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Abstract

The numerical solution of the axi-symmetric reaction-diffusion equation is obtained

by means of the second order accurate implicit finite difference schemes. The result

is applied to the model of oxygen diffusion at the brain capillary.
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1 Introduction

Let us consider a diffusion process accompanied by a chemical reaction at
the cylindrical area with the radius R0 and length l. We suppose that
this process is axi-symmetrical and the substance moves along the inner
boundary of the cylinder at a constant speed. In this case the process is
described by the axi-symmetric reaction-diffusion equation with the appro-
priate initial-boundary conditions [1]

∂U

∂t
= D

(
∆U +

1
r

∂U

∂r

)
− β(U, t), (β > 0),

where U is an unknown function and β is a velocity of the chemical reaction,
which is generally non-linear function of U and t. We consider this equation
in case of β = βt, where β is a constant.

Our purpose is to solve the corresponding initial boundary value prob-
lems for the reaction-diffusion equation by means of finite-difference schemes.

2 Setting of the problem

Let G be the rectangle {0 < x < l, r0 < r < R0 } , in the coordinate system
Oxr. This rectangle is a lateral cross-section of the cylindrical area.
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Consider the following
Problem 1. In the area QT = G × {0 < t < T}, find a function U

continuous on Q̄T , having second order derivatives in QT , and satisfying
the following equation

∂U

∂t
= D

(
∆U +

1
r

∂U

∂r

)
− βt, (β > 0), (1)

with the initial and boundary conditions

U(x, r, 0) = f(x, r, 0), (2)

U |S = f(x, r, t), t > 0,

where β is the velocity of the chemical reaction, U is the substance
concentration, D is a diffusion coefficient, S is the boundary of G,

f =
R2

0 − r2

R2
0 − r2

0

{
C0e

−V0
D

xe
V 2
0

D
t − C0V

2
0

β

D
t

}
. (3)

The function (3) for r = r0 is the solution of the following equation

∂f

∂t
= D

∂2f

∂x2
− β (4)

with the boundary condition

f |x=V0t,r=r0 = C0 − C0V
2
0

β

D
t.

The second condition of (2), (3) and (4) means that the substance is moving
along the boundary r = r0 at the constant velocity V0.

3 The algorithm

Let us consider more general equation

∂U∗

∂t
= D

(
∆U∗ +

1
r

∂U∗

∂r

)
+ f0(x, r, t), (5)

with the following boundary conditions

U∗(x, r, 0) = f1(x, r),

U∗(0, r, t) = f2(r, t), U∗(l, r, t) = f3(r, t),

U∗(x, r0, t) = f4(x, t), U∗(x,R0, t) = f5(x, t) = 0,
(6)
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where f0, f1, f2, f3, f4 are the given continuous functions.
The equation (5) is a parabolic type linear equation. A numerical treat-

ment of the parabolic type equations by means of different types of finite
difference schemes was considered by numerous authors [1–8]. We will con-
struct the new type of economical finite difference schemes for the equation
(5)with the boundary conditions (6) and consequently for the equation (1)
with the boundary conditions (2).

We divide the area of integration Q̄T = G × [0, T ] by the planes xi =
ih1, rj = jh2, tn = nτ ,(i = 0, 1, 2, . . . ,M, j = 0, 1, 2, . . . , N, n =
0, 1, 2, . . . L,) into cells, where h1 = l

M , h2 = R0−r0
N , τ = T

L .
Consequently, for the areas Ḡ and [0, T ] we introduce the following grids

ωh = {xi = ih1, rj = jh2, i = 0, 1, . . . , M, j = 0, 1, . . . , N},
ωτ = {tj = τ, j = 0, 1, . . . , L}.

For net functions and their difference derivatives we introduce the fol-
lowing notation

yx1 =
1
h1

(y(x + h1, r)− y(x, r),

yr2 =
1
h2

(y(x, r + h2)− y(x, r),

yx̄1 =
1
h1

(y(x, r)− y(x− h1, r)),

yr̄2 =
1
h2

(y(x, r)− y(x, r − h2)),

∆2y = y◦
r2

=
1
2
(yr2 + yr̄2),

∆11y = yxx̄, ∆22y = yrr̄,

y((n +
1
2
)τ) = yn+ 1

2 .

We introduce the following symmetric finite difference schemes

yn+ 1
2 − yn

1
2τ

= σD
[
∆11(yn+ 1

2 − yn)
]

+ D(∆11 + ∆22)yn

+ D
jh2

∆2y
n + f

(n+ 1
4
)τ

0 ,

(7)

yn+1 − yn+ 1
2

1
2τ

= σD
[
∆22y

n+1 − yn+ 1
2 )

]
+ D(∆11 + ∆22)yn+ 1

2

+
D

jh2
∆2y

n+ 1
2 + f

(n+ 3
4
)τ

0 ,

(8)
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−στD

2h2
1

y
n+ 1

2
i−1,j +

(
1 +

στD

h2
1

)
y

n+ 1
2

ij − στD

h2
1

y
n+ 1

2
i+1,j = Φ1,

−στD

2h2
2

yn+1
i,j−1 +

(
1 +

στD

h2
2

)
yn+1

ij − στD

2h2
2

yn+1
i,j+1 = Φ2,

(9)

y(xi, rj , 0) = U∗
h(x, r, 0) = f1n(xi, rj),

y(0, rj , tn) = f2n(rj , tn),

y(l, rj , tn) = f3n(rj , tn),

y(xi, r0, tn) = f4n(xi, tn),

y(xi, R0, tn) = f5n(xi, tn) = 0,

(10)

where yn
ij , f1n, . . . , f5n are the net functions of U∗, f1, . . . , f5 and Φ1

and Φ2 are given by

Φ1 = −στD

2h2
1

yn
i−1,j +

(
1 +

στD

2h2
1

)
yn

ij −
στD

2h2
1

yn
i+1,j

+
1
2
τD

(
yn

i−1,j − 2yn
ij + yn

i+1,j

h2
1

+
yn

i,j−1 − 2yn
ij + yn

i,j+1

h2
2

)

+
1
2

τD

jh2

yn
i,j−1 − yn

i,j+1

2h2
+

1
2
τf

(n+ 1
4
)τ

0 ,

Φ2 = −στD

2h2
2

y
n+ 1

2
i,j−1 +

(
1 +

στD

h2
2

)
y

n+ 1
2

ij − στD

2h2
2

y
n+ 1

2
i,j+1

+
1
2
τD


y

n+ 1
2

i−1,j − 2y
n+ 1

2
ij + y

n+ 1
2

i+1,j

h2
1

+
y

n+ 1
2

i,j−1 − 2y
n+ 1

2
ij + y

n+ 1
2

i,j+1

h2
2




+
1
2

τD

jh2

y
n+ 1

2
i,j+1 − y

n+ 1
2

i,j−1

2h2
+

1
2
τf

(n+ 3
4
)τ

0 .

The parameter σ is chosen from the condition σ ≥ c2n2

ν(n−1) .
The stability and complete approximation of these schemes were proved

in [8]. The accuracy is O(τ + h2), where τ and h are steps along time and
axis h = (h1, h2).

Putting f0 = f1 = f2 = f3 = f4 = f in (7), (8), (9), (10), we obtain the
schemes for the equation (1).

Below the example is given for the oxygen diffusion process in the human
brain.The numerical results are obtained using the programming language
C++ and the graph of this process is plotted.
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4 Numerical examples

Here we consider the oxygen diffusion process in the human brain capillary
across the radial direction. We admit that the capillary radius is about
r0 = 3µm [9,10, 11] and choose the Krogh model [11,12]. We consider
the capillary as a cylinder. Oxygen carried by RBC (red blood cell) is
diffused along the capillary endothelium to the cylindrical area with the
average radius R0 = 7µm of the brain tissue (the thickness of the capillary
endothelium is about1µm) [9,10, 11]. Simultaneously oxygen is solved in
the blood plasma, and consumed by the capillary endothelium and tissues.
The initial saturation of oxygen at the tissue is denoted by C∗. Our purpose
is estimation of the dynamics of saturation i.e. C − C∗.

We use the following data: the volume of the brain is 60sm3 and weight
14kg [9, 10], cerebral blood flow is about100mL per 100g of brain per
minute, arterial blood in the brain contains 19.6mL oxygen per 100mL
, the cerebral oxygen consumption is approximately 30mL per min [9,
10,11]. According to this C0 = 1.17pkL; β = 0.43pkL/sec. We also
take into the account capillary length 1mm; and velocity of the blood
V0 = 0.5(0.2)mm/sec.

l = 0.5mm; C0 = 1.17pkL; β = 0.43pkL/sec;

D = 0.13; V0 = 0.5(or0.2)mm/sec;

The dynamics of saturation is given in Fig. 1 and Fig. 2

Fig 1. T=0,3; V0=0,5; Fig 2. T=0,3; V0=0,2;

Note 1. The schemes (7), (8), (9), (10), could be applied also to the
case when to the write hand side of (1) the term αU , where α is a given
constant, is added.

Note 2. The schemes (7), (8), (9), (10), also could be applied to the
equation (1) with the discontinuous boundary conditions, when discontinu-
ities are of the first order. I.E. Let us consider the following problem
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Problem 2. In the area QT = G× {0 < t < T}, to find a function U
continuous on Q̄T , having second order derivatives in QT , and satisfies the
following equation

∂U

∂t
= D

(
∆U +

1
r

∂U

∂r

)
− βt, (β > 0),

with the initial and boundary conditions

U(x, r, 0) = C0(x, r), U |r=r0 = f(x, t),

U |S = 0, t > 0, (r 6= r0),

where

f =
R2

0 − r2

R2
0 − r2

0

{
C0e

−V0
D

xe
V 2
0

D
t − C0V

2
0

β

D
t

}
.

Putting the data from the Example 1. we have obtained the following
graphs

Fig 3. T=0,3; V0=0,5; Fig 4. T=0,3; V0=0,2;
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