2 + β3p3) = 0,

2(ν + β)∂z̄∂zω + αi(θ − 2∂z̄u+)− 2αω = 0,

(3)

where u+ = u1 + iu2.
Equations (2) imply that

pi = f ′(z) + f ′(z) + li1χ1(z, z̄) + li2χ2(z, z̄),
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where f(z) is an arbitrary analytic functions of a complex variable z in the
domain D and χα(z, z̄) is an arbitrary solution of the Helmholtz equation

∆χα(z, z̄)− καχα(z, z̄) = 0,

κα are eigenvalues and (l11, l21, l31), (l12, l22, l32) are eigenvectors of the
matrix A.

The general solution of the system of equations (3) is represented as
follows [8, 9]:

2µu+ = κφ(z)− zφ′(z)− ψ(z) +
µ(β1 + β2 + β3)

λ+ 2µ
(f(z) + zf ′(z))

+2i∂z̄χ(z, z̄) +
4µ

λ+ 2µ
∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)],

2µω =
2µ

ν + β
χ(z, z̄)− κ+ 1

2
i(φ′(z) + φ′(z)),

where κ =
λ+ 3µ

λ+ µ
, δα :=

l1α
κα
β1+

l2α
κα
β2+

l3α
κα
β3, φ(z) and ψ(z) are arbitrary

analytic functions of a complex variable z in the domain V , χ(z, z̄) is an
arbitrary solution of the Helmholtz equation

4∂z∂z̄χ(z, z̄)− ξ2χ(z, z̄) = 0, ξ2 :=
2µα

(ν + β)(µ+ α)
> 0.

3 A problem for a circular ring

In this section, we solve a concrete boundary value problem for a concentric
circular ring with radius R1 and R2 (see fig. 1). On the boundary of the
considered domain the values of pressures p1, p2, p3, the displacement and
rotation vectors are given.

Fig. 1.
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We consider the following problem

pj =


+∞∑
−∞

A′
jne

inϑ, |z| = R1,

+∞∑
−∞

A′′
jne

inϑ, |z| = R2,
j = 1, 2, 3 (4)

u+ =


+∞∑
−∞

D′
ne

inϑ, |z| = R1,

+∞∑
−∞

D′′
ne

inϑ, |z| = R2,
ω =


+∞∑
−∞

E′
ne

inϑ, |z| = R1,

+∞∑
−∞

E′′
ne

inϑ, |z| = R2.
(5)

The analytic function f(z) and the metaharmonic functions χ1(z, z̄),
χ2(z, z̄) are represented as the series

f(z) = α ln z +

+∞∑
−∞

cnz
n,

χ1(z, z̄) =
+∞∑
−∞

(αnIn(rκ1) + βnKn(rκ1))e
inϑ,

χ2(z, z̄) =
+∞∑
−∞

(γnIn(rκ2) + δnKn(rκ2))e
inϑ,

(6)

where In(rζ) and Kn(rζ) are modified Bessel function of n-th order, z =
reiϑ, and are substituted in the boundary conditions (4) we have

(α+ ᾱ) lnR1 + (α− ᾱ)iϑ+
+∞∑
−∞

Rn
1

(
cne

inϑ + c̄ne
−inϑ

)
+lj1

+∞∑
−∞

(αnIn(R1κ1) + βnKn(R1κ1))e
inϑ

+lj2
+∞∑
−∞

(γnIn(R1κ2) + δnKn(R1κ2))e
inϑ =

+∞∑
−∞

A′
jne

inϑ,

(α+ ᾱ) lnR2 + (α− ᾱ)iϑ+

+∞∑
−∞

Rn
2

(
cne

inϑ + c̄ne
−inϑ

)
+lj1

+∞∑
−∞

(αnIn(R2κ1) + βnKn(R2κ1))e
inϑ

+lj2
+∞∑
−∞

(γnIn(R2κ2) + δnKn(R2κ2))e
inϑ =

+∞∑
−∞

A′′
jne

inϑ,

(7)

(j = 1, 2, 3).

From the condition of displacement uniqueness it follows that α−ᾱ = 0.
It is also assumed that c0 is a real value; that is, c0 = c̄0.
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Comparison of terms independent of ϑ gives

2α lnR1 + 2c0 + lj1(α0I0(R1κ1) + β0K0(R1κ1))
+lj2(γ0I0(R1κ2) + δ0K0(R1κ2)) = A′

j0,

2α lnR2 + 2c0 + lj1(α0I0(R2κ1) + β0K0(R2κ1))
+lj2(γ0I0(R2κ2) + δ0K0(R2κ2)) = A′′

j0, (j = 1, 2, 3).

(8)

The coefficients α, c0, α0, β0, γ0, δ0 are found by solving (8).
Comparison of terms involving einϑ for n = ±1,±2, ... gives

Rn
1 cn +R−n

1 c̄−n + lj1(αnIn(R1κ1) + βnKn(R1κ1))
+lj2(γnIn(R1κ2) + δnKn(R1κ2)) = A′

jn,

Rn
2 cn +R−n

2 c̄−n + lj1(αnIn(R2κ1) + βnKn(R2κ1))
+lj2(γnIn(R2κ2) + δnKn(R2κ2)) = A′′

jn, (j = 1, 2, 3).

(9)

The coefficients cn, αn, βn, γn, δn are found by solving (9).
The analytic functions φ(z), ψ(z) and the metaharmonic function χ(z, z̄)

are represented as series

φ(z) = β ln z +
∞∑
−∞

anz
n, ψ(z) = γ ln z +

∞∑
−∞

bnz
n,

χ(z, z̄) =

+∞∑
−∞

(α′
nIn(rκ1) + β′nKn(rκ1))e

inϑ,

and are substituted in the boundary conditions (5) we have

(κβ − γ̄) ln r + (κβ + γ̄)iϑ+

∞∑
−∞

(κanrneinϑ − nānr
ne−i(n−2)ϑ − b̄nr

ne−inϑ)

−β̄e2iϑ+iξ
+∞∑
−∞

(α′
nIn+1(rζ)−β′nKn+1(rζ))e

i(n+1)ϑ=


+∞∑
−∞

B′
ne

inϑ, |z| = R1,

+∞∑
−∞

B′′
ne

inϑ, |z| = R2,

κ + 1

2
i

(
β̄

r
eiϑ − β

r
e−iϑ +

∞∑
−∞

nrn−1
(
āne

−i(n−1)ϑ − ane
i(n−1)ϑ

))

+
2µ

ν + β

+∞∑
−∞

(α′
nIn(rζ) + β′nKn(rζ))e

in)ϑ=


+∞∑
−∞

C ′
ne

inϑ, |z| = R1,

+∞∑
−∞

C ′′
ne

inϑ, |z| = R2,
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where

Bn = Dn − µ(β1 + β2 + β3)

λ+ 2µ

(
(n+ 1)rncn+1 − (n− 1)r−nc̄1−n

)
− 4µ

λ+ 2µ

[
δ1κ1
2

(αn−1In(κ1r)− βn−1Kn(κ1r))

+
δ2κ2
2

(γn−1In(κ2r)− δn−1Kn(κ2r))

]
,

(n = ±1, −2, ±3, ...),

B1 = D1 −
µ(β1 + β2 + β3)

λ+ 2µ

(
2rc2 +

α

r

)
− 4µ

λ+ 2µ

×
[
δ1κ1
2

(α0I1(κ1r)− β0K1(κ1r)) +
δ2κ2
2

(γ0I1(κ2r)− δ0K1(κ2r))

]
,

and Cn = En.
From the condition of displacement uniqueness it follows that

κβ + γ̄ = 0.

Comparison of terms independent of ϑ gives
2κ lnR1β − 2R2

1ā2 + iξ
(
α′
−1I0(ξR1)− β′−1K0(ξR1)

)
+κa0 − b̄0 = B′

0,
2κ lnR2β − 2R2

2ā2 + iξ
(
α′
−1I0(ξR2)− β′−1K0(ξR2)

)
+κa0 − b̄0 = B′′

0 .

(10)

Comparison of terms involving einϑ for n = ±1,±2, ... gives{
κR2

1a2 − β̄ −R−2
1 b̄−2 + iξ (α′

1I2(ξR1)− β′1K2(ξR1)) = B′
2,

κR2
2a2 − β̄ −R−2

2 b̄−2 + iξ (α′
1I2(ξR2)− β′1K2(ξR2)) = B′′

2 ,
(11)


κRn

1an + (n− 2)R2−n
1 ā2−n −R−n

1 b̄−n

+iξ
(
α′
n−1In(ξR1)− β′n−1Kn(ξR1)

)
= B′

n,

κRn
2an + (n− 2)R2−n

2 ā2−n −R−n
2 b̄−n

+iξ
(
α′
n−1In(ξR2)− β′n−1Kn(ξR2)

)
= B′′

n,
(n = ±1, −2, ±3, ...),

(12)


2µ (α′

1I1(ξR1) + β′1K1(ξR1))

ν + β
− κ + 1

2
i

(
2R1a2 −

β

R1

)
= C ′

1,

2µ (α′
1I1(ξR2) + β′1K1(ξR2))

ν + β
− κ + 1

2
i

(
2R2a2 −

β

R2

)
= C ′′

1 ,

(13)
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2µ

ν + β

(
α′
nIn(ξR1) + β′nKn(ξR1)

)
−κ + 1

2
i
(
(n+ 1)Rn

1an+1 + (n− 1)R−n
1 ā1−n

)
= C ′

n,

2µ

ν + β

(
α′
nIn(ξR2) + β′nKn(ξR2)

)
−κ + 1

2
i
(
(n+ 1)Rn

2an+1 + (n− 1)R−n
2 ā1−n

)
= C ′′

n,

(n = 0, −1, ±2, ±3, ...).

(14)

From (14), dividing the first equation of (12) by Rn
1 , and second by Rn

2 ,
and subtracting, one obtains the first of the following formulas:{

Tnan + Snā−n+2 = Gn,

S−n+2an + T−n+2ā−n+2 = Ḡ−n+2,
(15)

where

Gn = Rn
2B

′′
n −Rn

1B
′
n − iξ(ν + β)(Rn

2 In(ξR2)−Rn
1 In(ξR1))

2µ(In−1(ξR1)Kn−1(ξR2)− In−1(ξR2)Kn−1(ξR1))

×(C ′
nKn−1(ξR2)−C ′′

nKn−1(ξR1)) +
iξ(ν + β)(Rn

2Kn(ξR2)−Rn
1Kn(ξR1))

2µ

× (C ′′
nIn−1(ξR1)− C ′

nIn−1(ξR2))

In−1(ξR1)Kn−1(ξR2)− In−1(ξR2)Kn−1(ξR1)
,

Tn = κ(R2n
2 −R2n

1 )− ξ(κ + 1)(ν + β)n(Rn
2 In(ξR2)−Rn

1 In(ξR1))

4µ(In−1(ξR1)Kn−1(ξR2)− In−1(ξR2)Kn−1(ξR1))

×(Rn−1
1 Kn−1(ξR2)−Rn−1

2 Kn−1(ξR1)) +
ξ(κ + 1)(ν + β)n

4µ

×(Rn
2Kn(ξR2)−Rn

1Kn(ξR1))(R
n−1
2 In−1(ξR1)−Rn−1

1 In−1(ξR2))

In−1(ξR1)Kn−1(ξR2)− In−1(ξR2)Kn−1(ξR1)
,

Sn = (n−2)

[
R2

2 −R2
1 −

ξ(κ + 1)(ν + β)n(Rn
2 In(ξR2)−Rn

1 In(ξR1))

4µ(In−1(ξR1)Kn−1(ξR2)− In−1(ξR2)Kn−1(ξR1))

×(R−n+1
1 Kn−1(ξR2)−R−n+1

2 Kn−1(ξR1)) +
ξ(κ + 1)(ν + β)n

4µ

×(Rn
2Kn(ξR2)−Rn

1Kn(ξR1))(R
n−1
2 In−1(ξR1)−Rn−1

1 In−1(ξR2))

In−1(ξR1)Kn−1(ξR2)− In−1(ξR2)Kn−1(ξR1)
.

The second equation (15) is obtained from the first by replacing n by −n+2
and going the conjugate complex expression.
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The coefficients an (n = ±1, −2, ±3, ...) are found by solving (15). The
coefficients α′

n and β′n may be found from (14). The coefficients bn may be
found from one of the two formulae (12). Analogous, from (10), (11) and
(13), we can found κa0 − b0, a2, b−2, β, γ, α

′
1.

It is easy to prove the absolute and uniform convergence of the series
obtained in the circular ring (including the contours) when the functions
set on the boundaries have sufficient smoothness.

Acknowledgment

The designated project has been fulfilled by financial support of the Shota
Rustaveli National Science Foundation (Grant SRNSF/FR /358/5-109/14).

References

1. Liu C.Q. Exact solution for the compressible flow equations through a
medium with triple-porosity. Appl. Math. Mech. 2 (1981), 457-462.

2. Liu J.C., Bodvarsson, G.S. Wu Y.S. Analysis of pressure behaviour in
fractured lithophysical reservoirs. J. Cantam. Hydrol. 62-63 (2003),
189-211.

3. Abdassah D., Ershaghi I. Triple-porosity systems for representing nat-
urally fractured reservoirs. SPE Form. Eval. 1 (1986), 113-127.

4. Al Ahmadi, H.A. Wattenbarger, R.A. Triple-porosity models: one fur-
ther step towards capturing fractured reservoirs heterogeneity. Saudi
Aramco J. Technol. (2011), 52-65.

5. Wu Y.S., Liu H.H., Bodavarsson G.S. A triple-continuum approach
for modelling flow and transport processes in fractured rock. J. Con-
tam. Hydrol. 73 (2004), 145-179.

6. Svanadze M. Fundamental solutions in the theory of elasticity for
triple porosity materials. Meccanica, 51 (2016), 1825–1837.

7. Svanadze M. On the linear theory of thermoelasticity for triple poros-
ity materials. In: M. Ciarletta, V. Tibullo, F. Passarella, eds., Proc.
11th Int. Congress on Thermal Stresses, 5-9 June, 2016, Salerno,
Italy, 259–262.

8. Janjgava R. Elastic equilibrium of porous Cosserat media with double
porosity. Adv. Math. Phys. (2016), Art. ID 4792148, 9 pp.

9. Muskhelishvili N.I. Some basic problems of the mathematical theory
of elasticity. ”Nauka”, Moscow, 1966.

49


