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Abstract

We consider a plane problem of elasticity for a rectangular domain with a curvi-

linear quadrangular hole, which is composed of rectilinear segments (parallel to the

abscissa axis) and arcs of one and the same circumference. The problem is solved by

the methods of conformal mappings and boundary value problems of analytic func-

tions. The sought complex potentials are constructed effectively (in the analytical

form). Estimates of the obtained solutions are derived in the neighborhood of angular

points.
Key words and phrases: Conformal mapping, Kolosov-Muskhelishvili formula,

Riemann-Hilbert problem for circular ring.

AMS subject classification: 74B05.

1 Introduction

As is known (see [1]), the application of the methods of conformal map-
pings and boundary value problems of analytic functions has proved to
be the most effective way of solving boundary value problems of elastic-
ity and plate bending. However, if for a simply-connected domain these
methods yield effective results (especially for domains mapped onto the
circle by rational functions), they still remain poorly adapted to the use
for multiply-connected domains. The difficulty consists in the effective
construction of a conformally mapping function in general form. Neverthe-
less, for some practically important classes of doubly-connected domains
bounded by polygons (including the rectangular domain with a curvilin-
ear quadrangular hole considered here) we may succeed in constructing
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effectively (in the analytical form) functions conformally mapping this do-
main onto the circular ring. In addition to this, the Kolosov-Muskhelishvili
methods make it possible to decompose these problems into two Riemann-
Hilbert problems for the circular ring and by solving the latter problems to
construct the sought complex potentials in the analytical form.

Analogous problems of plane elasticity and plate bending for finite
doubly-connected domains bounded by polygons are considered in [2, 3].

2 Statement of the problem

Let the median surface of an isotropic elastic plate on the plane z = x+ iy
occupy a finite doubly-connected domain S, the external boundary L0 of

which is a rectangle with vertices Ak (k = 1, ..., 4) (i.e. L0 =
4
∪

k=1
L
(0)
k ,

L
(0)
k = AkAk+1, k = 1, ..., 4, A5 = A1), while the internal boundary L1 is

a curvilinear rectangle composed of segments L
(1)
1 = B1B2, L

(2)
1 = B3B4

(parallel to the Ox-axis) and arcs of one and the same circumference L
(3)
1 =

B2B3, L
(4)
1 = B4B1. For better clearness, we consider the symmetric case.

We denote by β0π the value of internal (with respect to the domain S)
vertex angles Bk(k = 1, ..., 4) (we mean the angles between the segments

L
(1)
1 , L

(2)
1 and the tangent arcs L

(3)
1 and L

(4)
1 ). It is assumed that the sides

L
(2)
0 and L

(4)
0 (parallel to the Ox-axis) are under the action of constant

normal tensile forces with a given principal vector P (or that the normal

displacements vn(t) = v
(k)
n = const, t ∈ L

(k)
0 , k = 2, 4 are the given ones),

while the remaining part of the boundary L = L0∪L1 is free from external
forces (see Fig. 1).

Fig. 1
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The problem consists in defining the elastic equilibrium of the plate and
establishing the situation in which the concentration of stresses occurs near
the angular points and which in turn depends on the behavior of Kolosov-
Muskhelishvili potentials at these points.

3 Solution of the problem

The problem is solved by the methods of conformal mappings and the
theory of boundary value problems of analytic functions.

Let us recall some results (see [4]) concerning the conformal mapping
of a doubly-connected domain S(0) bounded by the convex polygons (A)
and (B) with vertices Ak (k = 1, n) and Bk (k = 1, p) and internal (with
respect to the domain S(0)) vertex angles πα0

k and πβ0k onto the circular
ring D0{1 < |ζ| < R0}. The existence condition of the function z = ω0(ζ)
is expressed by the formula

n
⊓

k=1

(ak
R

)α0
k−1 p

⊓
m=1

(bm)β
0
m−1 = 1,

ak and bk are the inverse images of the points Ak and Bk, while the deriva-
tive of this function has the form

ω′
0(ζ) = K0 ∞

⊓
j=−∞

G
(
R2j

0 ζ
)
g
(
R2j

0 ζ
)
R2δj , (1)

where
G(ζ) =

n
⊓

k=1
(ζ − ak)

α0
k−1, g(ζ) =

p
⊓

m=1
(ζ − bm)β

0
m−1,

δj =

{
0, j ≥ 0,

1, j ≤ −1,

with K0 as an arbitrary real constant.
Note that in the derivation of formula (1) we used the values of the

following integrals

I1 =
1

2πi

∫
l0

lnR2
0

σ −R2j
0 ζ

dσ =

{
lnR2

0, j ≤ 0,

0, j ≥ 1,

I2 =
1

2πi

∫
l0

lnσ

σ −R2j
0 ζ

dσ =

 ln(R2j
0 ζ − a1), j ≤ 0,

ln(R2j
0 ζ − a1)− ln(R2j

0 ζ), j ≥ 1,

I3 =
1

2πi

∫
l0

iα0(σ)

σ −R2j
0 ζ

dσ =
1

2π

n∑
k=2

(α
(k−1)
0 − α

(k)
0 ) ln(ak −R2j

0 ζ)+
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+
1

2π
(α

(n)
0 − α

(1)
0 ) ln(a1 −R2j

0 ζ),

where α
(k)
0 (σ) = α(k)[ω(σ)], σ ∈ l

(k)
0 (l

(k)
0 (k = 1, n) are the arcs of the

circumference l0 which correspond to the segments L
(k)
0 ).

Let us now assume that the regular open polygons with sides δn are in-

scribed in the arcs L
(3)
1 and L

(4)
1 and denote the obtained doubly-connected

domain by S(n). Applying the results obtained above for the domain S(n)

and treating the domain S as a limit case of the domain S(n) as n→ ∞ (i.e.
δn → 0), we represent the derivative of the function mapping conformally
the domain S onto the circular ring D = {1 < |ζ| < R} by the formula

ω′(ζ) = K eγ(ζ)A(ζ), (2)

where

γ(ζ) =
1

2πi

∫
l1

ln[σ−2e2i∆0(σ)]

σ − ζ
dσ +

1

2πi

∞∑
j=−∞

′
∫
l1

ln[σ−2e2i∆0(σ)]

σ −R2jζ
dσ,

∆0(σ) =


arg σ, σ ∈ l

(k)
1 , k = 3, 4,

(−1)m−1π

2
, σ ∈ l

(m)
1 , m = 1, 2,

K is an arbitrary real constant,
∑′

indicates that j = 0 is omitted, A(ζ) =
∞
⊓

j=−∞

4
⊓

k=1
(R2jζ − ak)

α0
k−1.

Based on the results given in [5, §78], we conclude that the function
eγ(ζ) near the points bk (k = 1, 4) can be written in the form

eγ(ζ) =
4
⊓

m=1
(ζ − bm)β

0−1Ω(ζ),

where β0 = β01 = · · · = β04 , Ω(ζ) is the function holomorphic near the point
bk and tending to definite nonzero limits as ζ → bk.

Thus, for a conformally mapping function bounded at the points (k =
1, 4) (i.e. of the class h(b1, ..., b4) (see [5])), from (2) we obtain the formula

ω′(ζ) = K
4
⊓

m=1
(ζ − bm)β

0−1Ω(ζ)
∞
⊓

j=−∞

4
⊓

k=1
(R2jζ − ak)

− 1
2R2δj . (3)

Now, the boundary conditions for ω′(ζ) are written in the form

Re[iσe−iα0(σ)ω′(σ)] = 0, σ ∈ l0,

Re[iσe−i∆0(σ)ω′(σ)] = 0, σ ∈ l1.
(4)

27



AMIM Vol.20 No.2, 2015 G. Kapanadze, B. Gulua +

Let us now return to the considered problem. By virtue of the well
known Kolosov-Muskhelishvili formulas (see [1], §41), for finding the com-
plex potentials φ(z) and ψ(z) we obtain the boundary conditions

Re
[
φ(t) + tφ′(t) + ψ(t)

]
= D1,

Re
[
κφ(t)− tφ′(t)− ψ(t)

]
= 0,

t ∈ L
(1)
0 ,

Im
[
φ(t) + tφ′(t) + ψ(t)

]
= D2,

Im
[
κφ(t)− tφ′(t)− ψ(t)

]
= 2µv(2)n ,

t ∈ L
(2)
0 ,

Re
[
φ(t) + tφ′(t) + ψ(t)

]
= −P +D1,

Re
[
κφ(t)− tφ′(t)− ψ(t)

]
= 0,

t ∈ L
(3)
0 ,

Im
[
φ(t) + tφ′(t) + ψ(t)

]
= D2,

Im
[
κφ(t)− tφ′(t)− ψ(t)

]
= −2µv(2)n ,

t ∈ L
(4)
0 ,

φ(t) + tφ′(t) + ψ(t) = C1 + iC2,

κφ(t)− tφ′(t)− ψ(t) = 0,
t ∈ L1.

These conditions are in turn divided for two problems

Re
[
e−iα(t)φ(t)

]
= F ∗

0 (t), t ∈ L0, φ(t) = F ∗
1 (t), t ∈ L1, (5)

and

Re
[
e−iα(t)

(
φ(t) + tφ′(t) + ψ(t)

)]
= Γ0(t), t ∈ L0,

φ(t) + tφ′(t) + ψ(t) = Γ1(t), t ∈ L1,
(6)

where

α(t) =



0, t ∈ L
(1)
0 ,

π

2
, t ∈ L

(2)
0 ,

π, t ∈ L
(3)
0 ,

3

2
π, t ∈ L

(4)
0 ,

F ∗
0 (t) =



κ0D1, t ∈ L
(1)
0 ,

κ0

[
D2 + 2µv(2)n

]
, t ∈ L

(2)
0 ,

κ0 (−P +D1) , t ∈ L
(3)
0 ,

κ0

[
D2 − 2µv(2)n

]
, t ∈ L

(4)
0 ,

F ∗
1 (t) = κ0 (C1 + iC2) t ∈
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Γ0(t) =



D1, t ∈ L
(1)
0 ,

D2, t ∈ L
(2)
0 ,

−P +D1, t ∈ L
(3)
0 ,

D2, t ∈ L
(4)
0 ,

Γ1(t) = C1 + iC2, t ∈ L1,

where κ0 = (κ + 1)−1, C1, C2, D1, D2 are arbitrary real constants.

Let us consider problem (5). After the conformal mapping of the domain
S onto the circular ring D, this problem for the function

φ∗(ζ) =
φ[ω(ζ)]

ζ
≡ φ0(ζ)

ζ

reduces to the Riemann-Hilbert problem for a circular ring [5]

Re
[
σe−iα0(σ)φ∗(σ)

]
= F0(σ), σ ∈ l0,

Re
[
σe−i∆0(σ)φ∗(σ)

]
= F1(σ), σ ∈ l1,

(7)

where

F0(σ) = F ∗
0 [ω(σ)], σ ∈ l0,

F1(σ) =


κ0C2, σ ∈ l

(1)
1 ,

−κ0C2, σ ∈ l
(2)
1 ,

Re [σ̄(C1 + iC2)] , σ ∈ l
(3)
1 ∪ l(4)1 .

We easily observe that from the boundary conditions (4) we obtain the
factorization of the coefficient of problem (4) in the following form

e2iα0(σ)R2σ−2 =
ω′(σ)

ω′(σ)
, σ ∈ l0,

e2i∆0(σ)σ−2 =
ω′(σ)

ω′(σ)
, σ ∈ l1,

where ω′(ζ) is defined by formula (3).

With the obtained results taken into account, from the boundary con-
ditions (7) for the function

Ω(ζ) =
φ∗(ζ)

ω′(ζ)
=

φ0(ζ)

ζω′(ζ)
(8)
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we obtain the Dirichlet problem for a circular ring

Re [Ω(σ)] =
F0(σ)e

iα0(σ)

σω′(σ)
, σ ∈ l0,

Re [Ω(σ)] =
F1(σ)e

i∆0(σ)

σω′(σ)
, σ ∈ l1.

(9)

A solvability condition of problem (9) has the form (see [4])∫
l0

F0(σ)e
iα0(σ)

σω′(σ)

dσ

σ
=

∫
l1

F1(σ)e
i∆0(σ)

σω′(σ)

dσ

σ
, (10)

and its solution is given by the formula

Ω(ζ) = Θ(ζ),

where

Θ(ζ) =
1

πi

∞∑
j=−∞

∫
l0

F0(t)e
iα0(t)

(t−R2jζ)tω′(t)
dt+

∫
l1

F1(t)e
i∆0(t)

(t−R2jζ)tω′(t)
dt

+ iE1,

where E1 is an arbitrary real constant.
Thus, using (8), for the function φ0(ζ) we obtain the formula

φ0(ζ) = ζω′(ζ)Θ(ζ). (11)

Taking into account the form of the function ω′(ζ) in the neighborhood
of the point ak (k = 1, 4), we conclude that for the continuous extension of
the function φ0(ζ) in the domain D + l it is necessary that the conditions

Θ(ak) = 0, k = 1, 4 (12)

be fulfilled.
Since φ′(z) = φ′

0(ζ)[ω
′(ζ)]−1, from (11) we have

φ′(z) =
φ′
0(ζ)

ω′(ζ)
= Θ(ζ) + ζ

ω′′(ζ)

ω′(ζ)
Θ(ζ) + ζΘ′(ζ). (13)

Based on the results obtained in [5] (§26) as to the behavior of a Cauchy
type integral near the density discontinuity points, we conclude that near
the points bk (k = 1, 4) the function Θ(ζ) has the form

Θ(ζ) =
K1

(ζ − bk)β
0−1

+Θ0
k(ζ), k = 1, 4,
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where Θ0
k(ζ) is the function that near the point bk admits the following

estimate ∣∣Θ0
k(ζ)

∣∣ < C

|ζ − bk|δ0
, C = const, 0 < δ0 < β0 − 1,

where K1 is the well-defined constant.

Taking into account the behavior of the conformally mapping function
near the angular points (see [6], §37), we obtain

ω(ζ) = Bk + (ζ − bk)
β0
Ωk(ζ),

ζ
ω′′(ζ)

ω′(ζ)
=
bk(β

0 − 1)

ζ − bk
+Ω∗

k(ζ), k = 1, 4,

where Ωk(bk) ̸= 0, Ω∗
k(ζ) is the regular part of the Loran decomposition of

the function ζ
ω′′(ζ)

ω′(ζ)
.

By the above reasoning, from (13) we obtain the estimate

φ′(z) =
k0

ζ − bk
+Θk

0(ζ), k = 1, 4, K0 = −K1(β
0 − 1),

and thus near a point B which is one of the points Bk (k = 1, 4) we have
the estimates∣∣φ′(z)

∣∣ < M1 |z −B|
1
β0

−1
,

∣∣φ′′(z)
∣∣ < M2 |z −B|

1
β0

−2
, M1,M2 = const.

By a similar reasoning to the above, it is proved that φ′(z) is almost
bounded (i.e. has singularities of logarithmic type) near the points Ak (k =
1, 4).

After finding the function φ(z), the definition of the function ψ(z) by
(6) reduces to the following problem which is analogous to problem (5)

Re
[
eiα(t)R(t)

]
= N0(t), t ∈ L0,

Re [R(t)] = N1(t), t ∈ L1,
(14)

where

R(z) = ψ(z) + P (z)φ′(z),

N0(t) = Γ0(t)−Re
[
eiα(t)

(
φ(t) + (t̄− P (t))φ′(t)

)]
, t ∈ L0,

N1(t) = Re
[
Γ1(t)− φ(t)− (t̄− P (t))φ′(t)

]
, t ∈ L1,
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P (z) is an interpolation polynomial satisfying the condition P (Bk) = Bk

(k = 1, 4) and having the form

P (z) =
(z −B2) · · · (z −B4)

(B1 −B2) · · · (B1 −B4)
B1 + · · ·+ (z −B1) · · · (z −B3)

(B4 −B1) · · · (B4 −B3)
B4.

The use of the polynomial P (z) makes bounded the right-hand part
of the boundary condition (14) so that the solution of this problem can
be constructed in an analogous manner as above (see problem (5)), while
the solvability condition (with the assumption that the function ψ(z) is
continuous up to the boundary) will be analogous to conditions (10) and
(12). All these conditions will be represented as a non-homogeneous system
with real coefficients with respect to unknown real constants. It is proved
that the obtained system is uniquely solvable and therefore the problem
posed has a unique solution.

Remark. The obtained results can be extended to the case of a rect-
angular domain with a circular hole under the assumption that β0 = 1 and
to a rectangular domain with a rectilinear cut under the assumption that
β0 = 2.
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