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Abstract

Considered a stationary boundary layer of non-Newtonian fluid. Obtained self-

similar solutions tasks of free convection a non-Newtonian fluid when variable conduc-

tion. The problem is solved by the integral method. Is shown that by choosing the

parameters can be controlled surface friction.
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1 Introduction

Most gas and liquids are Newtonian. Thin suspensions, solutions clay, oil
paint on their characteristics are different from Newtonian fluids.research
regularities non-Newtonian fluids receives great importance in industry and
technology development for the wider use of new materials, as well as for
the study of various biological fluids.

In this paper we study one of the tasks of boundary layer theory. Bound-
ary layer theory describes the mechanical processes near the surface a solid
body in the case of high Reynolds number. in case of flow around the body
entire flow of fluid can be divided into two areas:

1. area with small thickness near the surface of the body which is called
the boundary layer, in which effect of viscosity forces is as essential as other
forces;

2. The area in which the viscosity not taken into account is called outer
region. Can be considered that here is a potential flow.The outer region of
the liquid can be considered to be ideal.
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Consider a stationary boundary layer of non-Newtonian fluid. Assume
that the fluid conductivity coefficient is constant: σ = σ0; External flow
velocity is U∞. External magnetic field is B. Ox axis is located on the plate
and is directed along the stream. Axis oy is directed vertically above. B0 is
a component vector of magnetic induction on the oy-axis. Boundary-layer
equations are:
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2 Statement of the Problems

Assume that U∞ ̸= const end this is a function of x. Find the form of
Karman’s integral equation. To do this, write the continuity equation as
follows:
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which together with equations of motion yields the following relation:
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Let us take integral of (2) end will take into an account expressions
thickness ousting and loss of impulse:
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where N0 = σ0B
2
0/ρ, and VW is the velocity of seepage. If we consider

that σ is not constant, and we take the expression for it:
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(
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)
. (9)

Then equation (8) takes the form
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If a = 1 and b = 0, We will have a classic task model, which corre-
sponds to the case of constant conductivity and if a = 0 and b = 1, electric
conductivity will be variable. (2) is Karman’s integral relation in case of
any contour. When U∞ = const, Then we have a flat wall. If VW = 0, from
(2) we have:
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We introduce self – similar variable η =
y

δ
and the velocity of fluid u (y)

we shall seek
As follows:
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Take account (16) and (17) in (11) end we multiply (11) by δn, we get:
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We solve the task in some following cases. To do this, shall use the
following boundary conditions:

I. u|y=0 = 0 =⇒ f |η=0 = 0.

II. u|y=δ = U∞ =⇒ f |η=1 = 1.
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= 0 =⇒ f ′|η=1 = 0.

IV. The fourth condition is the equation of motion on the y = 0.
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If not have velocity of seepage (VW = 0) end U∞ = const, then we will
have:
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and if U∞ ̸= const, we have:
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3 Solving Problems

We solve the task in following some particular cases:

1) f(η) function is linear with respect to its argument:

f (η) = a1 + a2η. (23)

Where a1 and a2 are some constants. To find them, we use the condi-
tions I and II. We get that a1 = 0 and a2 = 1, and

f (η) = η, u = U∞
y

δ
. (24)
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From (16) and (17) we get that A =
1

2
, B =

1

6
. From (19) we will have

an equation for δ (x):
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If we assume that δ = 0, when x = 0, then the solution to (30) will look
like:

δ =

[
6Un−1

∞ k

N0ρ (3a+ b)

(
1− e−

(n+1)(3a+b)N0
U∞

x

)] 1
n+1

. (26)

For surface friction forces we have:

τ =
∂u

∂y

∣∣∣∣
y=0

=
U∞
δ

f ′|η=0 =
U∞
δ

. (27)

2) f (η) is a quadratic function:

f (η) = a1 + a2η + a3η
2. (28)

Of I, II and III of the boundary conditions we obtain:
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from which it follows that
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Taking into account (16) and (17) we will have an equation for δ (x)
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the solution of equation (26) taking into account the condition δ|x=o = 0,
is as follows:
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For surface friction forces we have:
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3) f(η) is a cubic function:

f (η) = a1 + a2η + a3η
2 + a4η

3.
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Of I, II and III the boundary conditions for the function f (η) we obtain

f (η) = 3η − 3η2 + η3.

If B0 = 0, i.e. there is no external magnetic field, then we get from
condition IV

f (η) =
3

2
η − 3η2.

Taking into account (16) and (17) we will have an equation for δ (x):
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