INTEGRAL REPRESENTATIONS AND INCLUSION SETS IN $B^{p}(D)$ SPACE

G. Oniani, I. Tsivtsivadze
Akaki Tsereteli State University
59, Queen Tamara Ave., Kutaisi 4600, Georgia

(Received: 24.05.2011; accepted: 15.12.2011)

Abstract

Let $B^{p}(D)(0<p<1)$ be the space of analytic in the unit disk D functions introduced by Duren, Romberg and Shields. By $A(D)$ denote the set of analytic functions in D which are continuous on \bar{D} and by $H^{p}(D)$ denote the Hardy space of analytic in D functions.

The paper ascertains: 1) Which class the majorant function belongs to, when the outcome function belongs to $B^{p}(D)$ space; 2) Integral representations of $B^{p}(D)$ space functions are found; 3) Multipliers of inclusion are found from $B^{p}(D)$ space to $H^{2}(D)$, $H^{1}(D)$ and $A(D)$ spaces, i.e. conditions for fractional integrals to belong to $H^{2}(D)$, $H^{1}(D)$ and $A(D)$ spaces are determined.

Key words and phrases: Integral representation, embedding factors, boundary values, fractional derivatives, fractional integral.

AMS subject classification: 30D $55,30 \mathrm{H} 10,32 \mathrm{~A} 36$.

1 Definitions and Preliminaries

Let us denote by \mathbb{C} the space of complex numbers, and by D and T the open unit disk and the unit circumference on the planes \mathbb{C}, respectively, i.e. $D=\{z \in \mathbb{C}:|z|<1\}, T=\{t \in \mathbb{C}:|t|=1\}$.

Suppose that $t_{0} \in T$ and $\alpha>1$ is some fixed number. The set $\Delta\left(t_{0}\right)=$ $\left\{z \in D:\left|z-t_{0}\right|<\frac{\alpha}{2}\left(1-|z|^{2}\right)\right\}$ is called the Stolz angle with vertex at a point t_{0}.

We say that $z \in D$ tends nontangentialy (angularly) to a point $t_{0} \in T$ if $\lim _{z \rightarrow t_{0}}\left|z-t_{0}\right|=0$ so that $z \in \Delta\left(t_{0}\right)$ and denote this situation by $z \widehat{\rightarrow} t_{0}$.

Let us consider the functions $f: D \rightarrow \mathbb{C}$ and $\varphi: T \rightarrow \mathbb{C}$. We say that φ is the angular (nontangential) boundary value of the function f at a point $t_{0} \in T$ if $\lim _{z \rightarrow t_{0}} f(z)=\varphi\left(t_{0}\right)$.

Let us denote by $A(D)$ the set of all analytic functions in the disk D which are continuous on the closed disk \bar{D}.

Assume that $I=[0,1)$ and $d m_{1}(\omega)=(2 \pi)^{-1} d \theta$ is the normed Lebesgue measure on the unit circumference T.

An analytic function $f: D \rightarrow \mathbb{C}$ is said to belong to the class $H^{p}(D)$ $(p>0)$ if it satisfies the condition $\sup _{r \in I} \int_{T}|f(r \omega)|^{p} d m_{1}(\omega)<\infty$.

It is known that (see e.g. [1], [2]): If $f \in H^{p}(D)(p>0)$, then there exists almost everywhere on T the angular limit $f^{*}(t)=f\left(e^{i \theta}\right)=\lim _{z \rightarrow t} f(z)$, $t=e^{i \theta}$ and $f^{*} \in L^{p}(T) ;$

If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, then $f \in H^{2}(D) \Leftrightarrow \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<+\infty$.
We denote by $H(D)$ the space of all analytic functions in the disk D.
Assume that X and Y are some spaces of sequences of complex numbers. We say that a sequence $\left(\omega_{n}\right)_{n \geq 1}$ is a multiplier from the space X in the space Y if $\left(\omega_{n} a_{n}\right)_{n \geq 1} \in Y$ for every sequence $\left(a_{n}\right)_{n \geq 1}$ from the space X.

If $f \in H(D)$ and $\alpha>0$ is some number, then according to the definition introduced by Hardy-Littlewood a fractional integral and a derivative of order α of the function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ are defined by the equalities (see e.g. [3], [4])

$$
\begin{aligned}
& f_{[\alpha]}(z)=\sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+1+\alpha)} a_{n} z^{n}, \\
& f^{[\alpha]}(z)=\sum_{n=0}^{\infty} \frac{\Gamma(n+1+\alpha)}{\Gamma(n+1)} a_{n} z^{n},
\end{aligned}
$$

respectively, where Γ is the Euler function. Duren [3] showed that there exists a function $f \in A(D)$ such that for every number $\alpha>0$ the function $f^{[\alpha]}$ has no boundary (radial) values on a set of positive measure on T. Therefore $f^{[\alpha]} \notin H^{p}$ holds for none of the values of p. Hayman [5] also showed that there exists a function $f \in N(D)$ such that $f_{[1]} \notin N(D)$, where $N(D)$ is the Nevanlinna class in D.

Assume that $0<p<1$. According to [3] a function $f \in H(D)$ is said to belong to the class $B^{p}(D)$ if

$$
\|f\|=\int_{0}^{1} \int_{0}^{2 \pi}(1-r)^{\frac{1}{p}-2}\left|f\left(r e^{i \theta}\right)\right| d r d \theta<+\infty .
$$

As is known (see [6], Ch. II, $\S 9$), for each power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

with the convergence radius $r=1$, there exists the majorant series

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} \psi(n) z^{n} \tag{1}
\end{equation*}
$$

$n\left|a_{n}\right| \leq \psi(n)(n=\overline{0, \infty)}$, which has almost everywhere on T angular boundary values, where $\psi: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function of first order and minimal type.

2 Auxiliary Statements

Lemma 1. If $F_{k}(z)=\sum_{n=1}^{\infty} n^{k} z^{n}$, where $k \in N$ is some fixed natural number, then

$$
\begin{equation*}
F_{k}(z)=\frac{p_{k}(z)}{(1-z)^{k+1}} \tag{2}
\end{equation*}
$$

where $p_{k}(z)$ is a polynomial of degree k.
Indeed, if we assume that $k=1$, then $F_{1}(z)=\sum_{n=1}^{\infty} n z^{n}$, this series is convergent in the disk D. It is obvious that

$$
\begin{align*}
F_{1}(z) & =z \sum_{n=1}^{\infty} n z^{n-1}=z \sum_{n=1}^{\infty}\left(z^{n}\right)^{\prime}=z\left(\sum_{n=1}^{\infty} z^{n}\right)^{\prime} \\
& =z \cdot\left(\frac{z}{1-z}\right)^{\prime}=\frac{z}{(1-z)^{2}} \tag{3}
\end{align*}
$$

Let us now assume that formula (2) is valid when $k=m$, i.e.

$$
\begin{equation*}
F_{m}(z)=\sum_{n=1}^{\infty} n^{m} z^{n}=\frac{p_{m}(z)}{(1-z)^{m+1}} \tag{4}
\end{equation*}
$$

Then by (4) we have

$$
\begin{aligned}
F_{m+1}(z) & =\sum_{n=1}^{\infty} n^{m+1} z^{n}=z \sum_{n=1}^{\infty} n^{m+1} z^{n-1}=z \sum_{n=1}^{\infty}\left(n^{m} z^{n}\right)^{\prime} \\
& =z\left(\sum_{n=1}^{\infty} n^{m} z^{n}\right)^{\prime}=z\left(\frac{p_{m}(z)}{(1-z)^{m+1}}\right)^{\prime}=\frac{p_{m+1}(z)}{(1-z)^{m+2}}
\end{aligned}
$$

Thus formula (2) is fulfilled $\forall k \in N$.

Lemma 2. The function $F(z)=\sum_{n=1}^{\infty} n^{k} z^{n}$, where k is some fixed natural number, belongs to the Hardy class $H^{p}(D), p \in\left(0, \frac{1}{k+1}\right)$.

Indeed, according to Lemma 1 it suffices to show that

$$
(1-z)^{-(k+1)} \in H^{p}(D), \quad p \in\left(0, \frac{1}{k+1}\right) .
$$

Assume that $z=\rho e^{i t}$. Then

$$
\begin{aligned}
|1-z|=\left|1-\rho e^{i t}\right| & =\sqrt{(1-\rho)^{2}+4 \rho \sin ^{2} \frac{t}{2}} \geq \sqrt{4 \rho \sin ^{2} \frac{t}{2}}=2 \sqrt{\rho}\left|\sin \frac{t}{2}\right| \\
& \geq 2 \sqrt{\rho} \sin \frac{|t|}{2} \geq 2 \sqrt{\frac{1}{2}} \cdot \frac{2}{\pi} \cdot \frac{|t|}{2}=\frac{\sqrt{2}}{\pi} \cdot|t|
\end{aligned}
$$

when $\rho>\frac{1}{2}$ and $0 \leq|t|<\pi$. Thus we obtain

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{p(k+1)}} \leq \sup _{0 \leq \rho<1} \int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{p(k+1)}} \\
& =\sup _{\left[0, \frac{1}{2}\right] \cup\left(\frac{1}{2}, 1\right)} \int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{p(k+1)}} \leq \sup _{0 \leq \rho \leq \frac{1}{2}} \int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{p(k+1)}} \\
& +\sup _{\frac{1}{2}<\rho<1} \int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{p(k+1)}}<\sup _{0 \leq \rho \leq \frac{1}{2}} \int_{-\pi}^{\pi} \frac{d t}{\left[(1-\rho)^{2}+4 \rho \sin ^{2} \frac{t}{2}\right]^{\frac{p(k+1)}{2}}} \\
& +\int_{-\pi}^{\pi}\left(\frac{\pi}{2 \sqrt{2}}\right)^{p(k+1)} \frac{d t}{|t|^{p(k+1)}}<\sup _{0 \leq \rho \leq \frac{1}{2}} \int_{-\pi}^{\pi} \frac{d t}{(1-\rho)^{p(k+1)}} \\
& +2\left(\frac{\pi}{\sqrt{2}}\right)^{p(k+1)} \int_{0}^{\pi} \frac{d t}{t^{p(k+1)}}=2 \pi \cdot 2^{p(k+1)}+\left(\frac{\pi}{2 \sqrt{2}}\right)^{p(k+1)} \int_{0}^{\pi} \frac{d t}{t^{p(k+1)}} .
\end{aligned}
$$

The integral $\int_{0}^{\pi} \frac{d t}{t^{p(k+1)}}$ is convergent if and only if $p(k+1)<1$. This implies the validity of Lemma 2 .

Lemma 3. If $\varphi(z)=\sum_{i=1}^{m} a_{i} z^{i}$, then the function

$$
F(z)=\sum_{n=0}^{\infty} \varphi(n) z^{n}
$$

belongs to the class $H^{p}(D), p \in\left(0, \frac{1}{m+1}\right)$.
Lemma 3 immediately follows from Lemma 2.

Theorem A (see e.g. [3], [4]). If $f(z)=\sum_{n=0}^{\infty} a_{n}(f) z^{n} \in B^{p}(D)$, then

$$
a_{n}(f)=\overline{\bar{o}}\left(n^{\frac{1}{p}-1}\right)
$$

where $a_{n}(f)$ is the Taylor coefficient of the function f.

3 Results

The aim of this paper is to study the following questions: 1) to which class does the majorant function (1) belong if the initial function belongs to $B^{p}(D)$? 2) what integral representation do functions of from the class $B^{p}(D)$ have? 3) What form do multipliers of inclusion from $B^{p}(D)$ to $H^{2}(D), H^{1}(D)$ and $A(D)$ have or to what class do the fractional integrals H^{2} of functions from the space B^{p} belong for H^{1} and $A(D)$?

The answers to the above-posed questions are provided by the following theorems.

Theorem 1. Assume that $f \in B^{p}(D)$. Then for the function f there exists a majorant function $F(z)=\sum_{n=0}^{\infty} \psi(n) z^{n}$ such that $F \in H^{\delta}(D), \delta \in$ $\left(0, \frac{1}{1+\left[p^{-1}\right]}\right)$, where $\psi: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function of first order and minimal type.

Proof. According to Theorem A, for each $f \in B^{p}(D)$ we have

$$
\lim _{n \rightarrow \infty}\left|a_{n}(f) n^{-\left[p^{-1}\right]}\right|=0
$$

and therefore there exists a number $n_{0} \in N$ such that for all $n \geq n_{0}$ the following inequality is fulfilled:

$$
\forall n \geq n_{0}, \quad\left|a_{n}(f)\right|<n^{\left[p^{-1}\right]}
$$

Let us assume that $M=\max _{0 \leq k \leq n_{0}}\left|a_{k}(f)\right|$. Then it is clear that

$$
\begin{equation*}
\left|a_{n}(f)\right|<n^{\left[p^{-1}\right]}+M+1, \quad n=\overline{0, \infty} \tag{5}
\end{equation*}
$$

From inequality (5) it follows that the majorant function of f is

$$
F(z)=\sum_{n=0}^{\infty}\left(n^{\left[p^{-1}\right]}+M+1\right) z^{n}
$$

where $\psi(z)=z^{\left[p^{-1}\right]}+M+1$.

By Lemma 2 we have $F \in H^{\delta}(D), \quad \delta \in\left(0, \frac{1}{1+\left[p^{-1}\right]}\right)$. The theorem is proved.

Theorem 1 can be used for the integral representation of functions of the class $B^{p}(D)$.

As is known, for each analytic function $f: D \rightarrow \mathbb{C}$ there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ and a square-summable function $\varphi:[0,2 \pi] \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(\frac{1}{1-z e^{-i \theta}}\right) \varphi\left(e^{i \theta}\right) d \theta \tag{6}
\end{equation*}
$$

(see [6], Ch. II, $\S 9$). It is clear that g and φ are in general the functions depending on f.

Theorem 2. If $f \in B^{p}(D)$, then there exists a square summable function $\varphi:[0,2 \pi] \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(z)=\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \int_{0}^{2 \pi} \frac{\varphi\left(e^{i \theta}\right) d \theta}{\left(1-z e^{-i \theta}\right)^{\left[p^{-1}\right]+2}}, \quad z \in D . \tag{7}
\end{equation*}
$$

Proof. Indeed, multiplying both sides of (5) by n, we obtain

$$
\begin{equation*}
n\left|a_{n}(f)\right|<n^{\left[p^{-1}\right]+1}+(1+M) n . \tag{8}
\end{equation*}
$$

From inequality (8) it follows that there exists a natural number m such that $\forall n \geq m$ the following inequality is fulfilled:

$$
\begin{equation*}
n\left|a_{n}(f)\right|<(n+1)(n+2) \cdots\left(n+\left[p^{-1}\right]+1\right)=\psi(n) . \tag{9}
\end{equation*}
$$

Indeed, it is clear that

$$
\begin{equation*}
(n+1)^{1+\left[p^{-1}\right]}<\psi(n) . \tag{10}
\end{equation*}
$$

It is likewise clear that inequality (9) will be fulfilled if

$$
n^{1+\left[p^{-1}\right]}+(M+1) n<(n+1)^{1+\left[p^{-1}\right]},
$$

but the latter inequality will be fulfilled for all those $n \in N$ which satisfy the inequality

$$
(M+1) n<\left(1+\left[p^{-1}\right]\right) n^{\left[p^{-1}\right]},
$$

from which we obtain

$$
n>\left(\frac{M+1}{1+\left[p^{-1}\right]}\right)^{\frac{1}{\left[p^{-1}\right]-1}}=\beta
$$

Assume that $m=1+[\beta]$, then it is clear that inequality (9) will be fulfilled $\forall n>m$. Let us show that

$$
\varphi(z)=\sum_{n=0}^{\infty} \frac{a_{n}(f)}{\psi(n)} z^{n} \in H^{2}(D)
$$

Indeed, by inequality (9) we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|\frac{a_{n}(f)}{\psi(n)}\right|^{2} & =\sum_{n=0}^{m}\left|\frac{a_{n}(f)}{\psi(n)}\right|^{2}+\sum_{n=m+1}^{\infty}\left|\frac{a_{n}(f)}{\psi(n)}\right|^{2} \\
& <\sum_{n=0}^{m}\left|\frac{a_{n}(f)}{\psi(n)}\right|^{2}+\sum_{n=m+1}^{\infty} \frac{1}{n^{2}}<+\infty
\end{aligned}
$$

Therefore $\varphi \in H^{2}(D)$ and the angular boundary values of φ are squaresummable on $[0,2 \pi]$. If we assume that $\mu=1+\left[p^{-1}\right]$, then we also have that $z^{\mu} \varphi \in H^{2}(D)$. It also clearly follows that $\forall z \in D$

$$
\begin{equation*}
f(z)=\frac{d^{\mu}}{d z^{\mu}}\left(z^{\mu} \cdot \varphi(z)\right) \tag{11}
\end{equation*}
$$

By the Cauchy formula (see [6], Ch. II, §5) we have

$$
\begin{equation*}
z^{\mu} \varphi(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \mu t} \varphi\left(e^{i t}\right) d t}{1-z e^{-i t}} \tag{12}
\end{equation*}
$$

Using equalities (11) and (12) we obtain

$$
\begin{equation*}
f(z)=\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \int_{0}^{2 \pi} \frac{\varphi\left(e^{i t}\right) d t}{\left(1-z e^{-i t}\right)^{2+\left[p^{-1}\right]}} \tag{13}
\end{equation*}
$$

The theorem is proved.
By this representation and taking into account the definition of a fractional integral, we easily make sure that the following theorem is valid.

Theorem 3. If $f \in B^{p}(D)$, then a fractional integral of order $\alpha=$ $1+\left[p^{-1}\right]$ of this function belongs to $H^{2}(D)$, i.e. $f_{[\alpha]} \in H^{2}(D), \alpha=1+\left[p^{-1}\right]$.

So that $\left(\omega_{n}=\frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)}\right)_{n \geq 0}$ is a multiplier from the space $B^{p}(D)$ to the space $H^{2}(D)$.

Proof. Indeed, if $f \in B^{p}(D)$, then by Theorem 2 there exists a function $\varphi \in H^{2}(D)$ such that $\forall z \in D$

$$
f(z)=\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \int_{0}^{2 \pi} \frac{\varphi\left(e^{i t}\right) d t}{\left(1-z e^{-i t}\right)^{2+\left[p^{-1}\right]}}
$$

Applying the well-known binomial expansion, we obtain

$$
f(z)=\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \sum_{n=0}^{\infty}\left[\frac{\Gamma\left(n+\left[p^{-1}\right]\right)}{\Gamma(1+n)} \int_{0}^{2 \pi} \varphi\left(e^{i t}\right) e^{-i n t} d t\right] z^{n}
$$

wherefrom

$$
\begin{align*}
f_{[\alpha]}(z) & =\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \\
& \times\left\{\sum_{n=0}^{\infty}\left[\frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)} \cdot \frac{\Gamma\left(n+2+\left[p^{-1}\right]\right)}{\Gamma(1+n)} \int_{0}^{2 \pi} \varphi\left(e^{i t}\right) e^{-i n t} d t\right] z^{n}\right\} \\
& =\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \int_{0}^{2 \pi}\left[\sum_{n=0}^{\infty} z^{n} e^{-i n t}\right] \varphi\left(e^{i t}\right) d t \\
& =\frac{\left(1+\left[p^{-1}\right]\right)!}{2 \pi} \int_{0}^{2 \pi} \frac{\varphi\left(e^{i t}\right) d t}{1-z e^{-i t}}=\left(1+\left[p^{-1}\right]\right)!\varphi(z) \in H^{2} \tag{14}
\end{align*}
$$

Here we have used Fichtenholz' theorem (see [6], Ch. II, §5).
If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in B^{p}(D)$, then Theorem 3 implies that

$$
\left(\omega_{n}=\frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)}\right)_{n \geq 0}
$$

is a multiplier of inclusion from the space $B^{p}(D)$ to the space $H^{2}(D)$ or to the space l^{2}, thus

$$
\sum_{n=0}^{\infty}\left|\frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f)\right|^{2}<+\infty .
$$

Thus we show that the following statement is true.
Corollary 1. If $f(z)=\sum_{n=0}^{\infty} a_{n}(f) z^{n}$ and $f \in B^{p}(D)$, then

$$
\left(\beta_{n}=\frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f)\right)_{n \geq 0} \in l^{2} .
$$

Corollary 2. If $f(z)=\sum_{n=0}^{\infty} a_{n}(f) z^{n}$ and $f \in B^{p}(D)$, then

$$
\left(\gamma_{n}=\frac{\Gamma(1+n)}{n \cdot \Gamma\left(n+2+\left[p^{-1}\right]\right)}\right)_{n \geq 0}
$$

is a multiplier of inclusion from the space $B^{p}(D)$ to the space $l^{1}=l$.

Indeed, this follows from the following inequality

$$
\left|a_{n}(f)\right|\left|\gamma_{n}\right| \leq \frac{1}{n^{2}}+\left|\frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f)\right|^{2}
$$

Corollary 3. If $f \in B^{p}(D)$ and $\alpha=1+\left[p^{-1}\right]$, then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f_{[\alpha]}\left(e^{i t}\right) d t}{\left(1-z e^{-i t}\right)^{2+\left[p^{-1}\right]}} \tag{15}
\end{equation*}
$$

Indeed, if in formula (11) we use equality (??), then we obtain formula (15), where $f_{[\alpha]}\left(e^{i t}\right)=\lim _{z \rightarrow e^{i t}} f_{[\alpha]}(z)$.

Theorem 4. If $f \in B^{p}(D)$, then

1) $F(z)=\sum_{n=0}^{\infty} \frac{\Gamma(1+n)}{(n+1) \Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f) z^{n} \in A(D)$;
2) $F\left(e^{i \theta}\right)=\sum_{n=0}^{\infty} \frac{\Gamma(1+n)}{(n+1) \Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f) e^{i n \theta}$ is an absolutely continuous function on the interval $[0,2 \pi]$.

In other words, equality 1) means that $\left(\omega_{n}=\frac{\Gamma(1+n)}{(n+1) \Gamma\left(n+2+\left[p^{-1}\right]\right)}\right)_{n \geq 0}$ is a multiplier of inclusion from the space $B^{p}(D)$ to the space $A(D)$.

Proof of Theorem 4. Since $f \in B^{p}(D)$, by formula (15) we have

$$
f_{[\alpha]}(z)=\sum_{n=0}^{\infty} \frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f) z^{n} \in H^{2}(D) \subset H^{1}(D)
$$

therefore by Smirnov's theorem (see [6], Ch. II, $\S 4$), the primitive function of $f_{[\alpha]}$

$$
F(z)=\int_{0}^{z} f_{[\alpha]}(t) d t \in A(D) \quad \text { and } \quad F\left(e^{i \theta}\right)=\int_{0}^{e^{i \theta}} f_{[\alpha]}(t) d t
$$

is absolutely continuous on the interval $[0,2 \pi]$, but if we use term-by-term integration, we obtain

1) $\quad F(z)=\int_{0}^{z} f_{[\alpha]}(t) d t=\sum_{n=0}^{\infty} \frac{\Gamma(1+n)}{\Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f) \int_{0}^{z} t^{n} d t$

$$
=\sum_{n=0}^{\infty} \frac{\Gamma(1+n)}{(n+1) \Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f) z^{n}
$$

2) $\quad F\left(e^{i \theta}\right)=\sum_{n=0}^{\infty} \frac{\Gamma(1+n)}{(n+1) \Gamma\left(n+2+\left[p^{-1}\right]\right)} a_{n}(f) e^{i n \theta}$.

The theorem is proved.
For any value of the parameter $\alpha(\alpha \geq 0)$ let us consider the following functions
I. $C_{\alpha}(z, t)=\frac{\Gamma(1+\alpha)}{(1-\bar{t} z)^{\alpha+1}}, \quad t \in T, \quad z \in D$,
II. $H_{\alpha}(z, t)=2 C_{\alpha}(z, t)-C(0, t)=\Gamma(1+\alpha)\left[\frac{2}{(1-\bar{t} z)^{\alpha+1}}-1\right]$,
III. $P_{\alpha}(z, t)=\operatorname{Re} H_{\alpha}(z, t)=\Gamma(1+\alpha)\left[2 \operatorname{Re} \frac{1}{(1-\bar{t} z)^{\alpha+1}}-1\right]$.

If $\alpha=0$, then the functions

$$
\begin{gathered}
C(z, t)=C_{0}(z, t)=\frac{1}{1-\bar{t} z}=\frac{1}{1-z e^{-i \theta}}, \quad t=e^{i \theta}, \\
H(z, t)=H_{0}(z, t)=\frac{2}{1-\bar{t} z}-1=\frac{1+\bar{t} z}{1-\bar{t} z}=\frac{1+z e^{-i \theta}}{1-z e^{-i \theta}}, \\
P(z, t)=P_{0}(z, t)=\frac{1-|z|^{2}}{\left|1-z e^{-i \theta}\right|^{2}}=\frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta-\varphi)}, \quad z=r e^{i \varphi},
\end{gathered}
$$

represent respectively the Cauchy, Schwartz and Poisson kernels for the unit disk. Using the representation of the functions $C(z, t), H(z, t)$ and $P(z, t)$ in the form of series and the definition of a fractional integral of order α, it follows that

$$
\begin{gathered}
C(z, t)=\sum_{n=0}^{\infty} z^{n} e^{-i n \theta}, \\
H(z, t)=2 \sum_{n=0}^{\infty} z^{n} e^{-i n \theta}-1=1+2 \sum_{n=1}^{\infty} z^{n} e^{-i n \theta}, \\
P(z, t)=1+2 \sum_{n=1}^{\infty} r^{n} \cos n(\theta-\varphi)=\sum_{n=-\infty}^{+\infty} r^{|n|} e^{i n(\theta-\varphi)},
\end{gathered}
$$

where from

$$
\begin{align*}
& C_{\alpha}(z, t)=\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)} z^{n} e^{-i n \theta}, \tag{16}\\
& H_{\alpha}(z, t)=\Gamma(1+\alpha)+2 \sum_{n=1}^{\infty} \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)} z^{n} e^{-i n \theta}, \tag{17}\\
& P_{\alpha}(z, t)=\sum_{n=-\infty}^{+\infty} \frac{\Gamma(|n|+\alpha+1)}{\Gamma(1+|n|)} z^{|n|} e^{i n(\theta-\varphi)}, \tag{18}
\end{align*}
$$

These series are absolutely and uniformly convergent on every compact set of the disk D. They represent respectively fractional derivatives of order α of the Cauchy, Schwartz and Poisson kernels.

The following theorem is true.
Theorem 5. If $f(z)=\sum_{n=0}^{\infty} a_{n}(f) z^{n} \in B^{p}(D)$, then for $\alpha=1+\left[p^{-1}\right]$ the following integral representations are valid:

$$
\begin{align*}
& f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f_{[\alpha]}\left(e^{i \theta}\right) d \theta}{\left(1-z e^{-i \theta}\right)^{2+\left[p^{-1}\right]}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} C_{\alpha}\left(z, e^{i \theta}\right) f_{[\alpha]}\left(e^{i \theta}\right) d \theta \tag{19}\\
& f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} H_{\alpha}\left(z, e^{i \theta}\right) u_{\alpha}\left(e^{i \theta}\right) d \theta+i \operatorname{Im} f(0) \tag{20}\\
& f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{\alpha}\left(z, e^{i \theta}\right) f_{[\alpha]}\left(e^{i \theta}\right) d \theta \tag{21}
\end{align*}
$$

where $u_{\alpha}=\operatorname{Re} f_{[\alpha]}$.
Proof. Formula (19) will be proved by virtue of the proof of Theorem 3. Let us show that formulas (20) and (21) are valid. For $z=0$, from formula (19) we obtain

$$
\begin{equation*}
f(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{[\alpha]}\left(e^{i \theta}\right) d \theta \tag{22}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\bar{f}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f}_{[\alpha]}\left(e^{i \theta}\right) d \theta \tag{23}
\end{equation*}
$$

Using formulas (17) and (20) we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} H_{\alpha}\left(z, e^{i \theta}\right) u_{\alpha}\left(e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[2 C_{\alpha}\left(z, e^{i \theta}\right)-1\right] \\
& \quad \times \frac{f_{[\alpha]}\left(e^{i \theta}\right)+\bar{f}_{[\alpha]}\left(e^{i \theta}\right)}{2} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} C_{\alpha}\left(z, e^{i \theta}\right) f_{[\alpha]}\left(e^{i \theta}\right) d \theta \\
& \quad+\frac{1}{2 \pi} \int_{0}^{2 \pi} C_{\alpha}\left(z, e^{i \theta}\right) \bar{f}_{[\alpha]}\left(e^{i \theta}\right) d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{\alpha}\left(e^{i \theta}\right) d \theta \\
& \quad=f(z)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f}_{[\alpha]}\left(e^{i \theta}\right) d \theta-u_{\alpha}(0)=f(z)+\bar{f}(0)-\operatorname{Re} f(0) \\
& \quad=f(z)+\operatorname{Re} f(0)-i \operatorname{Im} f(0)-\operatorname{Re} f(0)=f(z)-i \operatorname{Im} f(0),
\end{aligned}
$$

from which we obtain

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} H_{\alpha}\left(z, e^{i \theta}\right) u_{\alpha}\left(e^{i \theta}\right) d \theta+i \operatorname{Im} f(0)
$$

Here we have used the equality

$$
\bar{f}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f}_{[\alpha]} C_{\alpha}\left(z, e^{i \theta}\right) d \theta .
$$

Indeed, if we use analyticity of the function $f_{[\alpha]}$, then by formula (16) and the Lebesgue theorem on bounded convergence, then we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f}_{[\alpha]}\left(e^{i \theta}\right) C_{\alpha}\left(z, e^{i \theta}\right) d \theta \\
= & \sum_{n=0}^{\infty}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f}_{[\alpha]}\left(e^{i \theta}\right) e^{i n \theta}\right] \frac{\Gamma(n+\alpha+1)}{\Gamma(1+n)} z^{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f}_{[\alpha]}\left(e^{i \theta}\right) d \theta=\bar{f}(0) .
\end{aligned}
$$

Let us now show the validity of formula (21). If we use the definition of a fractional integral of order α and that of a fractional derivative, then it is clear that for each function $f \in H(D)$ we will have

$$
\begin{equation*}
\left(f_{[\alpha]}\right)^{[\alpha]}(z)=\left(f^{[\alpha]}\right)_{[\alpha]}=f(z) . \tag{24}
\end{equation*}
$$

If $f \in B^{p}(D)$, then, as we know, $f_{[\alpha]} \in H^{2}(D)$, where $\alpha=1+\left[p^{-1}\right]$, therefore, by Fichtenholz' theorem (see [6], ch. II, §5), it will be represented by the Poisson integral

$$
f_{[\alpha]}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(z, e^{i \theta}\right) f_{[\alpha]}\left(e^{i \theta}\right) d \theta
$$

from which, using equality (24) and formula (17), we obtain

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{[\alpha]}\left(z, e^{i \theta}\right) f_{[\alpha]}\left(e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{\alpha}\left(z, e^{i \theta}\right) f_{[\alpha]}\left(e^{i \theta}\right) d \theta .
$$

Here we have used the equality

$$
P_{[\alpha]}\left(z, e^{i \theta}\right)=\sum_{n=-\infty}^{+\infty} \frac{\Gamma(|n|+\alpha+1)}{\Gamma(n+1)} z^{|n|} e^{-i n(\theta-\varphi)}=P_{\alpha}\left(z, e^{i \theta}\right), \quad z=r e^{i \varphi} .
$$

The theorem is proved.

References

1. K. Hofman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
2. P.L. Duren, Theory of H^{p} spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.
3. P. L. Duren, B. W. Romberg, A. L. Shields, Linear functionals of H^{p} spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32-60.
4. P. L. Duren, A. L. Shields, Properties of $H^{p}(0<p<1)$ and its contaning Banach space, Trans. Amer. Math. Soc. 141 (1969), 255-262.
5. W. K. Hayman, On the characteristic of functions meromorphic in the unit disk and of their integrals, Acta Math. 112 (1964), 181-214.
6. I.I. Privalov, Boundary properties of analytic functions(Russian), 2d ed. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950.
