THE DIRICHLET BOUNDARY VALUE PROBLEM OF POROUS COSSERAT MEDIA WITH TRIPLE-POROSITY FOR THE CONCENTRIC CIRCULAR RING

B. Gulua ${ }^{1,2}$, R. Janjgava ${ }^{1,3}$
${ }^{1}$ Faculty of Exact and Natural Sciences and I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University 2 University Str., Tbilisi 0186, Georgia
${ }^{2}$ Sokhumi State University 61 Anna Politkovskaia Str., Tbilisi 0186,Georgia
${ }^{3}$ Georgian National University SEU
9 Tsinandali Str., Tbilisi 0144,Georgia

(Received: 07.01.2017; accepted: 22.06.2017)

Abstract

The purpose of this paper is to consider the two-dimensional version of the linear theory of elasticity for solids with triple-porosity in the case of an elastic Cosserat medium. Using the analytic functions of a complex variable and solutions of the Helmholtz equation the Dirichlet boundary value problem are solved explicitly for the concentric circular ring.

Key words and phrases: Triple-porosity, the elastic Cosserat medium, the Dirichlet boundary value problem, the concentric circular ring.

AMS subject classification: 74K20, 74F10, 74G05.

1 Introduction

The first mathematical formulation of flow through triple porosity media is introduced by Liu [1] and several new triple porosity models for single-phase flow in a fracture-matrix system are presented by Liu et al. [2], Abdassah and Ershaghi [3], Al Ahmadi and Wattenbarger [4], Wu et al. [5]. Recently, The full coupled linear theories of elasticity and thermoelasticity for triple porosity materials are presented in $[6,7]$. It should be noted that all the papers mentioned above dealt with a classical (symmetric) medium. We consider the problem of elasticity for solids with triple-porosity in the case of an elastic Cosserat medium.

2 Basic equations

Let D be a bounded domain in the Euclidean two-dimensional space R^{2} bounded by the contour S. Suppose that $S \in C^{1, \beta}, 0<\beta<1$, i.e., S is a Lyapunow curve. Let $x=\left(x_{1}, x_{2}\right)$ is point of space, $\partial_{\alpha}=\frac{\partial}{\partial x_{\alpha}}$. Let the domain D be filled with an isotropic triple-porosity material.

The basic homogeneous system of equations for isotropic materials with triple porosity has the form [8]

$$
\begin{align*}
& (\mu+\alpha) \Delta u_{1}+(\lambda+\mu-\alpha) \partial_{1} \theta+2 \alpha \partial_{2} \omega-\partial_{1}\left(\beta_{1} p_{1}+\beta_{1} p_{3}+\beta_{1} p_{3}\right)=0, \\
& (\mu+\alpha) \Delta u_{2}+(\lambda+\mu-\alpha) \partial_{2} \theta+2 \alpha \partial_{1} \omega-\partial_{2}\left(\beta_{1} p_{1}+\beta_{1} p_{3}+\beta_{1} p_{3}\right)=0, \\
& (\nu+\beta) \Delta \omega+2 \alpha\left(\partial_{1} u_{2}-\partial_{2} u_{1}\right)-4 \alpha \omega=0, \tag{1}
\end{align*}
$$

$$
\theta=\partial_{1} u_{1}+\partial_{2} u_{2},
$$

where u_{α} are components of the displacement vector, ω is the component of the rotation vector, $p_{i}(i=1 ; 2 ; 3)$ are the pressures in the fluid phase, λ and μ are the Lam parameters, α, β, μ are the constants characterizing the microstructure of the considered elastic medium, $\beta_{i}(i=1 ; 2 ; 3)$ are the effective stress parameters, Δ is the 2D Laplace operator.

In the stationary case, the values $p=\left(p_{1}, p_{2}, p_{3}\right)^{T}$ satisfy the following equation

$$
\Delta p-A p=0, \quad A=\left(\begin{array}{ccc}
b_{1} / a_{1} & -a_{12} / a_{1} & -a_{13} / a_{1} \tag{2}\\
-a_{21} / a_{2} & b_{2} / a_{2} & -a_{23} / a_{2} \\
-a_{31} / a_{3} & -a_{32} / a_{3} & b_{3} / a_{3}
\end{array}\right)
$$

where $a_{i}=\frac{k_{i} i}{\mu^{\prime}}$ (for the fluid phase, each phase i carries its respectively permeability k_{i}, μ^{\prime} is fluid viscosity), $a_{i j}$ is the fluid transfer rate between phase i and phase $j, b_{1}=a_{12}+a_{13}, b_{2}=a_{21}+a_{23}, b_{3}=a_{31}+a_{32}$.

On the plane $x_{1} x_{2}$, we introduce the complex variable $z=x_{1}+i x_{2}=$ $r e^{i \vartheta},\left(i^{2}=-1\right)$ and the operators $\partial_{z}=0.5\left(\partial_{1}-i \partial_{2}\right), \partial_{\bar{z}}=0.5\left(\partial_{1}+i \partial_{2}\right)$, $\bar{z}=x_{1}-i x_{2}$, and $\Delta=4 \partial_{z} \partial_{\bar{z}}$.

The system (1) is written in the complex form

$$
\begin{align*}
& 2(\mu+\alpha) \partial_{\bar{z}} \partial_{z} u_{+}+(\lambda+\mu-\alpha) \partial_{\bar{z}} \theta-2 \alpha i \partial_{\bar{z}} \omega \\
& -\partial_{\bar{z}}\left(\beta_{1} p_{1}+\beta_{2} p_{2}+\beta_{3} p_{3}\right)=0, \tag{3}\\
& 2(\nu+\beta) \partial_{\bar{z}} \partial_{z} \omega+\alpha i\left(\theta-2 \partial_{\bar{z}} u_{+}\right)-2 \alpha \omega=0,
\end{align*}
$$

where $u_{+}=u_{1}+i u_{2}$.
Equations (2) imply that

$$
p_{i}=f^{\prime}(z)+\overline{f^{\prime}(z)}+l_{i 1} \chi_{1}(z, \bar{z})+l_{i 2} \chi_{2}(z, \bar{z}),
$$

where $f(z)$ is an arbitrary analytic functions of a complex variable z in the domain D and $\chi_{\alpha}(z, \bar{z})$ is an arbitrary solution of the Helmholtz equation

$$
\Delta \chi_{\alpha}(z, \bar{z})-\kappa_{\alpha} \chi_{\alpha}(z, \bar{z})=0,
$$

κ_{α} are eigenvalues and $\left(l_{11}, l_{21}, l_{31}\right),\left(l_{12}, l_{22}, l_{32}\right)$ are eigenvectors of the matrix A.

The general solution of the system of equations (3) is represented as follows $[8,9]$:

$$
\begin{gathered}
2 \mu u_{+}= \\
\varkappa \varphi(z)-z \overline{\varphi^{\prime}(z)}-\overline{\psi(z)}+\frac{\mu\left(\beta_{1}+\beta_{2}+\beta_{3}\right)}{\lambda+2 \mu}\left(f(z)+z \overline{f^{\prime}(z)}\right) \\
+2 i \partial_{\bar{z}} \chi(z, \bar{z})+\frac{4 \mu}{\lambda+2 \mu} \partial_{\bar{z}}\left[\delta_{1} \chi_{1}(z, \bar{z})+\delta_{2} \chi_{2}(z, \bar{z})\right], \\
2 \mu \omega=\frac{2 \mu}{\nu+\beta} \chi(z, \bar{z})-\frac{\kappa+1}{2} i\left(\varphi^{\prime}(z)+\overline{\varphi^{\prime}(z)}\right),
\end{gathered}
$$

where $\varkappa=\frac{\lambda+3 \mu}{\lambda+\mu}, \delta_{\alpha}:=\frac{l_{1 \alpha}}{\kappa_{\alpha}} \beta_{1}+\frac{l_{2 \alpha}}{\kappa_{\alpha}} \beta_{2}+\frac{l_{3 \alpha}}{\kappa_{\alpha}} \beta_{3}, \varphi(z)$ and $\psi(z)$ are arbitrary analytic functions of a complex variable z in the domain $V, \chi(z, \bar{z})$ is an arbitrary solution of the Helmholtz equation

$$
4 \partial_{z} \partial_{\bar{z}} \chi(z, \bar{z})-\xi^{2} \chi(z, \bar{z})=0, \quad \xi^{2}:=\frac{2 \mu \alpha}{(\nu+\beta)(\mu+\alpha)}>0 .
$$

3 A problem for a circular ring

In this section, we solve a concrete boundary value problem for a concentric circular ring with radius R_{1} and R_{2} (see fig. 1). On the boundary of the considered domain the values of pressures p_{1}, p_{2}, p_{3}, the displacement and rotation vectors are given.

Fig. 1.

We consider the following problem

$$
\left.\begin{array}{c}
p_{j}=\left\{\begin{array}{ll}
\sum_{-\infty}^{+\infty} A_{j n}^{\prime} e^{i n \vartheta}, & |z|=R_{1}, \\
\sum_{-\infty}^{+\infty} A_{j n}^{\prime \prime} e^{i n \vartheta}, & |z|=R_{2},
\end{array} \quad j=1,2,3\right.
\end{array}\right\} \begin{aligned}
& u_{-\infty}^{+\infty} D_{n}^{\prime} e^{i n \vartheta},|z|=R_{1}, \\
& u_{-}^{+\infty} D_{n}^{\prime \prime} e^{i n \vartheta},|z|=R_{2},
\end{aligned} \quad \omega=\left\{\begin{array}{ll}
\sum_{-\infty}^{+\infty} E_{n}^{\prime} e^{i n \vartheta}, & |z|=R_{1}, \tag{5}\\
\sum_{-\infty}^{+\infty} E_{n}^{\prime \prime} e^{i n \vartheta}, & |z|=R_{2} .
\end{array} ~ . ~ \$\right.
$$

The analytic function $f(z)$ and the metaharmonic functions $\chi_{1}(z, \bar{z})$, $\chi_{2}(z, \bar{z})$ are represented as the series

$$
\begin{gather*}
f(z)=\alpha \ln z+\sum_{-\infty}^{+\infty} c_{n} z^{n}, \\
\chi_{1}(z, \bar{z})=\sum_{-\infty}^{+\infty}\left(\alpha_{n} I_{n}\left(r \kappa_{1}\right)+\beta_{n} K_{n}\left(r \kappa_{1}\right)\right) e^{i n \vartheta}, \tag{6}\\
\chi_{2}(z, \bar{z})=\sum_{-\infty}^{+\infty}\left(\gamma_{n} I_{n}\left(r \kappa_{2}\right)+\delta_{n} K_{n}\left(r \kappa_{2}\right)\right) e^{i n \vartheta},
\end{gather*}
$$

where $I_{n}(r \zeta)$ and $K_{n}(r \zeta)$ are modified Bessel function of n-th order, $z=$ $r e^{i \vartheta}$, and are substituted in the boundary conditions (4) we have

$$
\begin{align*}
& (\alpha+\bar{\alpha}) \ln R_{1}+(\alpha-\bar{\alpha}) i \vartheta+\sum_{-\infty}^{+\infty} R_{1}^{n}\left(c_{n} e^{i n \vartheta}+\bar{c}_{n} e^{-i n \vartheta}\right) \\
& +l_{j 1} \sum_{-\infty}^{+\infty}\left(\alpha_{n} I_{n}\left(R_{1} \kappa_{1}\right)+\beta_{n} K_{n}\left(R_{1} \kappa_{1}\right)\right) e^{i n \vartheta} \\
& +l_{j 2} \sum_{-\infty}^{+\infty}\left(\gamma_{n} I_{n}\left(R_{1} \kappa_{2}\right)+\delta_{n} K_{n}\left(R_{1} \kappa_{2}\right)\right) e^{i n \vartheta}=\sum_{-\infty}^{+\infty} A_{j n}^{\prime} e^{i n \vartheta}, \\
& (\alpha+\bar{\alpha}) \ln R_{2}+(\alpha-\bar{\alpha}) i \vartheta+\sum_{-\infty}^{+\infty} R_{2}^{n}\left(c_{n} e^{i n \vartheta}+\bar{c}_{n} e^{-i n \vartheta}\right) \tag{7}\\
& +l_{j 1} \sum_{-\infty}^{+\infty}\left(\alpha_{n} I_{n}\left(R_{2} \kappa_{1}\right)+\beta_{n} K_{n}\left(R_{2} \kappa_{1}\right)\right) e^{i n \vartheta} \\
& +l_{j 2} \sum_{-\infty}^{+\infty}\left(\gamma_{n} I_{n}\left(R_{2} \kappa_{2}\right)+\delta_{n} K_{n}\left(R_{2} \kappa_{2}\right)\right) e^{i n \vartheta}=\sum_{-\infty}^{+\infty} A_{j n}^{\prime \prime} e^{i n \vartheta}, \\
& (j=1,2,3) .
\end{align*}
$$

From the condition of displacement uniqueness it follows that $\alpha-\bar{\alpha}=0$. It is also assumed that c_{0} is a real value; that is, $c_{0}=\overline{c_{0}}$.

Comparison of terms independent of ϑ gives

$$
\begin{align*}
& 2 \alpha \ln R_{1}+2 c_{0}+l_{j 1}\left(\alpha_{0} I_{0}\left(R_{1} \kappa_{1}\right)+\beta_{0} K_{0}\left(R_{1} \kappa_{1}\right)\right) \\
& +l_{j 2}\left(\gamma_{0} I_{0}\left(R_{1} \kappa_{2}\right)+\delta_{0} K_{0}\left(R_{1} \kappa_{2}\right)\right)=A_{j 0}^{\prime} \\
& 2 \alpha \ln R_{2}+2 c_{0}+l_{j 1}\left(\alpha_{0} I_{0}\left(R_{2} \kappa_{1}\right)+\beta_{0} K_{0}\left(R_{2} \kappa_{1}\right)\right) \tag{8}\\
& +l_{j 2}\left(\gamma_{0} I_{0}\left(R_{2} \kappa_{2}\right)+\delta_{0} K_{0}\left(R_{2} \kappa_{2}\right)\right)=A_{j 0}^{\prime \prime}, \quad(j=1,2,3)
\end{align*}
$$

The coefficients $\alpha, c_{0}, \alpha_{0}, \beta_{0}, \gamma_{0}, \delta_{0}$ are found by solving (8).
Comparison of terms involving $e^{i n \vartheta}$ for $n= \pm 1, \pm 2, \ldots$ gives

$$
\begin{align*}
& R_{1}^{n} c_{n}+R_{1}^{-n} \bar{c}_{-n}+l_{j 1}\left(\alpha_{n} I_{n}\left(R_{1} \kappa_{1}\right)+\beta_{n} K_{n}\left(R_{1} \kappa_{1}\right)\right) \\
& +l_{j 2}\left(\gamma_{n} I_{n}\left(R_{1} \kappa_{2}\right)+\delta_{n} K_{n}\left(R_{1} \kappa_{2}\right)\right)=A_{j n}^{\prime} \tag{9}\\
& R_{2}^{n} c_{n}+R_{2}^{-n} \bar{c}_{-n}+l_{j 1}\left(\alpha_{n} I_{n}\left(R_{2} \kappa_{1}\right)+\beta_{n} K_{n}\left(R_{2} \kappa_{1}\right)\right) \\
& +l_{j 2}\left(\gamma_{n} I_{n}\left(R_{2} \kappa_{2}\right)+\delta_{n} K_{n}\left(R_{2} \kappa_{2}\right)\right)=A_{j n}^{\prime \prime}, \quad(j=1,2,3) .
\end{align*}
$$

The coefficients $c_{n}, \alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}$ are found by solving (9).
The analytic functions $\varphi(z), \psi(z)$ and the metaharmonic function $\chi(z, \bar{z})$ are represented as series

$$
\begin{gathered}
\varphi(z)=\beta \ln z+\sum_{-\infty}^{\infty} a_{n} z^{n}, \quad \psi(z)=\gamma \ln z+\sum_{-\infty}^{\infty} b_{n} z^{n} \\
\chi(z, \bar{z})=\sum_{-\infty}^{+\infty}\left(\alpha_{n}^{\prime} I_{n}\left(r \kappa_{1}\right)+\beta_{n}^{\prime} K_{n}\left(r \kappa_{1}\right)\right) e^{i n \vartheta},
\end{gathered}
$$

and are substituted in the boundary conditions (5) we have

$$
\begin{aligned}
& (\varkappa \beta-\bar{\gamma}) \ln r+(\varkappa \beta+\bar{\gamma}) i \vartheta+\sum_{-\infty}^{\infty}\left(\varkappa a_{n} r^{n} e^{i n \vartheta}-n \bar{a}_{n} r^{n} e^{-i(n-2) \vartheta}-\bar{b}_{n} r^{n} e^{-i n \vartheta}\right) \\
& -\bar{\beta} e^{2 i \vartheta}+i \xi \sum_{-\infty}^{+\infty}\left(\alpha_{n}^{\prime} I_{n+1}(r \zeta)-\beta_{n}^{\prime} K_{n+1}(r \zeta)\right) e^{i(n+1) \vartheta}=\left\{\begin{array}{l}
\sum_{-\infty}^{+\infty} B_{n}^{\prime} e^{i n \vartheta},|z|=R_{1}, \\
\sum_{-\infty}^{+\infty} B_{n}^{\prime \prime} e^{i n \vartheta},|z|=R_{2},
\end{array}\right. \\
& \frac{\varkappa+1}{2} i\left(\frac{\bar{\beta}}{r} e^{i \vartheta}-\frac{\beta}{r} e^{-i \vartheta}+\sum_{-\infty}^{\infty} n r^{n-1}\left(\bar{a}_{n} e^{-i(n-1) \vartheta}-a_{n} e^{i(n-1) \vartheta}\right)\right) \\
& \quad+\frac{2 \mu}{\nu+\beta} \sum_{-\infty}^{+\infty}\left(\alpha_{n}^{\prime} I_{n}(r \zeta)+\beta_{n}^{\prime} K_{n}(r \zeta)\right) e^{i n) \vartheta}=\left\{\begin{array}{l}
\sum_{-\infty}^{+\infty} C_{n}^{\prime} e^{i n \vartheta},|z|=R_{1}, \\
\sum_{-\infty}^{+\infty} C_{n}^{\prime \prime} e^{i n \vartheta},|z|=R_{2},
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{gathered}
B_{n}=D_{n}-\frac{\mu\left(\beta_{1}+\beta_{2}+\beta_{3}\right)}{\lambda+2 \mu}\left((n+1) r^{n} c_{n+1}-(n-1) r^{-n} \bar{c}_{1-n}\right) \\
-\frac{4 \mu}{\lambda+2 \mu}\left[\frac{\delta_{1} \kappa_{1}}{2}\left(\alpha_{n-1} I_{n}\left(\kappa_{1} r\right)-\beta_{n-1} K_{n}\left(\kappa_{1} r\right)\right)\right. \\
\left.+\frac{\delta_{2} \kappa_{2}}{2}\left(\gamma_{n-1} I_{n}\left(\kappa_{2} r\right)-\delta_{n-1} K_{n}\left(\kappa_{2} r\right)\right)\right], \\
(n= \pm 1,-2, \pm 3, \ldots), \\
\times\left[\frac{\delta_{1} \kappa_{1}}{2}\left(\alpha_{0} I_{1}\left(\kappa_{1} r\right)-\beta_{0} K_{1}\left(\kappa_{1} r\right)\right)+\frac{\delta_{2} \kappa_{2}}{2}\left(\gamma_{0} I_{1}\left(\kappa_{2} r\right)-\delta_{0} K_{1}\left(\kappa_{2} r\right)\right)\right],
\end{gathered}
$$

and $C_{n}=E_{n}$.
From the condition of displacement uniqueness it follows that

$$
\varkappa \beta+\bar{\gamma}=0 .
$$

Comparison of terms independent of ϑ gives

$$
\left\{\begin{array}{l}
2 \varkappa \ln R_{1} \beta-2 R_{1}^{2} \bar{a}_{2}+i \xi\left(\alpha_{-1}^{\prime} I_{0}\left(\xi R_{1}\right)-\beta_{-1}^{\prime} K_{0}\left(\xi R_{1}\right)\right) \tag{10}\\
+\varkappa a_{0}-\bar{b}_{0}=B_{0}^{\prime}, \\
2 \varkappa \ln R_{2} \beta-2 R_{2}^{2} \bar{a}_{2}+i \xi\left(\alpha_{-1}^{\prime} I_{0}\left(\xi R_{2}\right)-\beta_{-1}^{\prime} K_{0}\left(\xi R_{2}\right)\right) \\
+\varkappa a_{0}-\bar{b}_{0}=B_{0}^{\prime \prime} .
\end{array}\right.
$$

Comparison of terms involving $e^{i n \vartheta}$ for $n= \pm 1, \pm 2, \ldots$ gives

$$
\begin{gather*}
\left\{\begin{array} { l }
{ \varkappa R _ { 1 } ^ { 2 } a _ { 2 } - \overline { \beta } - R _ { 1 } ^ { - 2 } \overline { b } _ { - 2 } + i \xi (\alpha _ { 1 } ^ { \prime } I _ { 2 } (\xi R _ { 1 }) - \beta _ { 1 } ^ { \prime } K _ { 2 } (\xi R _ { 1 })) = B _ { 2 } ^ { \prime } , } \\
{ \varkappa R _ { 2 } ^ { 2 } a _ { 2 } - \overline { \beta } - R _ { 2 } ^ { - 2 } \overline { b } _ { - 2 } + i \xi (\alpha _ { 1 } ^ { \prime } I _ { 2 } (\xi R _ { 2 }) - \beta _ { 1 } ^ { \prime } K _ { 2 } (\xi R _ { 2 })) = B _ { 2 } ^ { \prime \prime } , }
\end{array} \left\{\begin{array}{l}
\varkappa R_{1}^{n} a_{n}+(n-2) R_{1}^{2-n} \bar{a}_{2-n}-R_{1}^{-n} \bar{b}_{-n} \\
+i \xi\left(\alpha_{n-1}^{\prime} I_{n}\left(\xi R_{1}\right)-\beta_{n-1}^{\prime} K_{n}\left(\xi R_{1}\right)\right)=B_{n}^{\prime}, \\
\varkappa R_{2}^{n} a_{n}+(n-2) R_{2}^{2-n} \bar{a}_{2-n}-R_{2}^{-n} \bar{b}_{-n} \\
+i \xi\left(\alpha_{n-1}^{\prime} I_{n}\left(\xi R_{2}\right)-\beta_{n-1}^{\prime} K_{n}\left(\xi R_{2}\right)\right)=B_{n}^{\prime \prime}, \\
(n= \pm 1,-2, \pm 3, \ldots),
\end{array}\right.\right. \tag{11}\\
\left\{\begin{array}{l}
\frac{2 \mu\left(\alpha_{1}^{\prime} I_{1}\left(\xi R_{1}\right)+\beta_{1}^{\prime} K_{1}\left(\xi R_{1}\right)\right)}{\nu+\beta}-\frac{\varkappa+1}{2} i\left(2 R_{1} a_{2}-\frac{\beta}{R_{1}}\right)=C_{1}^{\prime}, \\
\frac{2 \mu\left(\alpha_{1}^{\prime} I_{1}\left(\xi R_{2}\right)+\beta_{1}^{\prime} K_{1}\left(\xi R_{2}\right)\right)}{\nu+\beta}-\frac{\varkappa+1}{2} i\left(2 R_{2} a_{2}-\frac{\beta}{R_{2}}\right)=C_{1}^{\prime \prime},
\end{array}\right. \tag{12}
\end{gather*}
$$

$$
\left\{\begin{array}{l}
\frac{2 \mu}{\nu+\beta}\left(\alpha_{n}^{\prime} I_{n}\left(\xi R_{1}\right)+\beta_{n}^{\prime} K_{n}\left(\xi R_{1}\right)\right) \tag{14}\\
-\frac{\varkappa+1}{2} i\left((n+1) R_{1}^{n} a_{n+1}+(n-1) R_{1}^{-n} \bar{a}_{1-n}\right)=C_{n}^{\prime} \\
\frac{2 \mu}{\nu+\beta}\left(\alpha_{n}^{\prime} I_{n}\left(\xi R_{2}\right)+\beta_{n}^{\prime} K_{n}\left(\xi R_{2}\right)\right) \\
-\frac{\varkappa+1}{2} i\left((n+1) R_{2}^{n} a_{n+1}+(n-1) R_{2}^{-n} \bar{a}_{1-n}\right)=C_{n}^{\prime \prime} \\
(n=0,-1, \pm 2, \pm 3, \ldots)
\end{array}\right.
$$

From (14), dividing the first equation of (12) by R_{1}^{n}, and second by R_{2}^{n}, and subtracting, one obtains the first of the following formulas:

$$
\left\{\begin{array}{l}
T_{n} a_{n}+S_{n} \bar{a}_{-n+2}=G_{n} \tag{15}\\
S_{-n+2} a_{n}+T_{-n+2} \bar{a}_{-n+2}=\bar{G}_{-n+2}
\end{array}\right.
$$

where

$$
\begin{aligned}
& G_{n}= R_{2}^{n} B_{n}^{\prime \prime}-R_{1}^{n} B_{n}^{\prime}-\frac{i \xi(\nu+\beta)\left(R_{2}^{n} I_{n}\left(\xi R_{2}\right)-R_{1}^{n} I_{n}\left(\xi R_{1}\right)\right)}{2 \mu\left(I_{n-1}\left(\xi R_{1}\right) K_{n-1}\left(\xi R_{2}\right)-I_{n-1}\left(\xi R_{2}\right) K_{n-1}\left(\xi R_{1}\right)\right)} \\
& \times\left(C_{n}^{\prime} K_{n-1}\left(\xi R_{2}\right)-C_{n}^{\prime \prime} K_{n-1}\left(\xi R_{1}\right)\right)+\frac{i \xi(\nu+\beta)\left(R_{2}^{n} K_{n}\left(\xi R_{2}\right)-R_{1}^{n} K_{n}\left(\xi R_{1}\right)\right)}{2 \mu} \\
& \times \frac{\left(C_{n}^{\prime \prime} I_{n-1}\left(\xi R_{1}\right)-C_{n}^{\prime} I_{n-1}\left(\xi R_{2}\right)\right)}{I_{n-1}\left(\xi R_{1}\right) K_{n-1}\left(\xi R_{2}\right)-I_{n-1}\left(\xi R_{2}\right) K_{n-1}\left(\xi R_{1}\right)}, \\
& T_{n}= \varkappa\left(R_{2}^{2 n}-R_{1}^{2 n}\right)-\frac{\xi(\varkappa+1)(\nu+\beta) n\left(R_{2}^{n} I_{n}\left(\xi R_{2}\right)-R_{1}^{n} I_{n}\left(\xi R_{1}\right)\right)}{4 \mu\left(I_{n-1}\left(\xi R_{1}\right) K_{n-1}\left(\xi R_{2}\right)-I_{n-1}\left(\xi R_{2}\right) K_{n-1}\left(\xi R_{1}\right)\right)} \\
& \times\left(R_{1}^{n-1} K_{n-1}\left(\xi R_{2}\right)-R_{2}^{n-1} K_{n-1}\left(\xi R_{1}\right)\right)+\frac{\xi(\varkappa+1)(\nu+\beta) n}{4 \mu} \\
& \times \frac{\left(R_{2}^{n} K_{n}\left(\xi R_{2}\right)-R_{1}^{n} K_{n}\left(\xi R_{1}\right)\right)\left(R_{2}^{n-1} I_{n-1}\left(\xi R_{1}\right)-R_{1}^{n-1} I_{n-1}\left(\xi R_{2}\right)\right)}{I_{n-1}\left(\xi R_{1}\right) K_{n-1}\left(\xi R_{2}\right)-I_{n-1}\left(\xi R_{2}\right) K_{n-1}\left(\xi R_{1}\right)}, \\
& S_{n}=(n-2)\left[R_{2}^{2}-R_{1}^{2}-\frac{\xi(\varkappa+1)(\nu+\beta) n\left(R_{2}^{n} I_{n}\left(\xi R_{2}\right)-R_{1}^{n} I_{n}\left(\xi R_{1}\right)\right)}{4 \mu\left(I_{n-1}\left(\xi R_{1}\right) K_{n-1}\left(\xi R_{2}\right)-I_{n-1}\left(\xi R_{2}\right) K_{n-1}\left(\xi R_{1}\right)\right)}\right. \\
& \times\left(R_{1}^{-n+1} K_{n-1}\left(\xi R_{2}\right)-R_{2}^{-n+1} K_{n-1}\left(\xi R_{1}\right)\right)+\frac{\xi(\varkappa+1)(\nu+\beta) n}{4 \mu} \\
& \times \frac{\left(R_{2}^{n} K_{n}\left(\xi R_{2}\right)-R_{1}^{n} K_{n}\left(\xi R_{1}\right)\right)\left(R_{2}^{n-1} I_{n-1}\left(\xi R_{1}\right)-R_{1}^{n-1} I_{n-1}\left(\xi R_{2}\right)\right)}{I_{n-1}\left(\xi R_{1}\right) K_{n-1}\left(\xi R_{2}\right)-I_{n-1}\left(\xi R_{2}\right) K_{n-1}\left(\xi R_{1}\right)} .
\end{aligned}
$$

The second equation (15) is obtained from the first by replacing n by $-n+2$ and going the conjugate complex expression.

The coefficients $a_{n}(n= \pm 1,-2, \pm 3, \ldots)$ are found by solving (15). The coefficients α_{n}^{\prime} and β_{n}^{\prime} may be found from (14). The coefficients b_{n} may be found from one of the two formulae (12). Analogous, from (10), (11) and (13), we can found $\varkappa a_{0}-b_{0}, a_{2}, b_{-2}, \beta, \gamma, \alpha_{1}^{\prime}$.

It is easy to prove the absolute and uniform convergence of the series obtained in the circular ring (including the contours) when the functions set on the boundaries have sufficient smoothness.

Acknowledgment

The designated project has been fulfilled by financial support of the Shota Rustaveli National Science Foundation (Grant SRNSF/FR /358/5-109/14).

References

1. Liu C.Q. Exact solution for the compressible flow equations through a medium with triple-porosity. Appl. Math. Mech. 2 (1981), 457-462.
2. Liu J.C., Bodvarsson, G.S. Wu Y.S. Analysis of pressure behaviour in fractured lithophysical reservoirs. J. Cantam. Hydrol. 62-63 (2003), 189-211.
3. Abdassah D., Ershaghi I. Triple-porosity systems for representing naturally fractured reservoirs. SPE Form. Eval. 1 (1986), 113-127.
4. Al Ahmadi, H.A. Wattenbarger, R.A. Triple-porosity models: one further step towards capturing fractured reservoirs heterogeneity. Saudi Aramco J. Technol. (2011), 52-65.
5. Wu Y.S., Liu H.H., Bodavarsson G.S. A triple-continuum approach for modelling flow and transport processes in fractured rock. J. Contam. Hydrol. 73 (2004), 145-179.
6. Svanadze M. Fundamental solutions in the theory of elasticity for triple porosity materials. Meccanica, 51 (2016), 1825-1837.
7. Svanadze M. On the linear theory of thermoelasticity for triple porosity materials. In: M. Ciarletta, V. Tibullo, F. Passarella, eds., Proc. 11th Int. Congress on Thermal Stresses, 5-9 June, 2016, Salerno, Italy, 259-262.
8. Janjgava R. Elastic equilibrium of porous Cosserat media with double porosity. Adv. Math. Phys. (2016), Art. ID 4792148, 9 pp.
9. Muskhelishvili N.I. Some basic problems of the mathematical theory of elasticity. "Nauka", Moscow, 1966.
