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Abstract

In the paper, the problem of determination of the coefficient at the first time

derivative of a hyperbolic equation with integral overdetermination condition is reduced

to an optimal control problem. A theorem on the existence of optimal control is proved,

the gradient of the functional is calculated and the necessary optimality condition is

derived in the form of an integral inequality.
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1 Introduction

As is known, inverse coefficient problems is one of the important sections
of theory of inverse problems for partial differential equations [1-8]. Such
problems appear in various fields of physics, geophysics, seismology, etc.
Usually the properties of the researched environment (coefficients of equa-
tions) are unknown. Then there appear inverse problems where in by infor-
mation about the solution of the direct problem it is required to determine
the coefficients of equations. In many cases these problems are ill-posed.
It should be noted that the problem in [1-8] were studied by means of the
methods of the theory of inverse problems. In works [1,2], in some cases the
inverse problems were reduced to an operator equation and then quadratic
functional corresponding to this operator is constructed and studied. The
find minimum of the functional is studied by using optimization methods.
In this paper we consider such a problem where it is required to determine
the coefficient at the first time derivative of the hyperbolic equation, in
availability of additional information in the form of integral overdetermi-
nation condition. This problem is reduced to an optimal control problem
and is studied by the methods of optimal control theory.
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2 Problem statement

Let Ω be a bounded domain in Rn with the smooth boundary Γ, T > 0
be a given number, Q = Ω × (0, T ) be a cylinder, S = Γ × (0, T ) be a
lateral surface of the cylinder Q. The following problem is stated: find the
functions u (x, t) and υ (t) which are connected in Q with the equation

∂2u

∂t2
− ∆u+ υ (t)

∂u

∂t
= f (x, t) , (2.1)

when for the function u (x, t) the following initial conditions

u |t=0 = u0 (x) ,
∂u

∂t
|t=0 = u1 (x) , x ∈ Ω (2.2)

the boundary condition

u |S = 0, (2.3)

and also the overdetemination condition is satisfied∫
Ω
K (x, t)u (x, t) dx = g (t) , t ∈ [0, T ] , (2.4)

where f (x, t),u0 (x),u1 (x), K (x, t), g (t) are the given functions, ∆ is
Laplace operator with respect to x. For the given function υ (t) prob-
lem (2.1)-(2.3) is a direct problem in the domain Q. But not always all
the data of the problem are determined. There arise situations when they
should be determined by some additional information. Such problems are
said to be inverse problems [2]. In this paper as the additional information
the overdetermination condition (2.4) is taken.

Thus we consider an inverse problem in the following statement: by the
known functions

f (x, t) ∈ L2 (Q) , u0 (x) ∈
0

W 1
2 (Ω) , u1 (x) ∈ L2 (Ω) ,

K (x, t) ∈ L∞ (Q) , g (t) ∈ L2 (0, T )

to find the pair of functions {u (x, t) , υ (t)} ∈ W 1
2 (Q) × V so that condi-

tions (2.1)-(2.3) and additional condition (2.4) should be fulfilled, where,

V =
{
υ = υ(t) | υ(t) ∈W 1

2 [0, T ] ,
|υ (t)| ≤ µ1, |υ′ (t)| ≤ µ2 a.e.on [0, T ]} (2.5)

where µ1 > 0 , µ2 > 0 are the given numbers.
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3 Reducing the problem to an optimal
control problem and existence of
the solution of a new problem

We reduce the problem to the following optimal control problem: in the
class V it is required to minimize the functional

J (υ) =
1

2

∫ T

0

(∫
Ω
K (x, t)u (x, t; υ) dx− g (t)

)2

dt , (3.1)

where u (x, t; υ) is the solution of problem (2.1)-(2.3), which corresponds to
the function υ = υ (t). Let us call the function υ (t)a control , the class V a
class of admissible controls. If we find an admissible control that delivers to
functional (3.1) the zero value, then additional condition (2.4) is fulfilled.

as the generalized solution from W 1
2 (Q) of boundary value problem

(2.1)-(2.3) for the given υ ∈ V we take the function u = u (x, t; υ) from
W 1

2,0 (Q), which equals u0 (x) at t = 0 and satisfies the integral identity∫
Q

[
−∂u
∂t

∂η

∂t
+

n∑
i=1

∂u

∂xi

∂η

∂xi
+ υ (t)

∂u

∂t
η

]
dxdt

−
∫
Ω
u1 (x) η (x, 0) dx =

∫
Q
fηdxdt (3.2)

for all η = η (x, t) from W 1
2,0 (Q), which equals to zero at t = T .

From the results of the paper [9, p. 209-215] it follows that under
the above adopted assumptions, for fixed υ ∈ V problem (2.1)-(2.3) has a
unique generalized solution from W 1

2 (Q) and the estimation

∥u∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q)

]
, (3.3)

is valid. Here and in the sequel by c we will denote various constants
independent of estimated variables and at admissible controls.

Theorem 3.1 Let the conditions adopted at the statement of problem
(2.1)-(2.3), (2.5), (3.1) be fulfilled. Then the set of optimal controls of this
problem V∗ = {υ∗ ∈ V : J (υ∗) = J∗ = inf {J (υ) : υ ∈ V }} is non empty,
weakly-compact in W 1

2 [0, T ] and any minimizing sequence
{
υ(m)

}
weakly

in W 1
2 [0, T ] converges to the set V∗.

Proof. It is clear that the set V , determined by relation (2.5) is weakly
compact in the Hilbert space W 1

2 [0, T ]. Show that the functional (3.1) is
weakly continuous by in W 1

2 [0, T ] on the set V . Let υ ∈ V be some element
and

{
υ(m)

}
⊂ V be an arbitrary sequence such that υ(m) → υ weakly in

W 1
2 [0, T ] at m→ ∞.
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Hence, from the compactness of the embedding W 1
2 [0, T ] → C [0, T ] [9,

p. 84] it follows that

υ(m) → υ strongly in C [0, T ] . (3.4)

By unique solvability of boundary value problem (2.1)-(2.3), to each control
υ(m) ∈ V there corresponds a unique solution u(m) = u

(
x, t; υ(m)

)
of prob-

lem (2.1)-(2.3) and the following estimation is valid:∥∥∥u(m)
∥∥∥
W 1

2 (Q)
≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q)

]
,

∀m = 1, 2, ..., i.e. The sequence
{
u(m)

}
is uniformly bounded in the norm

of the space W 1
2 (Q). Then from the embedding theorem [11. p. 116] it

follows that from a sequence one can choose a subspace
{
u(mk)

}
such that

as k → ∞
u(mk) → u strongly in  L2 (Q] , (3.5)

∂u(mk)

∂xi
→ ∂u

∂xi

(
i = 1, n

)
,
∂u(mk)

∂t
→ ∂u

∂t
weakly in L2 (Q) , (3.6)

where u = u (x, t) ∈W 1
2,0 (Q) is some element.

Show that u (x, t) = u (x, t; υ) , i.e. the function is the solution of problem
(2.1)-(2.3) corresponding to υ ∈ V . It is clear that the identities are valid∫

Q

[
−∂u

(mk)

∂t

∂η

∂t
+

n∑
i=1

∂u(mk)

∂xi

∂η

∂xi
+ υ(mk)

∂u(mk)

∂t
η

]
dxdt

−
∫
Ω
u1 (x) η (x, 0) dx =

∫
Q
fηdxdt (3.7)

are valid for all η = η (x, t) ∈W 1
2,0 (Q) which equal to zero at t = T .

Passing to limit (3.7) as k → ∞, and using (3.4),(3.6) we get that the func-
tion u (x, t) is equal to u0 (x) at t = 0 and satisfies identity (3.2). Hence and
from the uniqueness of the solution of problem (2.1)-(2.3) corresponding to
the control υ ∈ V it follows that u (x, t) = u (x, t; υ).

Taking into account uniqueness of the solution of problem (2.1)-(2.3)
corresponding to the control υ ∈ V it is easy to verify that relations (3.5),
(3.6) are valid not only for the subsequence

{
u(mk)

}
but for all sequences{

u(m)
}

as well. Therefore, in particular, the limit relation u(m) → u
strongly in L2 (Q) as m → ∞ is valid. Using this relation, from (3.1)
we get J

(
υ(m)

)
→ J (υ) as m→ ∞ i.e. J (υ) weakly in W 1

2 [0, T ] is contin-
uous on the set V . Then by theorem 2 and 4 from [13, p. 49, p. 51] we get
that all the statements of Theorem 3.1 are valid. Theorem 3.1 is proved.
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4 Study of differentiability of functional (3.1)

Let ψ = ψ (x, t; υ) be a generalized solution from W 1
2 (Q) of the adjoint

problem

∂2ψ

∂t2
− ∆ψ − ∂

∂t
(υψ)

= −K (x, t)

(∫
Ω
K (x, t)u (x, t; υ) dx− g (t)

)
, (x, t) ∈ Q,

(4.1)

ψ |t=T = 0,
∂ψ

∂t
|t=T = 0, x ∈ Ω, ψ |S = 0. (4.2)

As the generalized solution of boundary value problem (4.1), (4.2) for each
fixed control υ ∈ V we will take the function ψ = ψ (x, t; υ) from W 1

2,0 (Q),
which equals to zero at t = T and satisfies the integral identity∫

Q

[
∂ψ

∂t

∂µ

∂t
−

n∑
i=1

∂ψ

∂xi

∂µ

∂xi
− υψ

∂µ

∂t

]
dxdt

−
∫
Q
K (x, t)

(∫
Ω
K (x, t)u (x, t) dx− g (t)

)
µ (x, t) dxdt = 0 (4.3)

for all µ = µ (x, t) ∈W 1
2,0 (Q), which equal to zero for t = 0.

From the results of [9, p.209-215] it follows that for each fixed
υ ∈ V boundary value problem (4.1), (4.2) has a unique generalized so-
lution from W 1

2 (Q), and taking into account estimation (3.1) we have that
the estimation

∥ψ∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q) + ∥g∥L2(0,T )

]
(4.4)

is valid.
For the given υ ∈ V we introduce the following boundary value problem

[12] on definition of the function ψ1 = ψ1 (t; υ) from the conditions

−d
2ψ1

dt2
+ ψ1 =

∫
Ω

∂u

∂t
ψdx, 0 < t < T, (4.5)

dψ1

dt
|t=0 =

dψ1

dt
|t=T = 0. (4.6)

As the generalized generalized solution from W 1
2 [0, T ] of boundary value

problem (4.5), (4.6) for the given υ ∈ V we will taken the function ψ1 =
ψ1 (t; υ) from W 1

2 [0, T ] satisfying the integral identity∫ T

0

[
dψ1

dt

dη

dt
+ ψ1η

]
dt =

∫ T

0

(∫
Ω

∂u

∂t
ψdx

)
ηdt (4.7)
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for all η = η (t) from W 1
2 [0, T ].

The conditions of the Lax-Millgram lemma [10, p. 39] are fulfilled for
problem (4.5), (4.6) and therefore, for the given υ ∈ V this problem has a
unique solution from W 1

2 [0, T ].
Assuming in (4.7) η = ψ1 we get

∥ψ1∥W 1
2 [0,T ] ≤ c

∥∥∥∥∂u∂t
∥∥∥∥
L2(Q)

· ∥ψ∥L2(Q) . (4.8)

Theorem 4.1 Let the conditions of theorem 3.1 be fulfilled. Then func-
tional (3.1) is continuously, Frechet differentiable on V and its gradient at
the point υ ∈ V is determined by the expression

J ′ (υ) = ψ1 (t; υ) , t ∈ [0, T ] . (4.9)

Proof. Let υ, υ+δυ ∈ V be arbitrary controls, δu (x, t) = u (x, t; υ + δυ)
−u (x, t; υ) where δυ ∈W 1

2 [0, T ]. From conditions (2.1)-(2.3) it follows that
δu (x, t) is the generalized solution from W 1

2,0 (Q) of the boundary value
problem

∂2δu

∂t2
− ∆δu+ (υ + δυ)

∂δu

∂t
= −δυ∂u

∂t
, (x, t) ∈ Q, (4.10)

δu |t=0 = 0,
∂δu

∂t
|t=0 = 0, x ∈ Ω, δu |S = 0 . (4.11)

From [9, p.215] it follows that for the solution of problem (4.10), (4.11)
the estimation

∥δu∥W 1
2 (Q) ≤ c

∥∥∥∥δυ∂u∂t
∥∥∥∥
L2(Q)

≤ c

∥∥∥∥∂u∂t
∥∥∥∥
L2(Q)

· ∥δυ∥C[0,T ]

is valid.
By boundedues of the embedding W 1

2 [0, T ] → C [0, T ] [9, p. 84] and esti-
mation (3.3), we have

∥δu∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q)

]
∥δυ∥W 1

2 [0,T ] . (4.12)

The increment of functional (3.1) at the point υ ∈ V has the form:

∆J(υ) = J(υ + δυ) − J(υ) =
∫ T
0

(∫
ΩK(x, t)u(x, t; υ)dx− g(t)

)
×
∫
Ω
K (x, t) δu (x, t) dxdt+

1

2

∫ T

0

(∫
Ω
K (x, t) δu (x, t) dx

)2

dt.
(4.13)
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With the help of the solution of boundary value problems (4.1),(4.2)
and (4.5),(4.6), we transform expression (4.13). It is clear that the solution
of boundary value problem (4.10), (4.11) satisfies the identity∫

Q

[
−∂δu
∂t

∂η

∂t
+

n∑
i=1

∂δu

∂xi

∂η

∂xi
+ (υ + δυ)

∂δu

∂t
η

]
dxdt

= −
∫
Q
δυ
∂u

∂t
ηdxdt

(4.14)

for all η = η (x, t) ∈ W 1
2,0 (Q), which equal to zero at t = T . If in (4.3) we

assume µ = δu, in (4.14) η = ψ and sum up the obtained relations, we get∫
Q
K (x, t)

(∫
Ω
K (x, t)u (x, t) dx− g (t)

)
δu (x, t) dxdt

=

∫ T

0

(∫
Ω

∂u

∂t
ψdx

)
δυ (t) dt+

∫
Q
δυ
∂δu

∂t
ψdxdt.

Taking into account this equality in (4.13), we have

∆J (υ) =

∫
Q

∂u

∂t
ψδυdxdt+R, (4.15)

where

R =

∫
Q
δυ
∂δu

∂t
ψdxdt+

1

2

∫ T

0

(∫
Ω
K (x, t) δu (x, t) dx

)2

dt. (4.16)

Assuming in (4.7) η = δυ, we get∫ T

0

[
dψ1

dt

dδυ

dt
+ ψ1δυ

]
dt =

∫
Q

∂u

∂t
ψδυdxdt.

Then taking into account this equality in (4.15), we have

∆J (υ) =

∫ T

0

[
dψ1

dt

dδυ

dt
+ ψ1δυ

]
dt+R. (4.17)

It is clear that the expression

⟨
J ′ (υ) , δυ

⟩
=

∫ T

0

[
ψ1δυ +

dψ1

dt

dδυ

dt

]
dt (4.18)

determines the linear bounded functional at δυ on W 1
2 [0, T ]. Linearity of

functional (4.18) is obvious. Using the Cauchy-Bunyakovsky inequality and
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estimations (4.8), (3.3), (4.4) we get the boundedness of functional (4.18)
with by to δυ on W 1

2 [0, T ].
Now we give the estimate the reminder term R which is determined by

equality (4.16).
Again, using the Cauchy-Bunyakovsky inequality, the boundedness of

the embedding W 1
2 [0, T ] → C [0, T ] and estimation (4.4), (4.12), we get

R ≤ c
[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω) + ∥f∥L2(Q) + ∥g∥L2(0,T )

]
∥δυ∥2W 1

2 [0,T ] .

Taking into account this estimation from (4.17) we get that functional (3.1)
is Frechet differentiable on V and formula (4.9) is valid for its gradient.

Now show that mapping υ → J ′ (υ) continuously acts from V toW 1
2 [0, T ].

Let

δψ (x, t) = ψ (x, t; υ + δυ) − ψ (x, t; υ) , δψ1 (t) = ψ1 (t; υ + δυ) − ψ1 (t; υ) .

From (4.5), (4.6) it follows that δψ1 (t) is the generalized solution from
W 1

2 [0, T ] of the boundary value problem

−d
2δψ1

dt2
+ δψ1 =

∫
Ω

[
∂δu

∂t
ψ +

∂u

∂t
δψ +

∂δu

∂t
δψ

]
dx, 0 < t < T,

dδψ1

dt
|t=0 =

dδψ1

dt
|t=T = 0.

For solution of this boundary value problem as in (4.8), we get the estima-
tion

∥δψ1∥W 1
2 [0,T ] ≤ c

[∥∥∂δu
∂t

∥∥
L2(Q)

· ∥ψ∥L2(Q)

+

∥∥∥∥∂u∂t
∥∥∥∥
L2(Q)

∥δψ∥L2(Q) +

∥∥∥∥∂δu∂t
∥∥∥∥
L2(Q)

∥δψ∥L2(Q)

]
.

(4.19)

Furthermore, for the function δψ (x, t), as in (4.12), we can get the estima-
tion

∥δψ∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (Ω) + ∥u1∥L2(Ω)

+ ∥f∥L2(Q) + ∥g∥L2[0,T ]

]
∥δυ∥W 1

2 [0,T ] .

(4.20)

Then taking into account estimations (3.3), (4.4), (4.12), (4.20) from (4.19)
we get ∥δψ1∥W 1

2 [0,T ] → 0 as ∥δυ∥W 1
2 [0,T ] → 0. Hence and from (4.9) it follows

that the mapping υ → J ′ (υ) is continuously acting from V to W 1
2 [0, T ] .

Theorem 4.1 is proved.
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5 Necessary optimality condition

Theorem 5.1 Let the condition of theorem 4.1 be fulfilled. Then for opti-
mality of the control υ∗ = υ∗ (t) ∈ V in problem (2.1)-(2.3), (2.5), (3.1) it
is necessary that the inequality∫ T

0

[
ψ1∗ (t) (υ (t) − υ∗ (t)) +

dψ1∗ (t)

dt

(
dυ (t)

dt
− dυ∗ (t)

dt

)]
dt ≥ 0 (5.1)

be fulfilled for any υ = υ (t) ∈ V , where ψ1∗ (t) = ψ1 (t; υ∗) is the solution
of problem (4.5), (4.6) for υ = υ∗ (t).

Proof. The set determined by relation (2.5) is convex in W 1
2 [0, T ].

Furthmore, by Theorem 4.1 the functional J (υ) is continuously by differ-
entiable Frechet on V and its gradient at the point υ ∈ V is defined by
equality (4.9). Then by theorem 5 from [13, p. 28] fulfilled of the inequal-
ity ⟨J ′ (υ∗) , υ − υ∗⟩ ≥ 0 on the element υ∗ ∈ V∗ is necessary for all υ ∈ V .
Hence and from (4.9) it follows the validity of inequality (5.1) for all υ ∈ V .
Theorem 5.1 is proved.

Remark 5.1 All obtained results are also valid in the case when in
equation (2.1) instead of the Laplace operator we take a self-adjoint sec-
ond order elliptic operator with smooth coefficients and the addend term∑n

i=1 υi (t) ∂u
∂xi

is present, so that υi (t) ∈ V , i = 1, ..., n.
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