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Abstract

In this paper we are interested in the asymptote of the phase density of the neutrons
emitted from single power source which is disposed on the plane and radiating neutrons
to the direction p = pg with length of the wave A = Ag. To this end is used the method
of expansions by singular eigenfunctions of the corresponding characteristic equation
for the solution of the equation of linear transport theory, which describes penetration
of radiation through metals.
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1 Introduction

The aim of this paper is to establish the asymptote of the solutions describing
penetration of the neutrons through infinite homogeneous isotropic media while
considering a plane geometry with mono directional monochromatic source repre-
sented by Dirac’s § functions.

Let G(xo, 10, Ao; z, i1, A) be the flux of photons or neutrons at the point x = xg;
travelling in the direction pu = pg with an energy represented by suitable parameter
Ao (wavelength for photons or lethargy for neutrons). This obeys the transport
equation [1]

OG (xo, f10, Ao; T, s A)
a Ox

b+l
= / / K, A ', NG (0, 0, Mo o, 1!, N )dp' dN 4 S (o, o, Aos 2, 1, N)
a —1

x € (_OO7+OO)7 IS (_17+1)7 A€ [avb}
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where the kernel & is the differential probability of scattering so that
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ps(p) is the Legendre polynomial of order s. S represents the source distribution

Sl A) = 50— 20)3(1 — 10)3(A ~ Do),

It is possible to reduce the equation (1) to the homogeneous, if we replace the
source by the jumps condition in origin of coordinates. Thus, the equation we
must solve then becomes

6G+G—/b/+lzn:(2 1) (0 N )ps ()ps () Gp AN 2)
Ma.’ﬁ —a & S s\ A )Ps\)Ps (X M

satisfying the boundary condition
2 u(G (0, p10; Ao T s 115 ) — G (0, 10, Ao g s 11, A)) = (1 — 110)d(A = Xo)  (3)
and satisfying also the addition condition on the infinity

lim G(x()?:LLO? AO;I,N» >‘) = Oa (4)

|| =00

o € (—1,41), A Xo € [a,b)].

2 Singular Eigenfunctions

The translational symmetry of Eq. (2) suggest looking for solutions of the form

r — X
G(z, 1, A) = exp( ” SENTPY

which gives the following characteristic equation of the transport theory

b “+1
=) = [ [ ks X0 Xl ax (5)

where v is a parameter.

The values of v for which Eq.(5) has nonzero continuous solution are the
discrete eigenvalues of the operator corresponding to Eq. (5). Discrete eigenvalues
v; are not present for certain kernel of equation. For example, when the integral
operator is Volterra operator with respect to variable A, the discrete eigenvalues
v; are not present. Further we shall be restricted by this case, (i.e. we assume
that k(A,A’) = 0 when A > X'). But there are a continuum of values v, namely
v € [—1,+1] for which Eq.(5) has a solution in the distribution sense [2, 3]

_vm(v, G, N)
%,(c)(% A) = ﬁ (6)
+<5(§)\)V/+1’/m(y’45“/’>‘)d />5(,/ )
-1 v—p a :
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where m(v, (; u, \) is the solution of the following integral equation

m(v, G py A) = k(p, A v, Q)
+1 / Y
+l// / [L,)\ M )\) k(ﬂa)\a v, A )m(V7<§NI>)\/)dﬂ/d/\/
v—p
v, € [=1,+1] (, X € [a,b].

This equation admits unique continuous solution which can represented in the
form

(v, G s A Zk A X)ps()hs(v, ¢, N)
where hg(v, ¢, A) is defined from the followmg recurrent relation

() - LGN

Vhs(V7CaA)_ 2 +1

b
:V/ SO (1, ¢ VYN + o (N, Ops (),

here s =0,n, ho(v,(,\) = 0.
Along with Eq.(5) we will consider the following characteristic equation

+1 n
w-mein=v [ [ D (254 DR N0 0 X X (7

The singular eigenfunctions of Eq.(7) have the form

* l/m*(l/7 C; Ky >\)
%,(g)(#ak) = ?
mt (v, G, A ,>
0(C—N) — —"du ) é(v —
+<(< ) V/q e (v—n)

where m* (v, (; u, A) is the solution of the following integral equation
m*(v, G p, B) = k(v, G i, A)+

b +1 JARVA _ /.
I// / k(u’ 7)\ 71“7)\) k(l/’)\ ,ﬂ,)\) m*(V,C;/L,,A/)d‘u/dA/

v—pu

wv € [-1,41], (A€ |a,b].
This equation also admits unique continuous solution which can de represented in
the form

(v, G 1 A Zk (N, Nps () (v, ¢, A)
where h¥(v,(, \) is defined from the follovvlng recurrent relation

« s+1 s
Vhs(V7C7)‘) 2 _|_1 S+1(VC)\) 28+1 s l(l/C )‘)

b
B V/ ks (N, MR (v, ¢ N )N + k(€ N)ps(v),

here s =0,n, hi(v,(,A) =0.
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3 Some Properties of the Singular Eigenfunctions

The singular eigenfunctions of the characteristic equations have the following prop-
erties:

+1
[ o i N = 5(C =X (8)

and
b +1
[ ] euoluNdndr =1 (9)
a —1

For the singular eigenfunctions ¢ ) (u, A) we also have

+1
/ s N = 5(C =N

b+l
/ / ©5(¢) (ks A)dpd = 1.
a J-1

The systems of the eigenfunctions represent the biorthogonal systems. The fol-
lowing equality

and

b +1
/ / . 1oy, (b N (11, \)dpdA = 0, v # v/

holds.
Really, it is seen that the function ¢, (¢)(u, A) satisfies the equation
1 b+l
(L-2Yestun= [ [ Huxw WMo Xdiax. (o)
a -1

For the eigenfunctions ¢ (1, A) we also have

L b +1
(1= E) e = [ [ kX Ngn e Ndwax. )

l//

If we multiply (8) by ¢, (1, A), (9) by ¢ (1, A), subtract from the second equality
the first and integrate we obtain

< - V,) [ meita Mo Ndudr = .

v

Also, it is truth the important equality for these singular eigenfunctions. Namely,

b +1
/ / 185, ¢y (s N pur ¢y (s A)dpd\
a —1

V5(Vz/)/ab <5(C)\)1//+11 m*(lyj’_c;:’)\)du)
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1 !l
x (5(4:’ ) - 1//+ Wdu> dX.

/
1 vi—u

Really, we have

+1
/ / 15, ¢y 1y N pur () (s A)dpad\

AN =

+1 "
H(o(c-n - [ G gy u))

-1 V—/.L
" v'm(v', (s, N)
vi—pu
+1 A
+(6(C'—)\)—/_1 Wdu)a(u'—u)>dudA
//*1 ym* u<u7 N i) gy
vi—p
. 1 * o
+Vm (VV’CLII/’)\)((S(C_A)_/J’_ vm Z(/V,C;/:L’)\)d,u/)d)\
., IS
RALURSTADN Ty N
b [ S - - [ R i
b +1 * . A
sy =) [(og - - [,
+1,
<@ -n- [ 1 Ejfﬂ“’)du)cu

By using the equality

i B vV 1
- —p) \v—p VvV—-p)v-v
+1 AN
// vm* VC/% AV (V/,C,uM)deA
v —p

_ //”um (v, G e, ) (VC’ , )MA

v —v

we can write

+1 * . /-0
m V,<7M,A)m(yc’lj")\)d/,[/d/\

vV —pu

The singular eigenfunctions ¢ ©) (1, A) and @, ¢y (11, A) satisfy the character-
istic equations respectively and we have equalities

b —+1
m(v, ¢y A) = / / kX X (1 N X

7
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and
b +1
m G = [RGB B N )iy,
a —1

Multiply these equalities by ¢ ) (11, A) and by @,/ () (11, A) respectively, subtract
and integrate their with respect to © and A , we obtain

b pt+1
/ / m(l/7 C/; ,y A)@;,(() (/J/v )\)dﬂd)\

a —1

b pt1
_/ / (v, G s Npwr () (1 A)dpadA
a —1
bl bl
:/ / (P:(C)(M,)\)/ / k(ua)\;/1*/7AI)@V’,(Q’)(MI,)\/)duld)\/d,u,d)\
a J-1 a J-1

b+l b+l
—// %u(c)(uw\)// k(' N5, Ny oy (s N)dp' dN dpd = 0.
a J—-1 a J—-1
Consequently

b 41
/ / m(V/aC/§M7>\)‘P;(g)(u,/\)dud)\
a —1

b +1
= / / m* (v, G 1, N)@ur ey (1 N dpd .
a —1

Substitute in this equality expression for the eigenfunctions we have

b +1 * . !l
V/ / m (IJ,C,AW\)m(VC,M,A)dudA
a —1

v—p
b —+1 * !
+/nWA¢uMG@—M—u/ mﬁfﬁ?”ij
a —1 -
b+l % i
m*(v, G u, Nm (V' py A
:,,// (Cuyl)_(éu)dud/\
a —1 12
b +1 o
+/7ﬁmawA(MC—»—u/ mﬁ;};“hwyu
a -1

From this equality we have

b +1 * . /-l
I// / m (V,C,,LL7)\)m(V< ’M’)\)dﬂd)\
a J-1 vV—u

b +1 * . IR
7]//\/ / m (V,(,,L,L,)\)m(l/ C aﬂa)‘)d'ud)\
a J-1

v —pu
b +1 oAl
:/ m* (v, G; V', \) (5@’ Y 71// Wdﬂ)cl/\
a —1 -
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—+1 *V .,/
/m N (6 — )\)—1// MG b,

1 v—p

Using this equality we obtain

W//“ Cu,) (;;C_’;;L,A)dud/\

</m (v, GV N (5(¢ - )I//HWdu)d)\

1 v R

- / i/ v (006 ) v [ G ),

-1 v—p

Therefore we have

+1
/ / ) 15, ¢y (1 N)pur ¢y (s A)dpad\

+1
_ /m (.G W) (8(¢ — )_y/ m( A g gy

v—v . v —
V_V v / m(v', ', ) (8(¢ = A) —v + me
v /:mW’; V(B =) - + dem
R /abm*WCw’A)(é(c’—A)—u’/_:l Wdu)d/\

ot [ (s [ 2GRN,

1 AR
x(a(g’A)y’/+ Mdu>d)\

-1 vi—u

and consequently we obtain

+1
// 19y, (o) (1 Npur ey (py A)dpd\ (12)

it [ (5620 [ G )

+1
x (5((’ —\) - y’/l wdﬂ>dx.

It is clear that the function
b

@00 (s A) = @7, () (1, A) +/ 9(v, G0, ¢ )y ¢y (1, A)d¢

a

where g(v, (o, ¢) is an arbitrary continuous function, is also the singular eigenfunc-
tion of the characteristic equation (7). From (12) it follows that
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+1
6(p — po)S(A = Ao) = / / @) (1 N By ¢y (1o, Ao)drd(
Wy o € (_13+1)7 )‘7 )‘0 € [aab]

where g(v, o, ) is the unique solution of the integral equation

b
9(,Go, C) — / S(.¢', Vgl Gor )dC' = (v, GosC)

and

1 X )
S(uco,o_/ GGy, [ i),

vV—p

v
+1, +1
// u<u, d/ ym* uco,u, oG ) oy

—WV/mVC,V)\) (v, Cos v, N)dA, ve(=1,41) (¢ € [a,b].

4 Green’s Function

In order that satisfy the condition (3) we shall seek the solution on the form

G- / / eXp( z-g0 )%,«( Ndvde, w>w (1)

/ / ¢) exp < x —I/Io) ©u¢0) (1, N)drd¢, < 2o (14)

where ¢, ¢)(1,A), v € (=1,41), (€ [a,b], is the singular eigenfunction of the
characteristic equation (5), which is normalized as follows (9) and is represented in
the following form (6) [2], u(v, () is an unknown function. Our aim is to construct
this function. When « — z¢ the formulas (13),(14) turn into the following formulas

bl
Gt (o, pos Ao; To, f1, A) = / / u(v, C)pu,(¢) (1, A)dvd( (15)
a 0

and

0
G (aostio Moo N == [ [ uOpuo(uNdvde.  (16)
a -1
Thus, the condition of jumping (3) reduced to the condition
+1
5(1 — 10)O(A — o) = / / (v, ) (o) (1, NG (17)
Consequently we can write
w(v, G; po, Ao) = @y, ¢y (Ko, Ao)

10
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Therefore, now we can write

G(l’o,/l(), )\0;1',,&, >\)

v

b sl
T—x -
=/ / exp (— 0) Pu(¢) (1 By, (o) (105 Ao)drvd(, x> g
a 0

and
G(zo, po, Xo; T, 1, A)

b0 v — 2 .
= exp | ———— ) @u,(0) (1, APy, () (Ho, Ao)dvd(, & < o
a —1

(19)

If we apply the normalization condition for ¢, ¢)(¢, A) and ¢ © (1, A) then for the

neutrons faze and space density we obtain the results by averaging from (18),(19)

+1
G(xO,/J/OvAO;xa)\) = G(.’Eo,/,do,)\o;l‘,/.l,)\)dﬂ

—1

whence )
G(x0, s Ao; T, A) =/ @y, (1o Ao), T >0
0

and
0

G(zo, fto, Ao T, A) :/ @0 (1o Ao), @ < o
1

For the density we have

b o, pb pl
p(wo; ) =/ / / / G (0, 10, Mo T, 1, ) dprodNodpd\.
a —1Ja -1
In conclusion we can write
1
p(z0; ) :/ exp(— | x —xo | /v)R(v)dv
0

where

Ry =1+ [ b / g€, L.

Thus, the formulas for the research of the asymptotical properties of the phases
density of the neutrons emitted from the single power source for the multivelocity
case to some extent coincide with the corresponding known formulas for the one

velocity case. Analysis of such functions are given in [3].
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