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Abstract

The internal and external Robin problems for the Helmholtz equation in bounded

starlike domains are addressed. We show how to derive the relevant solution by us-

ing a suitable Fourier series-like method. Numerical results are specifically obtained

considering three-dimensional domains whose boundary is defined by a generalization

of the so-called ”superformula” introduced by Gielis. By using the computer algebra

code Mathematica c©, truncated series approximations of the solutions are determined.

Our findings are in good agreement with the theoretical results on the Fourier series

due to Carleson.
Key words and phrases: Robin problem, Helmholtz equation, Starlike domain,

Fourier series.

AMS subject classification: 35J05, 35J25.

1 Introduction

Many applications of the mathematical physics and electromagnetics are
related to the Laplacian differential operator. Among them it is worth
mentioning those relevant to the wave equation, the Laplace and Poisson
equations, the Helmholtz equation, as well as the Schrödinger equation.
However, the most part of the boundary-value problems (BVPs) relevant
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to the Laplacian can be solved in an explicit form only in domains with
very special shape or symmetries, namely intervals, cylinders or spheres,
[1].

The solution in more general domains can be obtained by using the
Riemann theorem on conformal mappings, and the relevant invariance of
the Laplacian [2]. However, explicit conformal mappings are known only
for particular domains and, of course, such a method can not be applied in
the three-dimensional case, where approaches based on a suitable spatial
discretization procedure are usually adopted.

Different techniques have been proposed for solving the general prob-
lem both from a theoretical and numerical point of view (e.g., representing
the solution by using boundary layer techniques [3]; solving by iterative
methods the corresponding boundary integral equation [4]; approximating
the relevant Green function by the least squares method [5]; solving lin-
ear systems relevant to elliptic partial differential equations by relaxation
methods [6]). Anyway, none of the contributions already available in the
scientific literature deals with the here developed approach, which makes
use of simple analytical tools tracing back to the original Fourier projection
method [7].

We consider in this paper an extension of the classical theory regarding
the Robin problem for the Helmholtz equation in a starlike domain, i.e.
a domain D which is normal with respect to a suitable spherical co-
ordinate system so that the relevant boundary ∂D may be regarded as an
anisotropically stretched unit sphere [8]-[10]. An efficient technique useful
to compute the coefficients of the Fourier-like expansion approximating the
solution of the Helmholtz equation in such a domain is proposed. Regular
functions are considered for the boundary data, but the presented theory
can be easily extended by considering weakened hypotheses. Furthermore,
a generalization of the so called ”superformula” due to Gielis [11] is used
to define the boundary of the domains considered in the present research.

Several numerical examples, addressed by means of the computer alge-
bra code Mathematica c©, have shown a point-wise convergence of the solu-
tion with possible oscillations occurring in cusped or quasi-cusped points
of the domain boundary in agreement with the theoretical findings by Car-
leson [13].
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2 The Laplacian in stretched spherical
co-ordinates

Let us introduce in the three-dimensional space the usual spherical co-
ordinate system

x = r sinϑ cosϕ , y = r sinϑ sinϕ , z = r cosϑ , (2.1)

and assume that the boundary of the normal domain D is described by
the polar equation

r = R (ϑ, ϕ) , (2.2)

where R (ϑ, ϕ) is a C2 function for (ϑ, ϕ) ∈ [0, π] × [0, 2π] . Therefore,
in the interior of D the following inequality is satisfied

r ≤ R (ϑ, ϕ) . (2.3)

Furthermore, as it can be easily inferred, the consistency condition min(ϑ,ϕ)

R (ϑ, ϕ) > 0 must hold. Let us then define the stretched radius ρ in such
a way that

r = ρR (ϑ, ϕ) . (2.4)

In this way, naturally induced in the x, y, z space are the curvilinear
(namely, stretched) co-ordinates ρ, ϑ, ϕ related to the cartesian ones by

x = ρR (ϑ, ϕ) sinϑ cosϕ, y = ρR (ϑ, ϕ) sinϑ sinϕ,
z = ρR (ϑ, ϕ) cosϑ.

(2.5)

As a consequence, D is obtained by assuming 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π,
0 ≤ ρ ≤ 1 .

Remark 1. Note that in the stretched co-ordinate system the original
domain D is transformed into the unit sphere. As a result, in such a system
classical techniques, including the separation of variables, can be used for
solving the transformed Helmholtz equation.

We consider a C2 (D) function v(x, y, z) = v(r sinϑ cosϕ, r sinϑ sinϕ,
r cosϑ) = u(r, ϑ, ϕ) and the Laplace operator in spherical co-ordinates

∆u =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂u

∂ϑ

)
+

1

r2 sin2 ϑ

∂2u

∂ϕ2
. (2.6)

We can readily represent such a differential operator in the stretched co-
ordinate system ρ, ϑ, ϕ . By setting

U (ρ, ϑ, ϕ) = u (ρR (ϑ, ϕ) , ϑ, ϕ) , (2.7)
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and denoting for shortness R (ϑ, ϕ) := R , we find after some mathematical
manipulations

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂ϑ2
+

cotϑ

r2
∂u

∂ϑ
+

1

r2 sin2 ϑ

∂2u

∂ϕ2

=
1

R2

(
1 +

R2
ϑ

R2
+

R2
ϕ

R2 sin2 ϑ

)
∂2U

∂ρ2

+
1

ρR2

[
2

(
1 +

R2
ϑ

R2
+

R2
ϕ

R2 sin2 ϑ

)
− 1

R

(
Rϑ cotϑ+Rϑϑ +

Rϕϕ

sin2 ϑ

)]
∂U

∂ρ

−2
Rϑ
ρR3

∂2U

∂ρ∂ϑ
− 2

Rϕ

ρR3 sin2 ϑ

∂2U

∂ρ∂ϕ
+

1

ρ2R2

∂2U

∂ϑ2

+
cotϑ

ρ2R2

∂U

∂ϑ
+

1

ρ2R2 sin2 ϑ

∂2U

∂ϕ2
. (2.8)

As it can be noticed, for ρ = r, R (ϑ, ϕ) ≡ 1 the Laplacian in spherical
co-ordinates is recovered.

3 The Robin problem for the Helmholtz equation

Let us consider the internal Robin problem for the Helmholtz equation in
the starlike domain D having boundary described by the polar equation
r = R (ϑ, ϕ) ,{

∆v (x, y, z) + k2v (x, y, z) = 0 , (x, y, z) ∈ D̊ ,

γv (x, y, z) + λ∂v∂ν (x, y, z) = f (x, y, z) , (x, y, z) ∈ ∂D ,
(3.1)

where k > 0 denotes the wave-number, γ 6= 0, λ are arbitrary constants,
and ν̂ = ν̂ (ϑ, ϕ) is the outward-pointing normal to ∂D . We can easily
prove the following theorem.

Theorem 3.1 Let

ψϑ (ϑ, ϕ) =
Rϑ (ϑ, ϕ)

R (ϑ, ϕ)
, (3.2)

ψϕ (ϑ, ϕ) =
Rϕ (ϑ, ϕ)

R (ϑ, ϕ) sinϑ
, (3.3)

ψ (ϑ, ϕ) =

√
ψϑ (ϑ, ϕ)2 + ψϕ (ϑ, ϕ)2 , (3.4)

and

f (R (ϑ, ϕ) sinϑ cosϕ,R (ϑ, ϕ) sinϑ sinϕ,R (ϑ, ϕ) cosϑ) = F (ϑ, ϕ)

=
+∞∑
n=0

n∑
m=0

Pmn (cosϑ) (αn,m cosmϕ+ βn,m sinmϕ) ,
(3.5)
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where {
αn,m
βn,m

}
= εm

2n+1
4π

(n−m)!
(n+m)!

2π∫
0

π∫
0

F (ϑ, ϕ)Pmn (cosϑ)

×
{

cosmϕ
sinmϕ

}
sinϑdϑdϕ,

(3.6)

εm =

{
1 , m = 0
2 , m 6= 0

being the Neumann’s symbol, and Pmn (·) the as-

sociated Legendre function of the first kind and orders n, m . Then, the
internal boundary-value problem for the Helmholtz equation (3.1) admits a
classical solution

v (x, y, z) ∈ C2(D) , (3.7)

such that the following spherical Bessel function expansion holds

v (ρR (ϑ, ϕ) sinϑ cosϕ, ρR (ϑ, ϕ) sinϑ sinϕ, ρR (ϑ, ϕ) cosϑ)

= U (ρ, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

n (kρR (ϑ, ϕ))

×Pmn (cosϑ) (An,m cosmϕ+Bn,m sinmϕ) .

(3.8)

For each pair of indices n ∈ N0, m = 0, 1, . . . , n , define[
ξn,m (ϑ, ϕ)
ηn,m (ϑ, ϕ)

]
= n (kρR (ϑ, ϕ))Pmn (cosϑ)

{
γ

[
cosmϕ
sinmϕ

]
+ λ√

1+ψ(ϑ,ϕ)2
·
[

cosmϕ − sinmϕ
sinmϕ cosmϕ

]
·

[
k ̇n(kρR(ϑ,ϕ))
n(kρR(ϑ,ϕ)) + sinϑψϑ(ϑ,ϕ)

R(ϑ,ϕ)
Ṗm
n (cosϑ)
Pm
n (cosϑ)

− m
sinϑ

ψϕ(ϑ,ϕ)
R(ϑ,ϕ)

]}
,

(3.9)

where

̇n (z) ≡ d

dz
n (z) = −n+1 (z) +

n

z
n (z) , (3.10)

and

Ṗmn (z) ≡ d

dz
Pmn (z) =

nzPmn (z)− (n+m)Pmn−1 (z)

z2 − 1
. (3.11)

Thus, the coefficients An,m, Bn,m in (3.8) can be determined by solving
the infinite linear system

+∞∑
n=0

n∑
m=0

[
X+

q,p,n,m Y+
q,p,n,m

X−q,p,n,m Y−q,p,n,m

]
·
[
An,m
Bn,m

]
=

[
αq,p
βq,p

]
, (3.12)
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where

X±q,p,n,m = εp
2q+1
4π

(q−p)!
(q+p)!

2π∫
0

π∫
0

ξn,m (ϑ, ϕ) Pp
q (cosϑ)

×
{

cos pϕ
sin pϕ

}
sinϑdϑdϕ ,

(3.13)

Y±q,p,n,m = εp
2q+1
4π

(q−p)!
(q+p)!

2π∫
0

π∫
0

ηn,m (ϑ, ϕ) Pp
q (cosϑ)

×
{

cos pϕ
sin pϕ

}
sinϑdϑdϕ ,

(3.14)

with q ∈ N0, p = 0, 1, . . . , q .
Proof. Since the domain D becomes the unit sphere in the stretched

co-ordinates system for the x, y, z space, we can use the usual eigenfunc-
tion method [7] and separation of variables (with respect to the variables
r, ϑ, ϕ ). As a consequence, elementary solutions of the problem can be
sought in the form

u (r, ϑ, ϕ) = U

(
r

R (ϑ, ϕ)
, ϑ, ϕ

)
= P (ρ) Θ (ϑ) Φ (ϕ) . (3.15)

Upon substituting into the Helmholtz equation one can easily find that the
functions P (·), Θ (·), Φ (·) must satisfy the ordinary differential equations

r2
d2P (r)

dr2
+ 2r

dP (r)

dr
+
(
k2r2 − ν2

)
P (r) = 0 , (3.16)

1

sinϑ

d

dϑ

[
sinϑ

dΘ (ϑ)

dϑ

]
+

(
ν2 − µ2

sin2 ϑ

)
Θ (ϑ) = 0 , (3.17)

d2Φ (ϕ)

dϕ2
+ µ2Φ (ϕ) = 0 , (3.18)

respectively. The parameters ν and µ are separation constants, whose
choice is governed by the physical requirement that at any fixed point in
space the scalar field u (r, ϑ, ϕ) must be single-valued. So, by setting

µ = m ∈ Z , (3.19)

ν2 = n (n+ 1) (n ∈ N0), (3.20)

we find
Φ (ϕ) = am cosmϕ+ bm sinmϕ , (3.21)

Θ (ϑ) = cn,mP
m
n (cosϑ) , (3.22)

10
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where am, bm, cn,m ∈ R denote arbitrary parameters. To identify the
radial function P (·) satisfying (3.16), we can write

P (r) = (kr)−
1
2 ζ (r) . (3.23)

By doing so, it is readily shown that ζ (r) satisfies

r2
d2ζ (r)

dr2
+ r

dζ (r)

dr
+

[
k2r2 −

(
n+

1

2

)2
]
ζ (r) = 0 , (3.24)

and hence is a cylinder function of half order. In order to assure the bound-
edness of the solution, Bessel functions of the first kind must be considered
for ζ (r) , so that

P (r) = dnn (kr) , (dn ∈ R) , (3.25)

where

n (z) =

√
π

2z
Jn+ 1

2
(z) = (2z)n

+∞∑
m=0

(−1)m (n+m)!

m! [2 (n+m) + 1]!
z2m (3.26)

denotes the spherical Bessel function of the first kind and order n [1]. There-
fore, the general solution of the differential problem (3.1) can be sought in
the form

u (r, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

n (kr)Pmn (cosϑ)

× (an,m cosmϕ+ bn,m sinmϕ) .

(3.27)

Enforcing the Robin boundary condition yields

F (ϑ, ϕ) = γu (R (ϑ, ϕ) , ϑ, ϕ) + λ∂u∂ν (R (ϑ, ϕ) , ϑ, ϕ)

= γu (R (ϑ, ϕ) , ϑ, ϕ) + λν̂ (ϑ, ϕ) · ∇u (R (ϑ, ϕ) , ϑ, ϕ) ,
(3.28)

where

∇u (r, ϑ, ϕ) = r̂
∂u (r, ϑ, ϕ)

∂r
+ ϑ̂

1

r

∂u (r, ϑ, ϕ)

∂ϑ
+ ϕ̂

1

r sinϑ

∂u (r, ϑ, ϕ)

∂ϕ
, (3.29)

and

ν̂ (ϑ, ϕ) =
r̂ − ψϑ (ϑ, ϕ) ϑ̂− ψϕ (ϑ, ϕ) ϕ̂√

1 + ψ (ϑ, ϕ)2
. (3.30)

Finally, by combining equations above and using the Fourier projection
method, formulas (3.12)–(3.14) follow.

11
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In a similar way, the external Robin problem{
∆v (x, y, z) + k2v (x, y, z) = 0 , (x, y, z) ∈ R3\D ,

γv (x, y, z)− λ∂v∂ν (x, y, z) = f (x, y, z) , (x, y, z) ∈ ∂D ,
(3.31)

subject to the Sommerfeld radiation condition at infinity [14]

lim
r→+∞

r

(
∂

∂r
− ik

)
v (x, y, z) = 0 , (3.32)

may be addressed. In particular, the following theorem can be easily
proved.

Theorem 3.2 Under the hypotheses of the previous theorem, the exter-
nal boundary-value problem for the Helmholtz equation (3.31)–(3.32) admits
a classical solution

v (x, y, z) ∈ C2(R3\D) (3.33)

such that the following series expansion holds

v (ρR (ϑ, ϕ) sinϑ cosϕ, ρR (ϑ, ϕ) sinϑ sinϕ, ρR (ϑ, ϕ) cosϑ)

= U (ρ, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

h
(1)
n (kρR (ϑ, ϕ))Pmn (cosϑ)

× (An,m cosmϕ+Bn,m sinmϕ) .

(3.34)

h
(1)
n (·) denoting the spherical Hankel function of the first kind and order
n [1]. For each pair of indices n ∈ N0, m = 0, 1, . . . , n , define[

ξn,m (ϑ, ϕ)
ηn,m (ϑ, ϕ)

]
= h

(1)
n (kρR (ϑ, ϕ))Pmn (cosϑ)

{
γ

[
cosmϕ
sinmϕ

]
− λ√

1+ψ(ϑ,ϕ)2
·
[

cosmϕ − sinmϕ
sinmϕ cosmϕ

]
·

 k ḣ
(1)
n (kρR(ϑ,ϕ))

h
(1)
n (kρR(ϑ,ϕ))

+ sinϑψϑ(ϑ,ϕ)
R(ϑ,ϕ)

Ṗm
n (cosϑ)
Pm
n (cosϑ)

− m
sinϑ

ψϕ(ϑ,ϕ)
R(ϑ,ϕ)

 ,

(3.35)

where

ḣ(1)n (z) ≡ d

dz
h(1)n (z) = −h(1)n+1 (z) +

n

z
h(1)n (z) . (3.36)

Thus, the coefficients An,m, Bn,m in (3.34) can be determined by solving
the infinite linear system

+∞∑
n=0

n∑
m=0

[
X+

q,p,n,m Y+
q,p,n,m

X−q,p,n,m Y−q,p,n,m

]
·
[
An,m
Bn,m

]
=

[
αq,p
βq,p

]
, (3.37)

12
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where

X±q,p,n,m = εp
2q+1
4π

(q−p)!
(q+p)!

2π∫
0

π∫
0

ξn,m (ϑ, ϕ)

×P pq (cosϑ)

{
cos pϕ
sin pϕ

}
sinϑdϑdϕ,

(3.38)

Y±q,p,n,m = εp
2q+1
4π

(q−p)!
(q+p)!

2π∫
0

π∫
0

ηn,m (ϑ, ϕ)

×P pq (cosϑ)

{
cos pϕ
sin pϕ

}
sinϑdϑdϕ,

(3.39)

with q ∈ N0, p = 0, 1, . . . , q .
Remark 2. Note that the above formulas still hold under the assump-

tion that the function R (ϑ, ϕ) is a piecewise continuous function, and the
boundary data are described by square integrable, not necessarily contin-
uous, functions so that the relevant spherical harmonics coefficients αn,m,
βn,m in equation (3.5) are finite quantities.

4 Numerical examples

In the following numerical examples, we assume for the boundary ∂D a
general polar equation of the type

R(ϑ, ϕ) =

(∣∣∣∣∣sin pϑ
2 cos qϕ4
η1

∣∣∣∣∣
ν1

+

∣∣∣∣∣sin pϑ
2 sin qϕ

4

η2

∣∣∣∣∣
ν2

+

∣∣∣∣∣cos pϑ2
η3

∣∣∣∣∣
ν3)−1/ν0

, (4.1)

extending to the three-dimensional case the ”superformula” introduced by
J. Gielis [11]-[12].

13
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Figure 1: Relative boundary error eN as function of the order N of the expansion

(4.3). The domain D is described by the polar equation (4.1) with η1 = η2 = η3 = 1,

p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3. The parameters appearing in the Robin

boundary condition are selected to be γ = 4/5 and λ = 1/5, respectively.

Very different shapes of the considered domain, including ellipsoids,
Lamé-type domains (also called Superellipsoids), ovaloids, (p, q)−fold sym-
metric figures can be obtained

Figure 2: Spatial distribution of the boundary values relevant to the spherical harmonic

expansion UN (ρ, ϑ, ϕ) of order N = 9 approximating the solution of the internal and

external Robin textitBVP in the domain D described by the polar equation (4.1) with

η1 = η2 = η3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3. The parameters appearing in

14



+ The Robin problem for the Helmholtz ... AMIM Vol.21 No.1, 2016

the Robin boundary condition are selected to be γ = 4/5 and λ = 1/5, respectively.

by assuming suitable values of the parameters p, q, η1, η2, η3, ν0, ν1, ν2, ν3
in (4.1). It is worth emphasizing that almost all three-dimensional normal-
polar domains are described (or at least approximated in a close way) by
the specified class of surfaces.

In order to assess the performance of the proposed algorithm in terms
of numerical accuracy and convergence rate, the relative boundary error
function has been defined as follows

eN =

∥∥∥γUN (1, ϑ, ϕ)± λ∂UN
∂ν (1, ϑ, ϕ)− F (ϑ, ϕ)

∥∥∥
‖F (ϑ, ϕ)‖

, (4.2)

‖·‖ denoting the usual L2 (∂D) norm, and UN (ρ, ϑ, ϕ) the partial sum
of order N relevant to the spherical Bessel/Hankel function expansion
approximating the solution of the specific Robin BVP for the Helmholtz
equation, namely

UN (ρ, ϑ, ϕ) =
N∑
n=0

n∑
m=0

Υn (kρR (ϑ, ϕ))

×Pmn (cosϑ) (An,m cosmϕ+Bn,m sinmϕ) ,

(4.3)

where Υn (·) = n (·) for the internal problem, and Υn (·) = h
(1)
n (·) for

the external one. Similarly, the sign of the nomal derivative term in (4.2)
is to be selected according to the considered differential problem.

4.1 Robin problem in a cuboid-like domain

By assuming in (4.1) η1 = η2 = η3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 =
ν3 = 3, the domain D features a cuboid-like shape. Let f (x, y, z) =
z − 7y + 2ix be the function representing the boundary values. Then, the
relative boundary error eN as function of the number N of terms in
the expansion (4.3) exhibits the behavior shown in Fig. 1. As it appears
from Fig. 2, the selection of a reduced expansion order N = 9 results in
a resonably accurate Fourier-like representation of the solution.

Remark 3. If the boundary values have wide oscillations, a larger
number N of terms in the relevant spherical harmonic expansion is needed
to achieve a reasonable numerical accuracy.

Remark 4. The L2 norm of the difference between the exact solution
and its approximate value is always vanishing in the interior (exterior) of
the considered domain, and generally small on the boundary. Point-wise
convergence seems to hold on the whole boundary, with the only exception

15
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of a set of measure zero corresponding to the singular points for the function
or its derivative. In these points, oscillations of the approximate solution,
recalling the classical Gibbs phenomenon, usually appear.

5 Conclusion

The use of suitable stretched co-ordinate systems, reducing a starlike do-
main to a unit sphere, allows for the application of a Fourier-like projection
method to the solution of a great variety of differential problems in complex
three-dimensional domains. In this way, the adoption of cumbersome tech-
niques such as finite-difference or finite-element methods can be avoided,
and the analytical expression of the solution of different boundary-value
problems is derived by using quadrature rules and solving reduced-order
linear systems.
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