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Abstract

The present work considers the operators which map some space E onto itself. If
the operator A, A(φ) = ψ, then ψ preserves some property of the point φ,ψ ∈ E.

In the paper we study the operators preserving some properties of points from the

domain of definition of the given operator.
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1 Auxiliary Notation and Theorems

By C(0, 1) we denote the class of continuous on [0, 1] functions. ω(δ, f) is
a modulus of continuity of functions f(x) ∈ C(0, 1). If ω(δ, f) = O(δα),
then f(x) ∈ Lip α, α ∈ [0, 1]. V (0, 1) is a class of all functions of bounded
variation on [0, 1].

Assume that (φn) is a system, orthonormal on [0, 1] (ONS). The num-
bers

φ̂n(f) =

∫ 1

0
f(x)φn(x) dx (n = 1, 2, . . . ) (1)

are called the Fourier coefficients of f(x) ∈ L(0, 1).

Definition 1. Let the operator A map the space E onto itself. The op-
erator A preserves information at the point φ ∈ E, if A(φ) = ψ, φ possesses
some property B, and the point ψ ∈ E possesses the same property B.

Definition 2. Assume that P is a space of all complete in L2(0, 1)
orthonormal systems (CONS). We say that the point φ ∈ P possesses the
property ω if for any f(x) ∈ C(0, 1) the relation

∣∣φ̂n(f)∣∣ < B ω
( 1

n
, f

)
(2)

holds (see (1)), where B > 0 does not depend on n.
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Definition 3. Let p > 1, φ ∈ P be the complete orthonormal system
on [0, 1]. Assume

Ap(φ) =

{
f :

∞∑
n=1

∣∣φ̂n(f)∣∣p < +∞
}
.

We say that the point φ ∈ P possesses the property Ap if for any f(x) ∈
V (0, 1) follows f(x) ∈ Ap(φ).

Let (an) ∈ ℓq be an arbitrary number sequence. Assume

Qm(x, φ) =

m∑
k=1

ak φk(x)

and

Bnm =

∫ 1

0
Qm(x, ψ)φn(x) dx.

We have the following (see [1], [2])

Theorem 1. Let (φn) be the orthonormal on [0, 1] system and
1∫
0

φn(x)dx=

0 (n = 1, 2, . . . ). Then for inequality (2) to be valid, it is necessary and
sufficient that

n−1∑
k=1

∣∣∣∣ ∫ k
n

0
φn(x) dx

∣∣∣∣ < h,

where h > does not depend on n.
Theorem 2. For φ ∈ P to possess the property Ap for p > 1, it is

necessary and sufficient that for any (ak) ∈ ℓq the condition

max
x∈[0,1]

∣∣∣∣ ∫ x

0
Qm(t, φ) dt

∣∣∣∣ = O(1)

be fulfilled.
Theorem A (see [4], p. 433). If (fn(x)) is the sequence of linear on E

(E is Banach space) functionals and for any x ∈ E

∞∑
n=1

|fn(x)|p < +∞ (p ≥ 1),

then there exists M > 0 (absolute constant) such that

∞∑
n=1

|fn(x)|p ≤Mp∥x∥pE .
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The following equality is valid (see [2]):∫ 1

0
f(x)φn(x) dx =

n−1∑
k=1

(
f
(k
n

)
− f

(k + 1

n

))∫ k
n

0
φn(x) dx+

+

n∑
k=1

∫ k
n

k−1
n

(
f(x)− f

(k
n

))
φn(x) dx ≡ I1 + I2, (3)

where the function f(x) takes finite values at every point of the segment
[0, 1].

2 The Basic Results

Theorem 3. Let the operator A map the space P onto P and A(φ) = ψ.
The operator A at the point φ preserves information Ap if for any (an) ∈ ℓq(
1
p +

1
q = 1

)
the condition (see Bmn)

lim
s→∞

Ns∑
m=1

∣∣Bms∣∣q < C (4)

is fulfilled, and Ns ↑ ∞ is some sequence of natural numbers.
Proof. Assume the for any (an) ∈ ℓq the condition (4) is fulfilled.
The equality (see Bmn)

Qs(x, ψ)
L2=

∞∑
m=1

Bms φm(x),
( L2= is equality in the sense of L2

)
.

is valid, whence we have∫ x

0
Qs(t, ψ) dt =

∫ x

0

∞∑
m=1

Bms φm(t) dt. (5)

Using Parseval’s identity we have for all x ∈ [0, 1]

∞∑
m=1

(∫ x

0
φm(t) dt

)2

= x2.

Consequently, according to Dini’s theorem about the uniform convergence
this series above is uniformly convergent on [0, 1].

Then we can choose the number Ns such that

∞∑
m=Ns+1

(∫ x

0
φm(t) dt

)2

≤ 1

s
, (6)
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uniformly on [0, 1].
By continuity there exists xs ∈ [0, 1] such that

max
x∈[0,1]

∣∣∣∣ ∫ x

0

Ns∑
m=1

Bms φm(t) dt

∣∣∣∣ = ∣∣∣∣ ∫ xs

0

Ns∑
m=1

Bms φm(t) dt

∣∣∣∣.
From here of p > 1 and 1

p +
1
q = 1, we obtain (see (4))

∣∣∣∣ Ns∑
m=1

Bms

∫ xs

0
φm(t) dt

∣∣∣∣ ≤ ( Ns∑
m=1

|Bms|q
) 1

q
( Ns∑
m=1

∣∣∣∣ ∫ xs

0
φm(t) dt

∣∣∣∣p) 1
p

≤

≤ c
1
q

( ∞∑
m=1

∣∣∣∣ ∫ 1

0
χ(s)(t)φm(t) dt

∣∣∣∣p) 1
p

,

where χ(s)(t) = χ(0,xs)(t).

It should be noted that χ(s)(t) ∈ V (0, 1) and ∥χ(s)(t)∥V ≤ 1 (s =
1, 2, . . . ). Consequently by statement of Theorems A and 3

∞∑
m=1

∣∣∣∣ ∫ 1

0
χ(s)φm(t) dt

∣∣∣∣p ≤Mp · ∥χ(s)∥V ≤Mp.

From here it follows

max
x∈[0,1]

∣∣∣∣ ∫ x

0

Ns∑
m=1

Bmsφm(t) dt

∣∣∣∣ 1p ≤ c
1
qM.

From equality (5), by virtue of (6) and the statement of Theorem 2, we
obtain∣∣∣∣ ∫ x

0
Qs(t, ψ)dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

0

Ns∑
m=1

Bms φm(t) dt

∣∣∣∣+ ∞∑
m=Ns+1

|Bms|
∣∣∣∣ ∫ x

0
φm(t) dt

∣∣∣∣ ≤
≤ O(1) +

( ∞∑
m=Ns+1

(Bms)
2

)1/2( ∞∑
m=Ns+1

(∫ x

0
φm(t) dt

)2)1/2

≤

≤ O(1) +

(∫ 1

0
Q2
s(x) dx

)1/2 1√
s
≤ O(1) +

( s∑
n=1

a2n

)1/2 1√
s
≤

≤ O(1) +
√
s max
1≤n≤s

|an|
1√
s
= O(1). (7)

By equality (7) and the statement of Theorem 2 we can see that Theo-
rem 3 is valid.
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Lemma 1. If for some (ak) ∈ ℓq,

lim
s→∞

( Ns∑
m=1

∣∣Bms∣∣q)1/q

= +∞, (8)

then there exists the function f(x) ∈ Ap(φ) such that f(x) ̸∈ Ap(ψ) ((Ns)
depends on (φn), see (6)).

Proof. It follows form equality (8) that there exists the sequence (bm) ∈
ℓp

(
1
p +

1
q = 1

)
such that

lim
s→∞

Ns∑
m=1

∣∣bmBms∣∣ = +∞. (9)

Consider the sequence of functions

fs(x) =

Ns∑
m=1

bm φm(x). (10)

This implies that

φ̂n(fs) =

∫ 1

0

Ns∑
m=1

bm φm(x)φn(x) dx =

{
bn for n ≤ Ns ,

0 for n > Ns .

Consequently,

∥∥fs∥∥Ap(φ)
=

∞∑
n=1

∣∣φ̂n(fs)∣∣p = Ns∑
m=1

|bm|p < M < +∞,

where M > 0 does not depend on s. Thus fs(x) ∈ Ap(φ) (p > 1).
It should be noted that Ap(φ) is the Banach space with the norm∥∥f∥∥
Ap(φ)

=
∞∑
n=1

∣∣φ̂n(f)∣∣p, when (φn) is the complete orthonormal system

(see [3], p. 51).
From (10) follows∫ 1

0
fs(x)Qs(x, ψ) dx =

Ns∑
m=1

bm

∫ 1

0
Qs(x, ψ)φm(x) dx =

Ns∑
m=1

bmBms.

whence (see (9))

lim
s→∞

∣∣∣∣ ∫ 1

0
fs(x)Qs(x, ψ) dx

∣∣∣∣ = lim
s→∞

∣∣∣∣ Ns∑
m=1

bmBms

∣∣∣∣ = +∞. (11)
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Since

Fs(f) =

∫ 1

0
f(x)Qs(x, ψ) dx, s = 1, 2, . . .

is the sequence of linear on Ap(φ) functionals, and
∥∥fs∥∥Ap(φ)

≤ B, from

the condition (11), by virtue of the Banach-Steinhaus theorem, there exists
the function f0(x) ∈ Ap(φ) for which the condition

lim
s→∞

∣∣∣∣ ∫ 1

0
f0(x)Qs(x, ψ) dx

∣∣∣∣ = +∞ (12)

is fulfilled. Using Hölder’s inequality, we obtain∣∣∣∣ ∫ 1

0
f0(x)Qs(x, ψ) dx

∣∣∣∣ = ∣∣∣∣ s∑
m=1

am

∫ 1

0
f0(x)ψm(x) dx

∣∣∣∣ =
=

∣∣∣∣ s∑
m=1

am ψ̂m(f0)

∣∣∣∣ ≤ ( s∑
m=1

∣∣am∣∣q)1/q( s∑
m=1

∣∣ψ̂m(f0)∣∣p)1/p

,

whence
s∑

m=1

∣∣ψ̂m(f0)∣∣p ≥ 1

Mp

∣∣∣∣ ∫ 1

0
f0(x)Qs(x, ψ) dx

∣∣∣∣p, (13)

where

M =

( ∞∑
m=1

∣∣am∣∣p)1/q

.

(12) and (13) result in

lim
s→∞

s∑
m=1

∣∣ψ̂m(f0)∣∣p = +∞,

i.e., f0(x) ̸∈ Ap(ψ).
Lemma 2. Let fn(x)∈Lip 1 (n=1, 2, . . . ) and lim

n→∞

∥∥fn(x)−f0(x)∥∥Lip 1
=

0. Then
lim
n→∞

∥∥fn(x)− f0(x)
∥∥
Ap(φ)

= 0,

if the orthonormal system (φn) possesses the property ω.
Proof. If (φn) possesses the property ω, then for any f(x) ∈ C(0, 1)

(see [1]) we have ∣∣φ̂n(f)∣∣ ≤ C ω
( 1

n
, f

)
, (14)

Thus if f(x) ∈ Lip 1, then it follows from (14) that∣∣φ̂n(f)∣∣ < C · n−1,
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where C > 0 does not depend on n.

This implies that for p > 1,

∥∥f∥∥
Ap(φ)

=
∞∑
n=1

∣∣φ̂n(f)∣∣p ≤ Cp
∞∑
m=1

1

np
< +∞.

Consequently, fn(x) ∈ Ap(φ) (n = 1, 2, . . . ) and f0(x) ∈ Ap(φ).

Analogously,

I2 ≤
1

n

n∑
k=1

max
x∈[ k−1

n
, k
n
]

∣∣f(x)− f
(
k
n

)∣∣
1
n

∫ k
n

k−1
n

∣∣φn(x)∣∣ dx ≤

≤ 1

n

∥∥f∥∥
Lip 1

(∫ 1

0
φ2
n(x) dx

)1/2

=
1

n

∥∥f∥∥
Lip 1

. (15)

Now in equality (3) we put f(x) = Fm(x) = fm(x) − f0(x) and from
(16) and (17) we find that

∣∣φ̂n(Fm)∣∣ = ∣∣∣∣ ∫ 1

0
Fm(x)φn(x) dx

∣∣∣∣ ≤ h+ 1

n

∥∥Fm∥∥Lip 1
,

whence for p > 1 we obtain

∥∥Fm∥∥Ap(φ)
=

∞∑
n=1

∣∣φ̂n(Fm)∣∣p ≤ (h+ 1)p
∥∥Fm∥∥pLip 1

∞∑
n=1

1

np
<

< 2(h+ 1)p
∥∥Fm∥∥pLip 1

.

Consequently, if lim
m→∞

∥∥Fm∥∥Lip 1
= 0, then limm→∞

∥∥Fm∥∥Ap(φ)
= 0.

Theorem 4. Let φ ∈ P possess the properties ω and Ap (p > 1).
A(φ) = ψ, where A is the operator mapping P onto P . If for some (ak) ∈ ℓq(
1
p +

1
q = 1

)
,

lim
s→∞

Ns∑
m=1

∣∣Bms∣∣q = +∞ (16)

then the operator A does not preserve information Ap at the point φ (Ns

see (6)).

Proof. Equality (18) and Lemma 1 imply that there exists the function
f0(x) ∈ Ap(φ) such that f0 ̸∈ Ap(ψ). From the proof of Lemma 1 and
from the condition of the Banach-Steinhaus theorem it follows that there
exists the set B ⊂ Ap(φ) such that B is the set of the second category and
Ap(φ)\B is that of the first category. Consequently, for any f ∈ B we have
f ̸∈ Ap(ψ).
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Since (φn) possesses the property ω, therefore Lip 1 ⊂ Ap(φ), and by
Lemma 2, if

lim
m→∞

∥∥fm(x)− f(x)
∥∥
Lip 1

= 0, (17)

then

lim
m→∞

∥∥fm(x)− f(x)
∥∥
Ap(φ)

= 0. (18)

From here f(x) ∈ Lip 1 and f(x) ∈ Ap(φ). Next, there exists a sequence
Bm(x) ∈ B such that

lim
m→∞

∥∥Bm(x)− f(x)
∥∥
Ap(φ)

= 0

and
∞∑
n=1

∣∣ψ̂n(Bm)∣∣p = +∞. (21)

Now suppose the contrary that f(x) ∈ Ap(ψ). We have (1 < p < 2, (φn) is
ONCS)

∥∥Bm(x)− f(x)
∥∥2
L2

=

∞∑
n=1

φ̂ 2
n(Bm − f) ≤

∞∑
n=1

∣∣φ̂(Bm − f)
∣∣p =

=
∥∥Bm(x)− f(x)

∥∥
Ap(φ)

.

From here if

lim
m→∞

∥∥Bm(x)− f(x)
∥∥
Ap(φ)

= 0,

then

lim
m→∞

∥∥Bm(x)− f(x)
∥∥
L2

= 0.

Consequently

lim
m→∞

∫ 1

0
Bm(x)ψn(x) dx =

∫ 1

0
f(x)ψn(x) dx. (22)

Using (22) for any N we obtain (f(x) ∈ Ap(ψ))

lim
m→∞

N∑
n=1

∣∣ψ̂n(Bm)∣∣p ≤ N∑
n=1

∣∣∣∣ ∫ 1

0
f(x)ψn(x) dx

∣∣∣∣p ≤ ∥∥f∥∥
Ap(ψ)

< +∞.

This implies that
∞∑
n=1

∣∣ψ̂n(Bm)∣∣p ≤M0 (23)

(where M0 is an absolute constant), but (23) contradicts (21).

58



+ On the Operators Preserving Information AMIM Vol.18 No.2, 2013

Thus there exists the function f(x) ∈ Lip 1 (i.e., f(x) ∈ V (0, 1)) such
that f(x) ∈ Ap(φ) and f(x) ̸∈ Ap(ψ). Consequently, the operator A does
not preserve information Ap at the point φ.
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