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Abstract

In the present paper, using a perturbation algorithm, purely implicit three-level

semi-discrete scheme of abstract evolutionary equation with variable operator reduced

to two-level schemes. Using the solutions of these two-level schemes an approximate

solution to the original problem is constructed. Using the associated polynomials,

approximate solution error are proved in the Hilbert space.
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Introduction
In the present paper, purely implicit three-level semi-discrete schemes

for an approximate solution of the Cauchy problem for an evolutionary
equation with variable operator is considered in the Hilbert space. Using
the perturbation algorithm, the considered scheme is reduced to two-level
schemes. An approximate solution of the original problem is constructed
by means of the solutions of these schemes. Note that the first two-level
scheme gives an approximate solution to an accuracy of first order, whereas
the solution of second two-level scheme is the refinement of the preceding
solution by one order.

Questions connected with the construction and investigation of approx-
imate solution algorithms of evolutionary problems are considered for ex-
ample in the well-known books by S. K. Godunov and V. S. Ryabenki [1],
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G. I. Marchuk [2], R. Richtmayer and K. Morton [3], A. A. Samarski [4],
N. N. Yanenko [5].

The main difficulty which arises at realization of multi-layer schemes
(especially for multidimensional problems), consists in use of large random
access memory, which increases in proportion with growth of number of
layers. One of opportunities of overcoming this problem is decomposition
of multi-layer schemes.

The papers [6], [7], [8] are devoted to questions of splitting of the
purely implicit three-level semi-discrete scheme for the evolutionary equa-
tion with constant operator. In these papers a purely implicit three-level
semi-discrete scheme for evolutionary equation is reduced to two two-level
schemes and explicit estimates for the approximate solution at rather gen-
eral assumptions about data the tasks are proved in Banach space. Fur-
thermore, in these works, by reducing with the aid of the perturbation
algorithm the four-layer scheme to two-layer schemes we demonstrate the
generality of the algorithm when it is applied to difference schemes.

We would note, in the present work for an estimate of the error of the
approximate solution, we applied the approach offered in [9], where the sta-
bility of linear many-step methods is investigated by means of the properties
of the class of polynomials of many variables (which are called associated
polynomials). They are a natural generalization of classical Chebyshev
polynomials of second kind.

We would emphasize that the application of the perturbation algorithm
to difference schemes for differential equations was considered in [10]. The
perturbation algorithm is widely used for solving problems of mathematical
physics (e.g., see [11]).

1 Splitting of the three-level scheme

In the Hilbert space H, consider the evolution problem

du(t)

dt
+A(t)u (t) = f(t), t ∈ ]0, T ] , (1.1)

u (0) = u0, (1.2)

where A(t) –is the self-adjoint positively defined operator in H with the
domain of definition D(A) does not depend on t, f(t) – is a continuously
differentiable abstract function taking values in H, u0 –is a given vector in
H and u(t) –is the function to be found.

On the interval [0, T ], we define the grid tk = kτ , k = 0, 1, . . . , n,
with the step τ = T/n. We will use the approximation of the first-order
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derivative

du

dt

∣∣∣∣
t=tk+1

=
3
2u(tk+1)− 2u(tk) +

1
2u(tk−1)

τ
+ τ2Rk+1(τ, u),

Rk(τ, u) ∈ H.

As a result, at the point t = tk+1, Eq.(1.1) can be represented in the form

3
2u(tk+1)− 2u(tk) +

1
2u(tk−1)

τ
+A(tk+1)u (tk+1)

= f(tk+1)− τ2Rk+1(τ, u), k = 1, . . . , n− 1.

(1.3)

Write system (1.3) in the form

u(tk+1)− u(tk)

τ
+A(tk+1)u (tk+1)

+
τ

2

(
u(tk+1)− 2u(tk) + u(tk−1)

τ2

)
= f(tk+1)− τ2Rk+1(τ, u).

It is obvious that expression in brackets in case of τ
2 is u′′(tk) + τ2R1,k,

R1,k ∈ H.
By analogy with this system, we consider the one-parameter family of

equations

uk+1 − uk
τ

+A(tk+1)uk+1 +
ε

2

(
uk+1 − 2uk + uk−1

τ2

)
= fk+1 + ε2Rk+1,

fk+1 = f(tk+1), Rk ∈ H,

(1.4)

in the Hilbert space H.
Assume that uk is analytic in ε,

uk =
∞∑
j=0

εju
(j)
k . (1.5)

Plug (1.5) into (1.4) and equate the coefficients of the equal powers of ε to
obtain

u
(0)
k+1 − u

(0)
k

τ
+A(tk+1)u

(0)
k+1 = fk+1,

u
(0)
0 = u0, k = 0, . . . , n− 1,

(1.6)

u
(1)
k+1−u

(1)
k

τ +A(tk+1)u
(1)
k+1 = −1

2

∆2u
(0)
k−1

τ2
,

k = 1, . . . , n− 1,

(1.7)
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u
(2)
k+1 − u

(2)
k

τ
+A(tk+1)u

(2)
k+1 = −1

2

∆2u
(1)
k−1

τ2
+Rk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where ∆uk = uk+1 − uk.
Introduce the notation

vk = u
(0)
k + τu

(1)
k , k = 2, . . . , n. (1.8)

Consider the vector vk as an approximate value of exact solution of
problem (1.1), (1.2) at t = tk, u(tk) ≈ vk.

Note that the initial vector u
(1)
1 in scheme (1.7) is found from the equa-

tion v1 = u
(0)
1 + τu

(1)
1 , where u

(0)
1 is found by scheme (1.6), and v1 –the

approximate value of u(t1) with accuracy of O(τ2).
We prove the following result (let below everywhere c be a positive

constant).
Theorem 1.1. Let A(t) be a self-adjoint positively defined operator

in H with the domain of definition D(A) does not depend on t and let
the solution u(t) of the problem (1.1), (1.2) be a smooth enough function.
Then, if

(a) D(Am(t)) = D(Am(0)), m = 2, 3;

(b) ∥(Am(t′)−Am(t′′))A−m(s)∥ ≤ c|t′ − t′′|, ∀ t′, t′′, s ∈ [0, T ], m =
1, 2;

(c)
∥∥(A(tk+1)− 2A(tk) +A(tk−1))A

−1(tk+1)
∥∥ ≤ cτ2, k = 1, . . . , n− 1.

Then, it holds that

∥u(tk)− vk∥ = O(τ2), k = 1, . . . , n.

Remark 1.2. From condition (a) of theorem 1 for any t, s ∈ [0, T ] we
have

∥A(t)mA−m(s)∥ ≤ c, m = 1, 2, 3. (1.9)

2 Estimate of the residual

We will estimate the residual of scheme (1.3) by substituting the solution
vk, which is determined by the scheme (1.6)-(1.8).
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Multiplying (1.7) by τ and summing the result with (1.6), we obtain
that vk is a solution of the following system of equations:

vk+1 − vk
τ

+A(tk+1)vk+1 = fk+1 −
τ

2

∆2u
(0)
k−1

τ2
, k = 1, . . . , n− 1. (2.1)

Rewrite this system in the form

vk+1 − vk
τ

+A(tk+1)vk+1 +
τ

2

∆2vk−1

τ2
= fk+1 + R̃k+1(τ), (2.2)

where k ≥ 2,

R̃k+1(τ) =
τ

2

∆2vk−1

τ2
− τ

2

∆2u
(0)
k−1

τ2
.

It is obvious that (2.2) can be represented in the following form:

3
2vk+1 − 2vk +

1
2vk−1

τ
+A(tk+1)vk+1 = fk+1 + R̃k+1(τ),

k = 2, . . . , n− 1.
(2.3)

Therefore R̃k+1(τ) is residual of purely implicit three-level scheme for so-
lutions of scheme (1.6)-(1.8) (see. (1.3)).

It obvious that

R̃k+1(τ) =
τ

2

∆2vk−1

τ2
− τ

2

∆2u
(0)
k−1

τ2
=

τ2

2

∆2u
(1)
k−1

τ2
. (2.4)

Note that representation (2.4) is true for k > 1.
We will estimate the difference relation (2.4).
From (1.6) follows

u
(0)
k+1 = Sk+1u

(0)
k + τSk+1fk+1, k = 0, . . . , n− 1. (2.5)

where Sk = (I + τAk)
−1, Ak = A(tk).

We introduce the notation T (k, l) = SkSk−1 . . . Sl, k ≥ l.
Then from recurrence relation (2.5) we have

u
(0)
k+1 = T (k + 1, 1)u0 + τ (T (k + 1, 1)f1 + T (k + 1, 2)f2 + . . .

+T (k + 1, k − 1)fk−1 + Sk+1Skfk + Sk+1fk+1) .
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From this equality we have

∆2u
(0)
k−1 = u

(0)
k+1 − 2u

(0)
k + u

(0)
k−1 = (T (k + 1, 1)− 2T (k, 1)

+T (k − 1, 1))u0 + τ [(T (k + 1, 1)− 2T (k, 1)

+T (k − 1, 1)) f1 + (T (k + 1, 2)− 2T (k, 2) + T (k − 1, 2)) f2

+ . . .+ (T (k + 1, k − 1)− 2T (k, k − 1) + T (k − 1, k − 1)) fk−1

+(Sk+1Sk − 2Sk) fk + Sk+1fk+1] .

(2.6)

As
T (k + 1, l)− 2T (k, l) + T (k − 1, l)

=
(
I − 2S−1

k+1 + S−1
k S−1

k+1

)
T (k + 1, l)

= τ (Ak −Ak+1 + τAkAk+1)T (k + 1, l),

l = 1, . . . , k − 1.

(2.7)

and

(Sk+1Sk − 2Sk) fk + Sk+1fk+1 = −τAk+1Sk+1Skfk

+(Sk+1 − Sk)fk+1 + Sk(fk+1 − fk) = −τAk+1Sk+1Skfk

+τSk(Ak −Ak+1)Sk+1fk+1 + Sk(fk+1 − fk),

(2.8)

that (2.6) will take the following form

∆2u
(0)
k−1 = τ (Ak −Ak+1 + τAkAk+1) [T (k + 1, 1)u0

+τ (T (k + 1, 1)f1 + T (k + 1, 2)f2 + . . .+ T (k + 1, k − 1)fk−1)]

−τ2Ak+1Sk+1Skfk − τ2Sk(Ak+1 −Ak)Sk+1fk+1

+τSk(fk+1 − fk).

(2.9)

Taking into account (2.9), from (1.7) we get:

u
(1)
k+1 = Sk+1u

(1)
k + τSk+1gk+1, k = 1, . . . , n− 1 (2.10)

where

gk+1 = (Ak −Ak+1 + τAkAk+1)

[
− 1

2τ
T (k + 1, 1)u0

−1

2
(T (k + 1, 1)f1 + T (k + 1, 2)f2 + . . .+ T (k + 1, k − 1)fk−1)

]
+
1

2
Ak+1Sk+1Skfk +

1

2
Sk

(
(Ak+1 −Ak)A

−1
k+1

)
Sk+1Ak+1fk+1

− 1

2τ
Sk(fk+1 − fk).

(2.11)
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From (2.10) we get

u
(1)
k+1 = T (k + 1, 2)u

(1)
1 + τ (T (k + 1, 2)g2 + T (k + 1, 3)g3 + · · ·

+T (k + 1, k − 1)gk−1 + Sk+1Skgk + Sk+1gk+1) .
(2.12)

From here, taking into account (2.7) and (2.8), we get

∆2u
(1)
k−1 = τ (Ak −Ak+1 + τAkAk+1)

[
T (k + 1, 2)u

(1)
1

+τ (T (k + 1, 2)g2 + T (k + 1, 3)g3 + . . .+ T (k + 1, k − 1)gk−1)]

−τ2Ak+1Sk+1Skgk − τ2Sk(Ak+1 −Ak)Sk+1gk+1

+τSk(gk+1 − gk) = τ (Ak −Ak+1 + τAkAk+1)
[
T (k + 1, 2)u

(1)
1

+τ (T (k + 1, 2)g2 + T (k + 1, 3)g3 + . . .+ T (k + 1, k − 1)gk−1)]

−τ2Sk+1(Ak+1A
−1
k )SkAkgk − τ2Sk((Ak+1 −Ak)A

−1
k+1)Sk+1

×Ak+1gk+1 + τSk(gk+1 − gk).

(2.13)

Due to condition (b) of Theorem 1.1 from (2.11) it follows that norm of
gk is uniformly bounded. Taking this fact and condition (b) of Theorem 1
into account, it is obvious that all components in expression (2.13), behind
an exception τSk(gk+1 − gk), are order of O(τ2).

From (2.11), for gk+1 − gk we have

gk+1 − gk = − 1

2τ
Qk,1u0 −

1

2
(Qk,1f1 +Qk,2f2

+ . . .+Qk,k−1fk−1) +
1

2
(Ak+1Sk+1Skfk −AkSkSk−1fk−1)

+
1

2

(
Sk

(
(Ak+1 −Ak)A

−1
k+1

)
Sk+1Ak+1fk+1

−Sk−1

(
(Ak −Ak−1)A

−1
k

)
SkAkfk

)
− 1

2τ
(Sk(fk+1 − fk)− Sk−1(fk − fk−1))

(2.14)

where
Qk,l = (Ak −Ak+1 + τAkAk+1)T (k + 1, l)

−(Ak−1 −Ak + τAk−1Ak)T (k, l)

= (Ak −Ak+1 + τAkAk+1) (T (k + 1, l)− T (k, l))

+ (Ak −Ak+1 + τAkAk+1 −Ak−1 +Ak − τAk−1Ak)T (k, l)

= −τ(Ak −Ak+1 + τAkAk+1)Ak+1T (k + 1, l)
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−(Ak+1 − 2Ak +Ak−1 + τ(Ak−1Ak −AkAk+1))T (k, l)

= τ
((
(Ak+1 −Ak)A

−1
k+1

)
− τ

(
AkA

−1
k+1

)
A2

k+1

)
Ak+1T (k + 1, l)

−
((
(Ak+1 − 2Ak +Ak−1)A

−1
k+1

)
Ak+1

−τ ((Ak−1(Ak+1 −Ak)) + ((Ak −Ak−1)Ak+1)))T (k, l)

= τ
((
(Ak+1 −Ak)A

−1
k+1

)
−τ

(
AkA

−1
k+1

)
A2

k+1

)
Ak+1T (k + 1, l)−

((
(Ak+1 − 2Ak +Ak−1)A

−1
k+1

)
Ak+1

+τ
(
(Ak−1A

−1
k )

(
(A2

k −A2
k+1)A

−2
k+1 + (Ak+1 −Ak)A

−1
k

)
A2

k

+
(
(Ak −Ak−1)A

−1
k+1

)
A2

k+1

))
T (k, l) (2.15)

Here and for following transformation we take into account the following
equality

Ak−1(Ak−1 −Ak) = A2
k−1 −Ak−1Ak

= A2
k−1 −A2

k +A2
k −Ak−1Ak = A2

k−1 −A2
k + (Ak −Ak−1)Ak .

Further we have

Ak+1Sk+1Skfk −AkSkSk−1fk−1 = Ak+1Sk+1Sk(fk − fk−1)

+(Ak+1Sk+1Sk −AkSkSk−1)fk−1 = Sk+1

(
Ak+1A

−1
k

)
SkAk

×(fk − fk−1) + (Ak+1Sk+1(Sk − Sk−1) +Ak+1Sk+1Sk−1

−AkSkSk−1) fk−1 = Sk+1

(
Ak+1A

−1
k

)
SkAk(fk − fk−1)

+ (τAk+1Sk+1Sk−1(Ak−1 −Ak)Sk +Ak+1(Sk+1 − Sk)Sk−1

+Ak+1SkSk−1 −AkSkSk−1) fk−1 = Sk+1

(
Ak+1A

−1
k

)
SkAk

×(fk − fk−1) +
(
τSk+1

(
Ak+1A

−1
k−1

)
Sk−1Ak−1(Ak−1 −Ak)Sk

+τAk+1Sk(Ak −Ak+1)Sk+1Sk−1 + (Ak+1 −Ak)SkSk−1) fk−1

= Sk+1

(
Ak+1A

−1
k

)
SkAk(fk − fk−1) +

(
τSk+1

(
Ak+1A

−1
k−1

)
Sk−1(

(A2
k−1 −A2

k)A
−2
k + (Ak −Ak−1)A

−1
k

)
SkA

2
k

+τ(Ak+1A
−1
k )Sk

(
(A2

k −A2
k+1)A

−2
k+1

+(Ak+1 −Ak)A
−1
k+1

)
Sk+1

(
A2

k+1A
−2
k−1

)
Sk−1A

2
k−1

+(Ak+1 −Ak)A
−1
k Sk(AkA

−1
k−1)Sk−1Ak−1

)
fk−1.

(2.16)
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Sk(fk+1 − fk)− Sk−1(fk − fk−1) = (Sk − Sk−1)(fk+1 − fk)

+Sk−1(fk+1 − 2fk + fk−1) = −τSk(Ak −Ak−1)Sk−1(fk+1 − fk)

+Sk−1(fk+1 − 2fk + fk−1) = −τSk

(
(Ak −Ak−1)A

−1
k−1

)
×Sk−1Ak−1(fk+1 − fk) + Sk−1(fk+1 − 2fk + fk−1).

(2.17)

From (2.14) taking into account (2.15), (2.16) and (2.17) we have the
inequality

∥gk+1 − gk∥ ≤ cτ. (2.18)

Note that due to condition of Theorem 1.1 we get

∥Am
k+1T (k, l)u∥ = ∥

(
Am

k+1A
−m
k

)
Sk

(
Am

k A−m
k−1

)
Sk−1

. . . Sl+1

(
Am

l+1A
−m
l

)
SlA

m
l u∥

≤ ∥
(
Am

k+1A
−m
k

)
∥∥Sk∥∥

(
Am

k A−m
k−1

)
∥∥Sk−1∥

. . . ∥Sl+1∥∥
(
Am

l+1A
−m
l

)
∥∥Sl∥∥Am

l u∥

≤ c∥Am
l u∥, m = 1, 3, k ≥ l.

Then from (2.13) taking into account (2.18) and due to the conditions
of theorem 1.1, in the case of the sufficient smoothness of the initial data
the following estimate holds:∥∥∥∥∥∆2u

(1)
k−1

τ2

∥∥∥∥∥ ≤ c, c = const > 0. (2.19)

Hence, taking into account (2.19), from (2.4) for residual R̃k(τ), we
obtain ∥∥∥R̃k+1(τ)

∥∥∥ ≤ cτ2, c = const > 0. (2.20)

3 The estimate for the approximate solution error

Taking into account (1.3) and (2.3), for error zk = u(tk)− vk we have:

3
2zk+1 − 2zk +

1
2zk−1

τ
+A(tk+1)zk+1 = rk+1(τ), k = 2, . . . , n− 1, (3.1)

where rk(τ) = −
(
τ2Rk(τ, u) + R̃k(τ)

)
.
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Remark 3.1. Taking into account (2.20) we conclude that if the so-
lution of problem (1.1)–(1.2) is sufficiently smooth, then ∥rk(τ)∥ = O(τ2).

The following result holds.
Theorem 3.2. Let A(t) be a self-adjoint positively defined operator in

H with domain of definition D(A) does not depend on t. Let it holds that∥∥(A(t′)−A(t′′))A−1(s)
∥∥ ≤ c|t′ − t′′|,

∀t′, t′′, s ∈ [0, T ], c = const > 0.

Then, it holds that

∥zk+1∥ ≤ c(∥z0∥+ ∥z1∥+ τ

k∑
i=1

ec(tk−ti)∥r(ti+1)∥),

k = 2, . . . , n− 1, c = const > 0.

(3.2)

For the proof of Theorem 3.2, we need some auxiliary proposition.
Lemma 3.3. Let the operator satisfy the conditions of Theorem 3.2.

Then, it holds that

∥(A(tk+j)−A(tj))Uk(
4

3
Lj ,

1

3
Lj)∥ ≤ c, c = const > 0, (3.3)

where k = 1, . . . , n− 1, j = 0, . . . , n− 1,

Lj = (I +
2

3
τA(tj))

−1.

Proof. The scalar polynomials of two variables Uk(x, y) we will be
defined by the following recurrence relation:

Uk(x, y) = xUk−1(x, y)− yUk−2(x, y),

U0(x, y) = 1, U−1(x, y) = 0.

The following formula holds (see [1] )

Uk(x, y) =
√
ykUk

(
x
√
y
, 1

)
. (3.4)

As A(t) is a self-adjoint positively defined operator, then Sp(Lj) ⊂ [0, 1].
Then according to the formula (3.4) we have:

Uk

(
4

3
Lj ,

1

3
Lj

)
= L

k
2
j Uk

(
4

3
L

1
2
j ,

1

3
I

)
.
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According to the theorem about an estimate of norm of an operator
polynomial (see [2], p. 346) the following inequality holds:

∥∥∥∥Uk

(
4

3
L

1
2
j ,

1

3
I

)∥∥∥∥ ≤ max
x∈[0,1]

|Uk(
4

3
x,

1

3
)| ≤ 3

2
. (3.5)

Here we used the following estimation

|Uk(x, y)| ≤
1

1− y
, 0 ≤ y < 1, |x| ≤ 1 + y. (3.6)

As

τA(tj)L
k
2
j =

3

2
(I − Lj)L

k−2
2

j ,

then we have

∥τA(tj)L
k
2
j ∥ ≤ 3

2
max
x∈[0;1]

(1− x)x
k−2
2 ≤ 3

k
, k ≥ 2. (3.7)

Taking into account (3.5), (3.7) and due to the conditions of theorem
3.2 we obtain ∥∥∥∥(A(tk+j)−A(tj))Uk

(
4

3
Lj ,

1

3
Lj

)∥∥∥∥ ≤

∥∥(A(tk+j)−A(tj))A
−1(tj)

∥∥∥∥∥∥A(tj)L
k
2
j

∥∥∥∥∥∥∥∥Uk

(
4

3
L

1
2
j ,

1

3
I

)∥∥∥∥ ≤

≤ c0
tk+j − tj

τ
· 3
k
· 3
2
= c.

Thus, Lemma 3.3 is proved.
Proceed to the proof of the Theorem 3.2.
Proof. From (3.1) we obtain

zk+1 =
4

3
Lk+1zk −

1

3
Lk+1zk−1 +

2

3
τLk+1rk+1(τ), (3.8)

where

Lk = (I +
2

3
τA(tk))

−1.

By induction, from (3.8) we obtain formula (see [3] ):

zk+1 = U1
kU

1
kz1 −

1

3
U2
k−1L2z0 +

2

3
τ

k∑
i=1

U i+1
k−iLi+1rk+1(τ), (3.9)

where operators U i
k are determined by the following recurrence relation

U i
k =

4

3
Lk+iU

i
k−1 −

1

3
Lk+iU

i
k−2,
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U i
0 = I, U i

−1 = 0.

Consider the following homogeneous difference equation

3wk+1 − 4wk + wk−1

2τ
+Awk+1 = 0, i = 1, 2, ... (3.10)

where A is self-adjoint and positive definite operator.
Obviously, from (3.10) we have

wk+1 =
4

3
Lwk −

1

3
Lwk−1,

L = (I +
2

3
τA)−1.

By induction we obtain

wk+1 = Uk

(
4

3
L,

1

3
L

)
w1 −

1

3
LUk−1

(
4

3
L,

1

3
L

)
w0. (3.11)

In the equation (3.10) we will replace operator A by the operator A(tj)
(j-it is fixed) and we write the obtained equation in the form

3wk+1 − 4wk + wk−1

2τ
+A(tk+j)wk+1 = (A(tk+j)−A(tj))wk+1.

From this equation we have

wk+1 =
4

3
Lk+jwk −

1

3
Lk+jwk−1 +

2

3
τLk+j(A(tk+j −A(tj))wk+1.

Therefore, taking into account (3.10) we obtain

wk+1 = U j
kw1 −

1

3
U j+1
k−1Lj+1w0

+2
3τ

k∑
i=1

U i+j
k−iLi+j(A(ti+j)−A(tj))wi+1.

(3.12)

If w0 = 0, then taking into account (3.11), from (3.12) we have

Uk(
4

3
Lj ,

1

3
Lj)w1 = U j

kw1

+
2

3
τ

k∑
i=1

U i+j
k−iLi+j(A(ti+j)−A(tj))Ui(

4

3
Lj ,

1

3
Lj)w1.
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As w1 is an arbitrary vector, from last equality we obtain the formula

U j
k = Uk(

4

3
Lj ,

1

3
Lj)

−2
3τ

k∑
i=1

U i+j
k−iLi+j(A(ti+j)−A(tj))Ui(

4
3Lj ,

1
3Lj).

(3.13)

Obviously, from here we get the following inequality

∥U j
k | ≤ ∥Uk(

4

3
Lj ,

1

3
Lj)∥

+
2

3
τ

k∑
i=1

∥U i+j
k−i∥∥Li+j∥∥(A(ti+j −A(tj))Ui(

4

3
Lj ,

1

3
Lj)∥.

(3.14)

According to (3.6) we have

∥Uk(
4

3
Lj ,

1

3
Lj)∥ ≤ max

0≤y≤1
|Uk(

4

3
y,

1

3
y)|

= max
0≤y≤1

(
√

yk|Uk(
4

3

√
y,

1

3
)|) ≤ 3

2
.

(3.15)

Taking into account bounds (3.3) and (3.15), from (3.14) we have

∥U j
k∥ ≤ c+ c · τ

k∑
i=1

∥U i+j
k−i∥, c = const > 0.

If k we replace by (n− j), we obtain

∥U j
n−j∥ ≤ c+ c · τ

n−j∑
i=1

∥U i+j
k−j−i∥,

or that too most

∥U j
n−j∥ ≤ c+ c · τ

n∑
s=j+1

∥U s
n−s∥.

Introduce the notations ∥U s
n−s∥ = xs , we obtain

xj ≤ c+ cτ(xj+1 + · · ·+ xn), j = 0, 1, · · · , n− 1.

From here, by induction we obtain the following bound

xn−i ≤ c(1 + cτ)i−1(1 + τxn). (3.16)

As
xn = ∥Un

0 ∥ = 1,
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from (3.16) we have

xn−i ≤ c(1 + cτ)i, i = 0, 1, · · · , n.

Hence, we can write the bound

∥Un−i
i ∥ ≤ c(1 + cτ)i ≤ cecti .

If i we replace by the (n− i− j), we obtain

∥U i+j
n−j−i∥ ≤ cectn−j−i , i = 0, 1, · · · , n− j,

or that too most

∥U i+j
k−i∥ ≤ cectk−i , i = 0, 1, · · · , k. (3.17)

Taking into account (3.17), from the representation (3.9) we obtain the
statement of the Theorem 3.2.

Proceed to the proof of the Theorem 1.1.
It must be noted that as representation (2.4) is right only at k ≥ 2, the

proof of the estimation (3.2) does not extend for the case k = 1, i.e. for
vector v2. Though it is simple to obtain the estimation

∥u(t2)− v2∥ = O(τ2). (3.18)

Then taking into account (3.18) and due to Remark 3.1 from inequality
(3.2), in the case of the sufficient smoothness of the functions, follows the
statement of the Theorem 1.1

∥u(tk)− vk∥ = O(τ2), k = 1, . . . , n.
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