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Abstract

The paper considers the static of the theory of linear thermoelasticity of mi-
crostretch materials with microtemperatures. The boundary value problem of statics
is investigated when the normal components of displacement and the microtemper-
ature vectors and tangent components of rotation vectors are given on the spherical
surfaces. Uniqueness theorems are proved. Explicit solutions are constructed in the
form of absolutely and uniformly convergent series.
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1 Introduction

The mathematical models describing the chiral properties of linear thermoelas-
ticity of materials with microtemperatures were proposed by Ieşan [8], [9], and
recently extended to a more general case where the material points admit a mi-
cropolar structure, see Ieşan and Quintanilla [10].

The Dirichlet, Neumann and mixed type boundary value problems correspond-
ing to these models were well investigated for general domains of arbitrary shape;
uniqueness and existence theorems were proved, and the regularity of solutions
was established using both potential and variational methods (see [1], [12], [15],
[16] and the references therein).

The main goal of the present paper consists in deriving general formulas for
representation of displacement, microtemperature vectors and temperature func-
tions in terms of harmonic and metaharmonic functions. This means that solutions
of a complicated coupled system of simultaneous differential equations of thermoe-
lasticity can be represented with the aid of solutions of simple canonical equations.

In particular, the derived representation formulas are used to construct explicit
solutions of Dirichlet and Neumann type boundary value problems for the ball.
Solutions are represented in the form of Fourier–Laplace series and their absolute
and uniform convergence, together with their first order derivatives, is proved when
the boundary data satisfy appropriate smoothness conditions. Methods of fulfilling
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the boundary conditions are investigated in A. Ulitko [18], F. Mors and H. Feshbah
[14], L. Giorgashvili [2], [3], L. Giorgashvili and K. Skhvitaridze [4], L. Giorgashvili
and D. Natroshvili [5], L. Giorgashvili, G. Karseladze and G. Sadunishvili [6], L.
Giorgashvili, A. Jagmaidze, K. Skhvitaridze [7] and other papers.

2 Basic Equations and Auxiliary Theorems

The equations which govern the thermoelastic deformations of microstretch mate-
rials withmicrotemperatures are [9]

µ∆u(x) + (λ+ µ) grad div u(x) + η grad v(x)− γ gradϑ(x) = 0, (2.1)

κ6∆w(x) + (κ5 + κ4) grad divw(x)− κ3 gradϑ(x)− κ2w(x) = 0, (2.2)

κ∆ϑ(x) + κ1 divw(x) = 0, (2.3)

η1∆v(x)− η div u(x)− η2v(x)− κ7 divw(x) + γ1ϑ(x) = 0, (2.4)

where ∆ is three-dimensional Laplace operator, u = (u1, u2, u3)
⊤ is the displace-

ment vector, w = (w1, w2, w3) is a microtemperature vector, v is a microstretch
material, η is temperature variation and λ, µ, γ, γ1, η, η1, η2,κ,κj , j = 1, 2, ..., 7
are physical constants which satisfy the following inequalities

3κ4 + κ5 + κ6 > 0, κ5 + κ6 > 0, κ6 − κ5 > 0, κ > 0, µη2 > η2,

η1 > 0, µ > 0, 3λ+ 2µ > 0, (κ1 + T0κ3)
2 < 4T0κκ2,

T0 > 0 is the initial temperature, ⊤ is the transposition symbol.
Definition. The vector U = (u,w, θ, v)⊤, is called regular in a domain Ω ⊂ R3

if U ∈ C2(Ω) ∩ C1(Ω).
The following theorem is true [11]
Theorem 2.1. For the vector U = (u,w, θ, v)⊤ to be a regular solution of

system (2.1)-(2.4) in a domain Ω ⊂ R3, it is necessary and sufficient that it be
represented in the form

u(x) = gradΦ1(x) + b grad r2
(
r
∂

∂r
+ 1

)
Φ2(x) + rot rot(xr2Φ2(x))

+ rot(xΦ3(x)) + a5 grad r
2Φ4(x) + a6 gradΦ5(x)− η gradΦ8(x),

w(x) = a1 grad(2r
∂

∂r
+ 3)Φ4(x) + a2 gradΦ5(x) + rot rot(xΦ6(x))

+ rot(xΦ7(x)),

θ(x) = 2(λ+ 2µ)(2r
∂

∂r
+ 3)Φ4(x) + (λ+ 2µ)λ2

1Φ5(x),

v(x) = a3(2r
∂

∂r
+ 3)Φ4(x) + a4Φ5(x) + (λ+ 2µ)λ2

3Φ8(x)

+
2ηa

η1λ2
3

(2r
∂

∂r
+ 3)(r

∂

∂r
+ 1)Φ2(x),

(2.5)

11
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where

∆Φj(x) = 0, j = 1, 2, 3, 4, (∆− λ2
1)Φ5(x) = 0, (∆− λ2

2)Φj(x) = 0, j = 6, 7,

(∆− λ2
3)Φ8(x) = 0, λ2

1 =
κκ2 − κ1κ3

κ(κ4 + κ5 + κ6)
> 0, λ2

2 =
κ2

κ6
> 0,

λ2
3 =

η2(λ+ 2µ)− η2

η1(λ+ 2µ)
> 0, a =

µ

λ+ 2µ
, a1 = −2(λ+ 2µ)κ3

κ2
,

a2 = −κλ2
1(λ+ 2µ)

κ1
, a3 =

2(γ1(λ+ 2µ)− ηγ)

η1λ2
3

,

a4 =
λ2
1

η1(λ2
1 − λ2

3)
(ηγ − γ1(λ+ 2µ) + a2κ7),

a5 = γ − ηa3
2(λ+ 2µ)

, a6 = γ − ηa4
(λ+ 2µ)λ2

1

, b = −a− η2a

η1λ2
3(λ+ 2µ)

,

r = |x|, x = (x1, x2, x3)
⊤, r

∂

∂r
= x · grad .

Assume that r, ϑ, φ (0 ≤ r < +∞, 0 ≤ ϑ ≤ π, 0 ≤ φ < 2π) are the spherical
coordinates of a point x ∈ R3. Denote by

∑
1 the sphere with unit radius and

center at the origin.
Let us consider, in the space L2(

∑
1), the following complete system of or-

thonormal vectors [2], [14], [18]

Xmk(ϑ, φ) = erY
(m)
k (ϑ, φ), k ≥ 0,

Ymk(ϑ, φ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eφ
sinϑ

∂

∂φ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

Zmk(ϑ, φ) =
1√

k(k + 1)

( eϑ
sinϑ

∂

∂φ
− eφ

∂

∂ϑ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

(2.6)

where |m| ≤ k, er, eϑ, eφ are the orthonormal vectors in R3,

er = (cosφ sinϑ, sinφ sinϑ, cosϑ)⊤,

eϑ = (cosφ cosϑ, sinφ cosϑ, − sinϑ)⊤,

eφ = (− sinφ, cosφ, 0)⊤,

Y
(m)
k (ϑ, φ) =

√
2k + 1

4π

(k −m)!

(k +m)!
P

(m)
k (cos θ)eimφ,

P
(m)
k (cosϑ) is the adjoint Legendre polynomial. Let f (j) = (f

(j)
1 , f

(j)
2 , f

(j)
3 )⊤,

j = 1, 2, be a the vector-function and represent the function fj j = 4, 5, 6, 7 as the
following Fourier-Laplace series

f (j)(ϑ, φ) =
∞∑
k=0

k∑
m=−k

{
α
(j)
mkXmk(ϑ, φ)

+
√
k(k + 1)

[
β
(j)
mkYmk(ϑ, φ) + γ

(j)
mkZmk(ϑ, φ)

]}
, j = 1, 2,

(2.7)

12
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fj(ϑ, φ) =
∞∑
k=0

k∑
m=−k

α
(j)
mkY

(m)
k (ϑ, φ), j = 4, 5, 6, 7, (2.8)

where α
(j)
mk, β

(j)
mk, γ

(j)
mk, j = 1, 2, α

(l)
mk, l = 4, 5, 6, 7, are Fourier-Laplace coefficients.

Note that in the formula (2.7) and in the analogous series below the summation
index k varies from 1 to +∞ in the summands contain the vectors Ymk(ϑ, φ),
Zmk(ϑ, φ).

Let us introduce several important lemmas [3], [13]

Lemma 2.2. Let f (j) ∈ Cl(Σ1), l ≥ 1, then the coefficients α
(j)
mk, β

(j)
mk, γ

(j)
mk

j = 1, 2, admit the following estimates

α
(j)
mk = O(k−l), β

(j)
mk = O(k−l−1), γ

(j)
mk = O(k−l−1). j = 1, 2.

Lemma 2.3. If fj ∈ Cl(Σ1), l ≥ 1, then the coefficients α
(j)
mk, j = 4, 5, 6, 7

admit the following estimates

α
(j)
mk = O(k−l), j = 4, 5, 6, 7.

Lemma 2.4. The vectors Xmk(ϑ, φ), Ymk(ϑ, φ), Zmk(ϑ, φ), defined by equal-
ities (2.6) admit the estimates:

|Xmk(ϑ, φ)| ≤
√

2k + 1

4π
, k ≥ 0,

|Ymk(ϑ, φ)| <
√

k(k + 1)

2k + 1
, k ≥ 1,

|Zmk(ϑ, φ)| <
√

k(k + 1)

2k + 1
, k ≥ 1,

(2.9)

Note that

|Ymk(ϑ, φ)| ≤
√

2k + 1

4π
, k ≥ 0,

Theorem 2.5. The vector U = (u,w, θ, v)⊤ represented as (2.5) will be
uniquely defined in the domain Ω+ := B(O,R) by the functions Φj(x), j =
1, 2, ..., 8, if the following conditions is fulfilled∫

Σr

Φj(x)dΣr = 0, j = 1, 3, 6, 7, r = |x| ≤ R, (2.10)

which means that to the zero value of the vector U = (u,w, θ, v)⊤ there corresponds
the zero value of the vector (Φ1, Φ2, ...,Φ8)

⊤ and vise versa.

13
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3 Statement of the problem.
The uniqueness theorem

Let Ω+ be a ball with center at the origin and radius R and ΣR = ∂Ω.
Problem(N)+ Find,a regular solution of system (2.1)–(2.4) in the domain

Ω+,which on the boundary ∂Ω, satisfies the conditions:

{n(z) · u(z)}+ = f4(z), {n(z)× rotu(z)}+ = f (1)(z),

{n(z) · w(z)}+ = f5(z), {n(z)× rotw(z)}+ = f (2)(z),
(3.1)

( problem) (N.I) :+

{θ(z)}+ = f6(z), {v(z)}+ = f7(z); (3.2)

( problem) (N.II) :+

{ϑ(z)}+ = f6(z),

{
∂v(z)

∂n(z)

}+

= f7(z), (3.3)

where f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 ), j = 1, 2, fj = 4, 5, 6, 7, f

(j)
k , j = 1, 2, k = 1, 2, 3

are function given on ∂Ω, n(z) is the outward unit normal with respect to Ω+. at

a point z ∈ ∂Ω, ∂
∂n(x) =

∑3
k=1 nk(x)

∂
∂xk

, the symbol a · b denote the scalar and

symbol a× b denote the vector prodacts of two vectors in R3.
Theorem 3.1. If Problem (N)+ have solutions, these solutions are unique.
Proof. The theorem will be proved if we show that the homogeneous problems

(N)+0 (f (j) = 0, j = 1, 2, fj = 0, j = 4, 5, 6, 7) have only trivial solution.
Let the vector U = (u,w, θ, v)⊤ be a solution of system (2.1)–(2.4). We mul-

tiply both sides of equality (2.2) by the vector w(x) and equations (2.3) by θ(x).
and summation give

w(x) ·A(2)(∂)w(x)− κ3w(x) · gradϑ(x)− κ2w
2(x)

+κϑ(x)∆ϑ(x) + κ1ϑ(x) divw(x) = 0, (3.4)

where
A(2)(∂)w(x) := κ6∆w(x) + (κ5 + κ4) grad divw(x).

Note that [4]

w(x) ·∆w(x) = div(w(x) divw(x)) + div[w(x)× rotw(x)]

− (divw(x))2 − (rotw(x))2,

w(x) · grad divw(x) = div (w(x) divw(x))− (divw(x))
2
,

ϑ(x) divw(x) = div (ϑ(x)w(x))− w(x) · gradϑ(x),

ϑ(x)∆ϑ(x) = div (ϑ(x) gradϑ(x))− (gradϑ(x))
2
.

(3.5)

Substituting these equalities into (3.4), we have

14
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div[lw(x) divw(x) + κ6(w(x)× rotw(x)) + κ1ϑ(x)w(x)+

+ κϑ(x) gradϑ(x)]− E(U ′, U ′),
(3.6)

where l = κ4 + κ5 + κ6, U
′ = (w, ϑ)⊤,

E(U ′, U ′) = l(divw)2 + κ6(rotw)
2 + (κ1 + κ3)w · gradϑ

+ κ2w
2 + κ(gradϑ)2.

(3.7)

Applying the Gauss-Ostrogradski theorem, from (3.6), we obtain∫
∂Ω

{U ′(z)}+ · {P (∂, n)U ′(z)}+ ds =

∫
Ω+

E(U ′, U ′) dx, (3.8)

where

U ′(z)·P (∂, n(z))U ′(z) = l(n(z) · w(z)) divw(z)

− κ6w(z) · [n(z)× rotw(z)] + κ1ϑ(z)(n(z) · w(z)) + κϑ(z)
∂ϑ(z)

∂n(z)
.

(3.9)

Here we have used the identity

n · [w × rotw] = −w[n× rotw].

Applying the boundary conditions of problem (N)+0 , we obtain

{U ′(z)}+ · {P (∂, n)U ′(z)}+ = 0, z = ∂Ω.

Using this equality in (2.8), we have

∫
Ω+

E(U ′, U ′)dx = 0. (3.10)

E(U ′, U ′) can be rewritten as follow

E(U ′, U ′) = l(divw)2 + κ6(rotw)
2 +

4κκ2 − (κ1 + κ3)
2

4κ
w2(x)

+
1

4κ
[(κ1 + κ3)w(x) + 2κ gradϑ(x)]2.

(3.11)

According to inequalities l > 0, κ > 0, κ6 > 0, 4κκ2 − (κ1 + κ3)
2 > 0, we

have E(U ′, U ′) ≥ 0, x ∈ Ω+. By virtue of this fact, (3.10) implies

E(U ′(x), U ′(x)) = 0, x ∈ Ω+.

Hence, taking into account (3.11), we obtain

divw(x) = 0, rotw(x) = 0, w(x) = 0, gradϑ(x) = 0.

15
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Hence in follows that w(x) = 0, ϑ(x) = c = const, x ∈ Ω+.
From the boundary conditions {ϑ(z)}+ = 0 we have c = 0, i.e. ϑ(x) = 0, x ∈

Ω+.
Substituting the values ϑ(x) = 0, w(x) = 0 in equalities (2.1) and (2.4), we

obtain

µ∆u(x) + (λ+ µ) grad div u(x) + η grad v(x) = 0, (3.12)

η1∆v(x)− η div u(x)− η2v(x) = 0, (3.13)

we multiply both sides of equality (3.12) by the vector u(x) and equations
(3.13) by v(x) and summation give

u(x) ·A(1)(∂)u(x)− ηu(x) · grad v(x) + η1v(x)∆v(x)

− ηv(x) div u(x)− η2v
2(x) = 0,

(3.14)

where

A(1)(∂)u(x) := µ∆u(x) + (λ+ µ) grad div u(x).

Substituting the equalities (3.5) into (3.14), we have

div[(λ+ 2µ)u(x) div u(x) + µ (u(x)× rotu(x)) + ηu(x)v(x)

+ η1v(x) grad v(x)]− Ẽ(U ′′, U ′′),
(3.15)

where U ′′ = (u, v)⊤,

Ẽ(U ′′, U ′′) = (λ+ 2µ)(div u(x))2 + µ(rotu(x))2 + 2ηv(x) div u(x)

+ η2v
2(x) + η1(grad v(x))

2.
(3.16)

Applying the Gauss-Ostroradski theorem, from (3.15), we obtain

∫
∂Ω

{U ′′(z)}+ · {P̃ (∂, n)U ′′(z)}+ ds =

∫
Ω+

Ẽ(U ′′, U ′′)dx (3.17)

where

U ′′(z) · P̃ (∂, n(z))U ′′(z) = (λ+ 2µ)(n(z) · u(z)) div u(z)

− µu(z) · [n(z)× rotu(z)] + ηv(z)(n(z) · u(z)) + η1v(z)
∂v(z)

∂n(z)
.

(3.18)

Applying the boundary conditions of problem (N)+0 , we obtain

16
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{U ′′(z)}+ ·
{
P̃ (∂, n)U ′′(z)

}+

= 0, z ∈ ∂Ω.

Using this equality in (3.17), we have

∫
Ω+

Ẽ(U ′′, U ′′)dx = 0. (3.19)

According to inequalities µ > 0, λ+ 2µ > 0, η1 > 0, µη2 > η2, we have

Ẽ(U ′′, U ′′) = (λ+ µ)(div u(x))2 + µ(rotu(x))2

+
1

µ
(ηv(x) + µdiv u(x))2 +

µη2 − η2

µ
v2(x) ≥ 0, x ∈ Ω+.

(3.20)

By virtue of this fact, (3.19) implies

Ẽ(U ′′, U ′′) = 0, x ∈ Ω+.

Hence, taking into account (3.20), we obtain

div u(x) = 0, rotu(x) = 0, v(x) = 0.

A solution of system div u(x) = 0, rotu(x) = 0, x ∈ Ω+ has the form

u(x) = gradΨ(x), x ∈ Ω+, (3.21)

where Ψ(x) is an arbitrary harmonic function.

Since {n(z) ·u(z)}+ = 0, the harmonic function Ψ(x) satisfy, on the boundary
∂Ω, the Neumann condition

{
∂Ψ(z)

∂n(z)

}+

= 0, z ∈ ∂Ω.

As is known, the homogeneous Neumann problem has the solution Ψ(x) = c =
const. Substitutins this value of Ψ(x) into (3.21), we obtain u(x) = 0, x ∈ Ω+.

Thus the homogeneous problem (N)+0 has only a trivial solution. Hance it
follows that problem (N)+ admits no more then regular solution.

17
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4 Solution of Problems

A Solution of Problem (N)+ will be sought for in the form (2.5), where the func-
tions Φj(x), j = 1, 2, ..., 8, are represented as [17]

Φj(x) =
∞∑
k=0

k∑
m=−k

( r

R

)k

Y
(m)
k (ϑ, φ)A

(j)
mk, j = 1, 2, 3, 4,

Φ5(x) =
∞∑
k=0

k∑
m=−k

gk(λ1r)Y
(m)
k (ϑ, φ)A

(5)
mk,

Φj(x) =

∞∑
k=0

k∑
m=−k

gk(λ2r)Y
(m)
k (ϑ, φ)A

(j)
mk, j = 6, 7,

Φ8(x) =
∞∑
k=0

k∑
m=−k

gk(λ3r)Y
(m)
k (ϑ, φ)A

(8)
mk,

(4.1)

where A
(j)
mk, j = 1, 2, . . . , 8, are the constants to be defined, and

gk(λjr) =

√
R

r

Ik+ 1
2
(λjr)

Ik+ 1
2
(λjR)

, j = 1, 2, 3,

Ik+1/2(λjr) is the Bessel function with an imaginary argument.

Substituting the values of Φj(x), j = 1, 3, 6, 7, from (4.1), in (2.10) and using
equalities

∫
∂Ω

Y
(m)
k (ϑ, φ)ds =

{√
πR2, k = o, m = 0,

0, in other cases,

we get that A
(j)
00 = 0, j = 1, 3, 6, 7.

Substituting the values of the function Φj(x), j = 1, 2, . . . , 8, defined by (4.1)
in (2.5) and taking into consideration the equalities [3]

grad
[
a(r)Y

(m)
k (ϑ, φ)

]
=

da(r)

dr
Xmk(ϑ, φ) +

√
k(k + 1)

r
a(r)Ymk(ϑ, φ),

rot
[
xa(r)Y

(m)
k (ϑ, φ)

]
=

√
k(k + 1) a(r)Zmk(ϑ, φ),

rot rot
[
xa(r)Y

(m)
k (ϑ, φ)

]
=

k(k + 1)

r
a(r)Xmk(ϑ, φ)

+
√
k(k + 1)

( d

dr
+

1

r

)
a(r)Ymk(ϑ, φ),

xa(r)Y
(m)
k (ϑ, φ) = ra(r)Xmk(ϑ, φ),

18
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where a(r) is the function of r, we obtain

u(x) =
∞∑
k=0

k∑
m=−k

{
u
(1)
mk(r)Xmk(ϑ, φ)

+
√

k(k + 1)
[
v
(1)
mk(r)Ymk(ϑ, φ) + w

(1)
mk(r)Zmk(ϑ, φ)

]}
,

w(x) =
∞∑
k=0

k∑
m=−k

{
u
(2)
mk(r)Xmk(ϑ, φ)

+
√

k(k + 1)
[
v
(2)
mk(r)Ymk(ϑ, φ) + w

(2)
mk(r)Zmk(ϑ, φ)

]}
,

(4.2)

θ(x) =
∞∑
k=0

k∑
m=−k

u
(3)
mk(r)Y

(m)
k (ϑ, φ),

v(x) =

∞∑
k=0

k∑
m=−k

u
(4)
mk(r)Y

(m)
k (ϑ, φ),

(4.3)

where

u
(1)
mk(r) =

k

R

( r

R

)k−1

A
(1)
mk +R(k + 1)(b(k + 2) + k)

( r

R

)k+1

A
(2)
mk

+ a5(k + 2)R
( r

R

)k+1

A
(4)
mk + a6

d

dr
gk(λ1r)A

(5)
mk

− η
d

dr
gk(λ3r)A

(8)
mk, k ≥ 0,

v
(1)
mk(r) =

1

R

( r

R

)k−1

A
(1)
mk +R(b(k + 1) + k + 3)

( r

R

)k+1

A
(2)
mk

+ a5R
( r

R

)k+1

A
(4)
mk +

a6
r

gk(λ1r)A
(5)
mk

− η

r
gk(λ3r)A

(8)
mk, k ≥ 1,

u
(2)
mk(r) =

a1k(2k + 3)

R

( r

R

)k−1

A
(4)
mk + a2

d

dr
gk(λ1r)A

(5)
mk

+
k(k + 1)

r
gk(λ2r)A

(6)
mk, k ≥ 0,

v
(2)
mk(r) =

a1(2k + 3)

R

( r

R

)k−1

A
(4)
mk +

a2
r

gk(λ1r)A
(5)
mk

+
( d

dr
+

1

r

)
gk(λ2r)A

(6)
mk, k ≥ 1,

w
(1)
mk(r) =

( r

R

)k

A
(3)
mk, w

(2)
mk(r) = gk(λ2r)A

(7)
mk, k ≥ 1,

u
(3)
mk(r) = 2(λ+ 2µ)(2k + 3)

( r

R

)k

A
(4)
mk + (λ+ 2µ)λ2

1gk(λ1r)A
(5)
mk, k ≥ 0,

19



AMIM Vol.20 No.2, 2015 A. Jaghmaidze, R. Meladze +

u
(4)
mk(r) =

2ηa

η1λ2
3

(2k + 3)(k + 1)
( r

R

)k

A
(2)
mk + a3(2k + 3)

( r

R

)k

A
(4)
mk

+ a4gk(λ1r)A
(5)
mk + (λ+ 2µ)λ2

3gk(λ3r)A
(8)
mk, k ≥ 0.

If we substitute the values of the vectors u(x), w(x) and the functions θ(x), v(x)
from (4.2) in (2.6) and take into account the equalities [2]

er ·Xmk(ϑ, φ) = Y
(m)
k (ϑ, φ), er · Ymk(ϑ, φ) = 0, er · Zmk(ϑ, φ) = 0,

er ×Xmk(ϑ, φ) = 0, er × Ymk(ϑ, φ) = −Zmk(ϑ, φ),

er × Zmk(ϑ, φ) = Y
(m)
k (ϑ, φ);

rot
[
a(r)Xmk(ϑ, φ)

]
=

√
k(k + 1)

r
a(r)Zmk(ϑ, φ),

rot
[
a(r)Ymk(ϑ, φ)

]
= −

( d

dr
+

1

r

)
a(r)Zmk(ϑ, φ),

rot
[
a(r)Zmk(ϑ, φ)

]
=

√
k(k + 1)

r
a(r)Xmk(ϑ, φ) +

( d

dr
+

1

r

)
a(r)Ymk(ϑ, φ),

then we get

n(x) · u(x) =
∞∑
k=0

k∑
m=−k

u
(1)
mk(r)Y

(m)
k (ϑ, φ),

n(x) · w(x) =
∞∑
k=0

k∑
m=−k

u
(2)
mk(r)Y

m
k (ϑ, φ),

n(x)× rotu(x) =

∞∑
k=0

k∑
m=−k

√
k(k + 1)

{[
1

r
u
(1)
mk(r)− (

d

dr
+

1

r
)v

(1)
mk(r)

]
× Ymk(ϑ, φ)− (

d

dr
+

1

r
)w

(1)
mk(r)Zmk(ϑ, φ)

}
,

n(x)× rotw(x) =

∞∑
k=0

k∑
m=−k

√
k(k + 1)

{[
1

r
u
(2)
mk(r)−

(
d

dr
+

1

r

)
v
(2)
mk(r)

]
× Ymk(ϑ, φ)−

(
d

dr
+

1

r

)
w

(2)
mk(r)Zmk(ϑ, φ)

}
,

∂v(x)

∂n(x)
=

∞∑
k=0

k∑
m=−k

d

dr
u
(4)
mk(r)Y

(m)
k (ϑ, φ).

(4.4)

Since on the sphere Σ1 the sets {Y (m)
k (ϑ, φ)}|m|≤k, k=0,∞ and {Xmk(ϑ, φ),

Ymk(ϑ, φ), Zmk(ϑ, φ)}|m|≤k, k=0,∞ form a complete ortonormal system in the

space L2(Σ1) and provided that the sufficient condition of smoothness is fulfilled,
we can represent function fj(z), j = 4, 5, 6, 7 and the vector f (j)(z), j = 1, 2, as
Fourier series (2.7)–(2.8).

Taking into account that n(z) · f (j)(z) = 0, j = 1, 2, from (2.7) we obtain
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f (j)(ϑ, φ) =
∞∑
k=0

k∑
m=−k

√
k(k + 1)

[
β
(j)
mkYmk(ϑ, φ) + γ

(j)
mkZmk(ϑ, φ)

]
, (4.5)

j = 1, 2.

Passing on both sides of equalities (4.3), (4.4) to the limit as x → z ∈ ∂Ω and
taking into account the boundary condition of Problem (N)+ and also formulas

(2.8) and (4.5), for the unknown constants A
(j)
mk, j = 1, 2, ..., 8, we obtain the

following systems of algebraic equations:

u
(j)
00 (R) = α

(j+3)
00 , j = 1, 2, u

(4)
00 (R) = α

(7)
00 , or

d

dR
u
(4)
00 (R) = α

(7)
00 , (4.6)

(
d

dR
+

1

R

)
v
(j)
mk(R) = α

(j+3)
mk − β

(j)
mk, j = 1, 2, k ≥ 1,(

d

dR
+

1

R

)
w

(j)
mk(R) = −γ

(j)
mk j = 1, 2, k ≥ 1,

u
(j)
mk(R) = α

(j+3)
mk , j = 1, 2, 3,

u
(4)
mk(R) = α

(7)
mk, or

d

dR
u
(4)
mk(R) = α

(7)
mk, k ≥ 1.

(4.7)

It is assumed here that

d

dR
gk(λjR) = lim

r→R

d

dr
gk(λjr), j = 1, 2.

Due to theorem 2.5 and theorem 3.1 this systems (4.6), (4.7) are uniquely

solvable with respect to the unknowns A
(j)
mk , j = 1, 2, ..., 8. Thus we can construct

explicity the formal solution of the problem (N)+ in the form of series. Further
we have to investigate the convergence of these formal series an their derivatives.

The following asymptotic representation are valid for k → +∞ [17]

gk(kjr) ≈
( r

R

)k

, g′k(kjr) ≈
k

R

( r

R

)k

, r < R. (4.8)

If x ∈ Ω+ (r < R), then by the asymptotic (4.8), the series (4.2)– (4.4) conver-
gent absolutely and uniformly convergent provided that the following majorized
series

∞∑
k=k0

k3/2
[ 2∑
j=1

k(|β(j)
mk|+ |γ(j)

mk|) +
7∑

j=4

|α(j)
mk|

]
, (4.9)

are convergent. Series (4.9) will be convergent if the coefficients α
(j)
mk, j = 4, 5, 6, 7,

β
(j)
mk, γ

(j)
mk, j = 1, 2 admit the estimates:

β
(j)
mk = O(k−4), γ

(j)
mk = O(k−4), j = 1, 2,

α
(j)
mk = O(k−3) j = 4, 5, 6, 7.

(4.10)
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According to Lemma 2.2 and Lemma 2.3, estimates (4.10) will hold if we
require of the boundary vector-functions to satisfy the following smoothness con-
ditions

f (j)(z) ∈ C3(∂Ω), j = 1, 2, fj(z) ∈ C3(∂Ω), j = 4, 5, 6, 7. (4.11)

Therefore if the boundary vector-functions satisfy conditions (4.11), then the
vector U = (u,w, θ, v)⊤ represented by equalities (4.2)-(4.3) will be a regular
solution of problem (N)+.
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