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Abstract

Let Bp(D) (0 < p < 1) be the space of analytic in the unit disk D functions
introduced by Duren, Romberg and Shields. By A(D) denote the set of analytic
functions in D which are continuous on D and by Hp(D) denote the Hardy space of
analytic in D functions.

The paper ascertains: 1) Which class the majorant function belongs to, when the

outcome function belongs toBp(D) space; 2) Integral representations of Bp(D) space

functions are found; 3) Multipliers of inclusion are found from Bp(D)space to H2(D),

H1(D) and A(D)spaces, i.e. conditions for fractional integrals to belong to H2(D),

H1(D) and A(D)spaces are determined.
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1 Definitions and Preliminaries

Let us denote by C the space of complex numbers, and by D and T the
open unit disk and the unit circumference on the planes C, respectively, i.e.
D = {z ∈ C : |z| < 1} , T = {t ∈ C : |t| = 1} .

Suppose that t0 ∈ T and α > 1 is some fixed number. The set ∆(t0) ={
z ∈ D : |z − t0| < α

2 (1− |z|2)
}
is called the Stolz angle with vertex at a

point t0.

We say that z ∈ D tends nontangentialy (angularly) to a point t0 ∈ T
if lim

z→t0
|z − t0| = 0 so that z ∈ ∆(t0) and denote this situation by z→̂ t0.

Let us consider the functions f : D → C and φ : T → C. We say that φ
is the angular (nontangential) boundary value of the function f at a point
t0 ∈ T if lim

z→̂ t0
f(z) = φ(t0).

Let us denote by A(D) the set of all analytic functions in the disk D
which are continuous on the closed disk D.
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Assume that I = [0, 1) and dm1(ω) = (2π)−1dθ is the normed Lebesgue
measure on the unit circumference T .

An analytic function f : D → C is said to belong to the class Hp(D)
(p > 0) if it satisfies the condition sup

r∈I

∫
T |f(rω)|pdm1(ω) <∞.

It is known that (see e.g. [1], [2]): If f ∈ Hp(D) (p > 0), then there
exists almost everywhere on T the angular limit f∗(t) = f(eiθ) = lim

z→̂t
f(z),

t = eiθ and f∗ ∈ Lp(T );

If f(z) =
∞∑
n=0

anz
n, then f ∈ H2(D) ⇔

∞∑
n=0

|an|2 < +∞.

We denote by H(D) the space of all analytic functions in the disk D.

Assume thatX and Y are some spaces of sequences of complex numbers.
We say that a sequence (ωn)n≥1 is a multiplier from the space X in the
space Y if (ωnan)n≥1 ∈ Y for every sequence (an)n≥1 from the space X.

If f ∈ H(D) and α > 0 is some number, then according to the definition
introduced by Hardy-Littlewood a fractional integral and a derivative of

order α of the function f(z) =
∞∑
n=0

anz
n are defined by the equalities (see

e.g. [3], [4])

f[α](z) =
∞∑
n=0

Γ(n+ 1)

Γ(n+ 1 + α)
anz

n,

f [α](z) =
∞∑
n=0

Γ(n+ 1 + α)

Γ(n+ 1)
anz

n,

respectively, where Γ is the Euler function. Duren [3] showed that there
exists a function f ∈ A(D) such that for every number α > 0 the function
f [α] has no boundary (radial) values on a set of positive measure on T .
Therefore f [α] /∈ Hp holds for none of the values of p. Hayman [5] also
showed that there exists a function f ∈ N(D) such that f[1] /∈ N(D),
where N(D) is the Nevanlinna class in D.

Assume that 0 < p < 1. According to [3] a function f ∈ H(D) is said
to belong to the class Bp(D) if

∥f∥ =

∫ 1

0

∫ 2π

0
(1− r)

1
p
−2|f(reiθ)| dr dθ < +∞.

As is known (see [6], Ch. II, §9), for each power series

f(z) =
∞∑
n=0

anz
n

27



AMIM Vol.16 No.2, 2011 G. Oniani, I. Tsivtsivadze +

with the convergence radius r = 1, there exists the majorant series

F (z) =

∞∑
n=0

ψ(n)zn, (1)

n|an| ≤ ψ(n) (n = 0,∞), which has almost everywhere on T angular
boundary values, where ψ : C → C is an entire function of first order and
minimal type.

2 Auxiliary Statements

Lemma 1. If Fk(z) =
∞∑
n=1

nkzn, where k ∈ N is some fixed natural number,

then

Fk(z) =
pk(z)

(1− z)k+1
, (2)

where pk(z) is a polynomial of degree k.

Indeed, if we assume that k = 1, then F1(z) =
∞∑
n=1

nzn, this series is

convergent in the disk D. It is obvious that

F1(z) = z

∞∑
n=1

nzn−1 = z

∞∑
n=1

(zn)
′
= z

( ∞∑
n=1

zn

)′

= z ·
(

z

1− z

)′

=
z

(1− z)2
. (3)

Let us now assume that formula (2) is valid when k = m, i.e.

Fm(z) =
∞∑
n=1

nmzn =
pm(z)

(1− z)m+1
. (4)

Then by (4) we have

Fm+1(z) =

∞∑
n=1

nm+1zn = z

∞∑
n=1

nm+1zn−1 = z

∞∑
n=1

(nmzn)
′

= z

( ∞∑
n=1

nmzn

)′

= z

(
pm(z)

(1− z)m+1

)′

=
pm+1(z)

(1− z)m+2
.

Thus formula (2) is fulfilled ∀k ∈ N .

28
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Lemma 2. The function F (z) =
∞∑
n=1

nkzn, where k is some fixed nat-

ural number, belongs to the Hardy class Hp(D), p ∈
(
0, 1

k+1

)
.

Indeed, according to Lemma 1 it suffices to show that

(1− z)−(k+1) ∈ Hp(D), p ∈
(
0,

1

k + 1

)
.

Assume that z = ρeit. Then

|1− z| =
∣∣1− ρeit

∣∣ =√(1− ρ)2 + 4ρ sin2
t

2
≥
√

4ρ sin2
t

2
= 2

√
ρ

∣∣∣∣sin t2
∣∣∣∣

≥ 2
√
ρ sin

|t|
2

≥ 2

√
1

2
· 2
π
· |t|
2

=

√
2

π
· |t|

when ρ > 1
2 and 0 ≤ |t| < π. Thus we obtain∫ π

−π

dt

|1− ρeit|p(k+1)
≤ sup

0≤ρ<1

∫ π

−π

dt

|1− ρeit|p(k+1)

= sup
[0, 12 ]

∪
( 1
2
,1)

∫ π

−π

dt

|1− ρeit|p(k+1)
≤ sup

0≤ρ≤ 1
2

∫ π

−π

dt

|1− ρeit|p(k+1)

+ sup
1
2
<ρ<1

∫ π

−π

dt

|1− ρeit|p(k+1)
< sup

0≤ρ≤ 1
2

∫ π

−π

dt[
(1− ρ)2 + 4ρ sin2 t

2

] p(k+1)
2

+

∫ π

−π

(
π

2
√
2

)p(k+1) dt

|t|p(k+1)
< sup

0≤ρ≤ 1
2

∫ π

−π

dt

(1− ρ)p(k+1)

+ 2

(
π√
2

)p(k+1) ∫ π

0

dt

tp(k+1)
= 2π · 2p(k+1) +

(
π

2
√
2

)p(k+1) ∫ π

0

dt

tp(k+1)
.

The integral
π∫
0

dt
tp(k+1) is convergent if and only if p(k + 1) < 1. This

implies the validity of Lemma 2.

Lemma 3. If φ(z) =
m∑
i=1

aiz
i, then the function

F (z) =

∞∑
n=0

φ(n)zn

belongs to the class Hp(D), p ∈
(
0, 1

m+1

)
.

Lemma 3 immediately follows from Lemma 2.
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Theorem A (see e.g. [3], [4]). If f(z) =
∞∑
n=0

an(f)z
n ∈ Bp(D), then

an(f) = o
(
n

1
p
−1
)
,

where an(f) is the Taylor coefficient of the function f .

3 Results

The aim of this paper is to study the following questions: 1) to which
class does the majorant function (1) belong if the initial function belongs
to Bp(D)? 2) what integral representation do functions of from the class
Bp(D) have? 3) What form do multipliers of inclusion from Bp(D) to
H2(D), H1(D) and A(D) have or to what class do the fractional integrals
H2 of functions from the space Bp belong for H1 and A(D)?

The answers to the above-posed questions are provided by the following
theorems.

Theorem 1. Assume that f ∈ Bp(D). Then for the function f there

exists a majorant function F (z) =
∞∑
n=0

ψ (n) zn such that F ∈ Hδ(D), δ ∈(
0, 1

1+[p−1]

)
, where ψ : C → C is an entire function of first order and

minimal type.

Proof. According to Theorem A, for each f ∈ Bp(D) we have

lim
n→∞

∣∣∣an(f)n−[p−1]
∣∣∣ = 0,

and therefore there exists a number n0 ∈ N such that for all n ≥ n0 the
following inequality is fulfilled:

∀n ≥ n0, |an(f)| < n[p
−1].

Let us assume that M = max
0≤k≤n0

|ak(f)|. Then it is clear that

|an(f)| < n[p
−1] +M + 1, n = 0,∞. (5)

From inequality (5) it follows that the majorant function of f is

F (z) =

∞∑
n=0

(
n[p

−1] +M + 1
)
zn,

where ψ(z) = z[p
−1] +M + 1.
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By Lemma 2 we have F ∈ Hδ(D), δ ∈
(
0, 1

1+[p−1]

)
. The theorem is

proved. ⊓⊔
Theorem 1 can be used for the integral representation of functions of

the class Bp(D).

As is known, for each analytic function f : D → C there exists an entire
function g : C → C and a square-summable function φ : [0, 2π] → C such
that

f(z) =
1

2π

∫ 2π

0
g

(
1

1− ze−iθ

)
φ(eiθ)dθ (6)

(see [6], Ch. II, §9). It is clear that g and φ are in general the functions
depending on f .

Theorem 2. If f ∈ Bp(D), then there exists a square summable func-
tion φ : [0, 2π] → C such that

f(z) =
(1 + [p−1])!

2π

∫ 2π

0

φ
(
eiθ
)
dθ

(1− ze−iθ)
[p−1]+2

, z ∈ D. (7)

Proof. Indeed, multiplying both sides of (5) by n, we obtain

n|an(f)| < n[p
−1]+1 + (1 +M)n. (8)

From inequality (8) it follows that there exists a natural number m such
that ∀n ≥ m the following inequality is fulfilled:

n|an(f)| < (n+ 1)(n+ 2) · · · (n+ [p−1] + 1) = ψ(n). (9)

Indeed, it is clear that

(n+ 1)1+[p−1] < ψ(n). (10)

It is likewise clear that inequality (9) will be fulfilled if

n1+[p−1] + (M + 1)n < (n+ 1)1+[p−1],

but the latter inequality will be fulfilled for all those n ∈ N which satisfy
the inequality

(M + 1)n < (1 + [p−1])n[p
−1],

from which we obtain

n >

(
M + 1

1 + [p−1]

) 1
[p−1]−1

= β.
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Assume that m = 1+[β], then it is clear that inequality (9) will be fulfilled
∀n > m. Let us show that

φ(z) =

∞∑
n=0

an(f)

ψ(n)
zn ∈ H2(D).

Indeed, by inequality (9) we have

∞∑
n=0

∣∣∣∣an(f)ψ (n)

∣∣∣∣2 = m∑
n=0

∣∣∣∣an(f)ψ (n)

∣∣∣∣2 + ∞∑
n=m+1

∣∣∣∣an(f)ψ (n)

∣∣∣∣2
<

m∑
n=0

∣∣∣∣an(f)ψ (n)

∣∣∣∣2 + ∞∑
n=m+1

1

n2
< +∞.

Therefore φ ∈ H2(D) and the angular boundary values of φ are square-
summable on [0, 2π]. If we assume that µ = 1 + [p−1], then we also have
that zµφ ∈ H2(D). It also clearly follows that ∀z ∈ D

f(z) =
dµ

dzµ
(zµ · φ(z)) . (11)

By the Cauchy formula (see [6], Ch. II, §5) we have

zµφ(z) =
1

2π

∫ 2π

0

eiµtφ
(
eit
)
dt

1− ze−it
. (12)

Using equalities (11) and (12) we obtain

f(z) =
(1 + [p−1])!

2π

∫ 2π

0

φ(eit)dt

(1− ze−it)2+[p−1]
. (13)

The theorem is proved. ⊓⊔
By this representation and taking into account the definition of a frac-

tional integral, we easily make sure that the following theorem is valid.

Theorem 3. If f ∈ Bp(D), then a fractional integral of order α =
1+[p−1] of this function belongs to H2(D), i.e. f[α] ∈ H2(D), α = 1+[p−1].

So that
(
ωn = Γ(1+n)

Γ(n+2+[p−1])

)
n≥0

is a multiplier from the space Bp(D) to

the space H2(D).

Proof. Indeed, if f ∈ Bp(D), then by Theorem 2 there exists a function
φ ∈ H2(D) such that ∀z ∈ D

f(z) =
(1 + [p−1])!

2π

∫ 2π

0

φ(eit)dt

(1− ze−it)2+[p−1]
.
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Applying the well-known binomial expansion, we obtain

f(z) =

(
1 +

[
p−1
])
!

2π

∞∑
n=0

[
Γ
(
n+

[
p−1
])

Γ (1 + n)

∫ 2π

0
φ
(
eit
)
e−intdt

]
zn,

wherefrom

f[α](z) =
(1 + [p−1])!

2π

×

{ ∞∑
n=0

[
Γ(1 + n)

Γ(n+ 2 + [p−1])
· Γ(n+ 2 + [p−1])

Γ(1 + n)

∫ 2π

0
φ(eit)e−intdt

]
zn

}

=
(1 + [p−1])!

2π

∫ 2π

0

[ ∞∑
n=0

zne−int

]
φ(eit)dt

=
(1 + [p−1])!

2π

∫ 2π

0

φ(eit)dt

1− ze−it
= (1 + [p−1])!φ(z) ∈ H2. (14)

Here we have used Fichtenholz’ theorem (see [6], Ch. II, §5). ⊓⊔
If f(z) =

∞∑
n=0

anz
n ∈ Bp(D), then Theorem 3 implies that

(
ωn =

Γ(1 + n)

Γ(n+ 2 + [p−1])

)
n≥0

is a multiplier of inclusion from the space Bp(D) to the space H2(D) or to
the space l2, thus

∞∑
n=0

∣∣∣∣ Γ (1 + n)

Γ (n+ 2 + [p−1])
an(f)

∣∣∣∣2 < +∞.

Thus we show that the following statement is true.

Corollary 1. If f(z) =
∞∑
n=0

an(f)z
n and f ∈ Bp(D), then

(
βn =

Γ(1 + n)

Γ(n+ 2 + [p−1])
an(f)

)
n≥0

∈ l2.

Corollary 2. If f(z) =
∞∑
n=0

an(f)z
n and f ∈ Bp(D), then

(
γn =

Γ(1 + n)

n · Γ(n+ 2 + [p−1])

)
n≥0

is a multiplier of inclusion from the space Bp(D) to the space l1 = l.
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Indeed, this follows from the following inequality

|an(f)| |γn| ≤
1

n2
+

∣∣∣∣ Γ(1 + n)

Γ(n+ 2 + [p−1])
an(f)

∣∣∣∣2 .
Corollary 3. If f ∈ Bp(D) and α = 1 + [p−1], then

f(z) =
1

2π

∫ 2π

0

f[α](e
it)dt

(1− ze−it)2+[p−1]
. (15)

Indeed, if in formula (11) we use equality (??), then we obtain formula
(15), where f[α]

(
eit
)
= lim

z→̂eit
f[α](z).

Theorem 4. If f ∈ Bp(D), then

1) F (z) =

∞∑
n=0

Γ(1 + n)

(n+ 1)Γ(n+ 2 + [p−1])
an(f)z

n ∈ A(D);

2) F (eiθ) =
∞∑
n=0

Γ(1 + n)

(n+ 1)Γ(n+ 2 + [p−1])
an(f)e

inθ is an absolutely con-

tinuous function on the interval [0, 2π].

In other words, equality 1) means that
(
ωn = Γ(1+n)

(n+1)Γ(n+2+[p−1])

)
n≥0

is

a multiplier of inclusion from the space Bp(D) to the space A(D).
Proof of Theorem 4. Since f ∈ Bp(D), by formula (15) we have

f[α](z) =

∞∑
n=0

Γ(1 + n)

Γ(n+ 2 + [p−1])
an(f)z

n ∈ H2(D) ⊂ H1(D),

therefore by Smirnov’s theorem (see [6], Ch. II, §4), the primitive function
of f[α]

F (z) =

∫ z

0
f[α](t)dt ∈ A(D) and F (eiθ) =

∫ eiθ

0
f[α](t)dt

is absolutely continuous on the interval [0, 2π], but if we use term-by-term
integration, we obtain

1) F (z) =

∫ z

0
f[α](t)dt =

∞∑
n=0

Γ(1 + n)

Γ(n+ 2 + [p−1])
an(f)

∫ z

0
tndt

=

∞∑
n=0

Γ(1 + n)

(n+ 1)Γ(n+ 2 + [p−1])
an(f)z

n;

2) F (eiθ) =

∞∑
n=0

Γ(1 + n)

(n+ 1)Γ(n+ 2 + [p−1])
an(f)e

inθ.
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The theorem is proved. ⊓⊔
For any value of the parameter α (α ≥ 0) let us consider the following

functions

I. Cα(z, t) =
Γ(1 + α)

(1− tz)α+1
, t ∈ T, z ∈ D,

II. Hα(z, t) = 2Cα(z, t)− C(0, t) = Γ(1 + α)

[
2

(1− tz)α+1
− 1

]
,

III. Pα(z, t) = ReHα(z, t) = Γ(1 + α)

[
2Re

1

(1− tz)α+1
− 1

]
.

If α = 0, then the functions

C(z, t) = C0(z, t) =
1

1− tz
=

1

1− ze−iθ
, t = eiθ,

H(z, t) = H0(z, t) =
2

1− tz
− 1 =

1 + tz

1− tz
=

1 + ze−iθ

1− ze−iθ
,

P (z, t) = P0(z, t) =
1− |z|2

|1− ze−iθ|2
=

1− r2

1 + r2 − 2r cos(θ − φ)
, z = reiφ,

represent respectively the Cauchy, Schwartz and Poisson kernels for the
unit disk. Using the representation of the functions C(z, t), H(z, t) and
P (z, t) in the form of series and the definition of a fractional integral of
order α, it follows that

C(z, t) =

∞∑
n=0

zne−inθ,

H(z, t) = 2

∞∑
n=0

zne−inθ − 1 = 1 + 2

∞∑
n=1

zne−inθ,

P (z, t) = 1 + 2
∞∑
n=1

rn cosn (θ − φ) =
+∞∑

n=−∞
r|n|ein(θ−φ),

where from

Cα(z, t) =

∞∑
n=0

Γ(n+ α+ 1)

Γ(n+ 1)
zne−inθ, (16)

Hα(z, t) = Γ(1 + α) + 2

∞∑
n=1

Γ(n+ α+ 1)

Γ(n+ 1)
zne−inθ, (17)

Pα(z, t) =

+∞∑
n=−∞

Γ(|n|+ α+ 1)

Γ(1 + |n|)
z|n|ein(θ−φ), (18)
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These series are absolutely and uniformly convergent on every compact set
of the disk D. They represent respectively fractional derivatives of order α
of the Cauchy, Schwartz and Poisson kernels.

The following theorem is true.

Theorem 5. If f(z) =
∞∑
n=0

an(f)z
n ∈ Bp(D), then for α = 1 + [p−1]

the following integral representations are valid:

f(z) =
1

2π

∫ 2π

0

f[α](e
iθ)dθ

(1− ze−iθ)2+[p−1]
=

1

2π

∫ 2π

0
Cα(z, e

iθ)f[α](e
iθ)dθ, (19)

f(z) =
1

2π

∫ 2π

0
Hα(z, e

iθ)uα(e
iθ)dθ + i Im f(0), (20)

f(z) =
1

2π

∫ 2π

0
Pα(z, e

iθ)f[α](e
iθ)dθ, (21)

where uα = Re f[α].

Proof. Formula (19) will be proved by virtue of the proof of Theorem 3.
Let us show that formulas (20) and (21) are valid. For z = 0, from formula
(19) we obtain

f(0) =
1

2π

∫ 2π

0
f[α](e

iθ)dθ, (22)

which implies

f(0) =
1

2π

∫ 2π

0
f [α](e

iθ)dθ. (23)

Using formulas (17) and (20) we have

1

2π

∫ 2π

0
Hα(z, e

iθ)uα(e
iθ)dθ =

1

2π

∫ 2π

0
[2Cα(z, e

iθ)− 1]

×
f[α](e

iθ) + f [α](e
iθ)

2
dθ =

1

2π

∫ 2π

0
Cα(z, e

iθ)f[α](e
iθ)dθ

+
1

2π

∫ 2π

0
Cα(z, e

iθ)f [α](e
iθ)dθ− 1

2π

∫ 2π

0
uα(e

iθ)dθ

= f(z) +
1

2π

∫ 2π

0
f [α](e

iθ)dθ − uα(0) = f(z) + f(0)− Re f(0)

= f(z) + Re f(0)− i Im f(0)− Re f(0) = f(z)− i Im f(0),

from which we obtain

f(z) =
1

2π

∫ 2π

0
Hα(z, e

iθ)uα(e
iθ)dθ + i Im f(0).
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Here we have used the equality

f(0) =
1

2π

∫ 2π

0
f [α]Cα

(
z, eiθ

)
dθ.

Indeed, if we use analyticity of the function f[α], then by formula (16)
and the Lebesgue theorem on bounded convergence, then we have

1

2π

∫ 2π

0
f [α](e

iθ)Cα(z, e
iθ)dθ

=

∞∑
n=0

[
1

2π

∫ 2π

0
f [α](e

iθ)einθ
]
Γ(n+ α+ 1)

Γ(1 + n)
zn =

1

2π

∫ 2π

0
f [α](e

iθ)dθ = f(0).

Let us now show the validity of formula (21). If we use the definition
of a fractional integral of order α and that of a fractional derivative, then
it is clear that for each function f ∈ H(D) we will have

(f[α])
[α](z) = (f [α])[α] = f(z). (24)

If f ∈ Bp(D), then, as we know, f[α] ∈ H2(D), where α = 1 + [p−1],
therefore, by Fichtenholz’ theorem (see [6], ch. II, §5), it will be represented
by the Poisson integral

f[α](z) =
1

2π

∫ 2π

0
P (z, eiθ)f[α](e

iθ)dθ,

from which, using equality (24) and formula (17), we obtain

f(z) =
1

2π

∫ 2π

0
P[α](z, e

iθ)f[α](e
iθ)dθ =

1

2π

∫ 2π

0
Pα(z, e

iθ)f[α](e
iθ)dθ.

Here we have used the equality

P[α](z, e
iθ) =

+∞∑
n=−∞

Γ(|n|+ α+ 1)

Γ(n+ 1)
z|n|e−in(θ−φ) = Pα(z, e

iθ), z = reiφ.

The theorem is proved. ⊓⊔
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