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Abstract

In this paper the author presents the original approach to the synthesis of matrix-

based one-way function and key exchange algorithm via an open channel together with

the new digital signature algorithm, which is highly valuable because of its simultaneous

simplicity and steadiness.
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1 Introduction

One-way function, obtained by the author of this paper, was first published
in [1]. Studies, presented in [2-4], have shown that it’s possible to build large
sets of n×n sized commutative matrices over Galois fields GF(p) for fixed
natural values of n. The set is built as a cyclic multiplicative group of car-
dinality 2n − 1 with the specific generator-matrix. These sets of matrices
are used in construction of the one-way function and form cryptographic
algorithm of key exchange via an open channel as well as digital signa-
ture scheme. The first section of the present paper represents the one-way
function and key exchange cryptographic algorithm, the second section -
principally new digital signature algorithm.

2 Original one-way function and key exchange
algorithm

Reader may refer to [5,6] in order to see one-way functions, which are
already obtained by other authors. For example, the one-way function
ax ≡ y (mod p) (see [7]) is based on the impossibility of computing x-es for
given values of y (actually, the impossibility is real time-based for enough
high values of parameters p, x and a); at the same time, obviously, it’s
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easy to calculate y for given values of x. This fact is known as Discrete
Logarithm Problem.

Unlike Diffie-Hellman protocol, for the purpose of alternative approach
to one-way functions construction, the author uses n × n matrices over
Galois fields GF (p).

The idea of this alternative approach is as follows:
Let A be the set of commutative matrices (suppose that cardinality of

the set A is approximately 1030, i.e. card(A) = 2100, which equals to the
lowest steadiness level of contemporary cryptosystems).

Also let the matrices

A20
, A21

, . . . , A2n−1 (2.1)

create the basis of the set A, where A2i 6= A2j
, if i 6= j and A is the

generator-matrix.
Therefore, any matrix Ai of the set A is obtained as the linear combi-

nation of matrices (2.1):

Ai = c0A
20

+ c1A
21

+ · · ·+ cn−1A
2n−1, (2.2)

where ci ∈ GF (2).
In order to reach the minimal level of contemporary cryptographic

steadiness, we should consider only those sets of matrices, which cardi-
nality is above 2100. For example, if matrices are given over GF (2) field,
their size must be greater than 100× 100.

Now we’ll formulate our key exchange scheme:
Let the basis (2.1) or the generator-matrix A be public as well as the

vector v = (v1, . . . , vn) (vi ∈ GF (2)).
Imagine two people, Alice and Bob, forming a secret exchange key via

the public channel:

• Alice chooses the n × n sized secret matrix A1 ∈ A and sends the
following vector to Bob:

u1 = vA1; (2.3)

• Bob chooses the n×n sized secret matrix A2 ∈ A and sends Alice the
vector

u2 = vA2; (2.4)

• Alice computes K1 = u2A1;

• Bob computes K2 = u1A2.
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The crucial point is that K1 and K2 are the same secret exchange keys, as
K1 = v(A2A1) = v(A1A2) = K2 (the author uses here commutativity of
the set A).

3 New digital signature scheme

It is well-known that one-way functions are used to implement digital signa-
ture schemes. For example, ElGamal (see [8]) created the original efficient
digital signature algorithm using the one-way function of Diffie-Hellman
protocol (see [7]). All the same concerns the RSA algorithm (see [9]),
which is widely used for digital signature and authentication purposes.

In this paper the author proposes his original approach to digital sig-
nature algorithms construction, which is based on the one-way function,
presented in section 1 (see (2.1)-(2.4)).

The ElGamal scheme [8] is based on the one-way function of Diffie-
Hellman (see [7]):

ax ≡ y (mod p). (3.5)

Therefore, this scheme is based on the difficulty of calculating discrete
logarithms in finite fields.

RSA algorithm essentially uses the difficulty of prime factorization.
Cryptographic steadiness of our algorithm is based on the difficulty of

solving two problems in real time:
(i) Complexity of solution of linear equations systems, when quantity of
variables (n2 in our case) exceeds quantity of equations (n in our case);
(ii) Complexity of exhaustive search in sets of high-sized matrices (even
when sets have the structure of a multiplicative group).

The scheme of our digital signature algorithm is as follows:
Let’s consider the situation of information exchanging between two per-

sons, Alice and Bob. The main problem is to avoid the third person (for
example, Carol) to use this information in her favor.

Suppose that Alice sends information (concatenation ‖M‖‖r‖‖s‖) to
Bob, where M denotes text information, r and s are signatures. Then the
digital signature scheme is obtained in the following way:

Alice selects her secret key x ∈ Vn, i.e. x is a vector from n-dimensional
vector space (one uses the same secret key x only for the specific period of
time - that means that this x will be changed to different one as soon as this
period ends). After that Alice calculates y = xA0 open key and sends it to
Bob. Secret matrix A0 is derived from an open matrix A ∈ A by mixing
strings in this A matrix (phrase ”mixing strings” means permutation of
strings; matrix A0 is defined below). Then Alice selects another secret
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key k ∈ Vn (this key is also used for a certain period of time or even for
one session if needed) and calculates open signature r = kA0. Then she
computes her auxiliary secret signature s0 ∈ Vn using the following formula:

s0 = x + k + m, (3.6)

where m is the data, obtained by hashing with some appropriate hash
function H:

m = H(M). (3.7)

After this step everything is ready to compose the concatenation ‖M‖‖r‖‖s‖,
which Alice sends to Bob (for signature s we’ve got s = s0A0).

When Bob receives the concatenation, he performs the verification pro-
cedure s0 = x+k +m, which is identical to (3.2) (recall that m is obtained
from (3.3); x = yA−1

0 (y is an open key, A−1
0 is defined below); k = rA−1

0

and s0 = sA−1
0 ).

Now it’s quite reasonable to define A−1
0 matrix (to be more precise, we

should clarify, how the inverse matrix of A0 is obtained by Bob).
First we ought to notice that Bob can directly calculate the inverse

matrix of A, as this matrix is public. Then if Bob is aware of the exact
permutations of strings, made by Alice, he will undoubtedly obtain A−1

0 by
performing the same permutations of columns in A−1 (note the difference:
Alice makes permutation of strings in A and obtains A0, but for Bob ev-
erything is quite vice versa). It’s obvious to show, that acting in opposite
manner, Bob will definitely obtain the inverse matrix of A0.

But the following problem is still open: How to make Bob aware of
Alice’s permutations securely?

Of course, it’s possible to use other well-known cryptographic protocols
in order to transmit information about permutations made in A, but this
way will definitely hurt the elegance of actual work as well as it’s signifi-
cance. Therefore it’s quite necessary to invent the way of secure exchange
basing on our original key exchange algorithm and, fortunately, such re-
markable way exists:

Consider n × n sized matrix A. Alice and Bob exchange the secret
key K ∈ Vnm (m is the least natural number, such that n < 2m; Vnm

is nm-dimensional vector space over GF (2) field) via performing actions,
described above in our key exchange algorithm. Let this K be the vec-
tor (k1, k2, k3, . . . , knm). It’s obvious that we had to take nm-dimensional
vector K, because any permutation of n× n sized matrices looks like

(
1 2 . . . n
α1 α2 . . . αn

)
, (3.8)
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where each αi belongs to the set {1, 2, 3, . . . , n}. Therefore we need nm
bits (m bits for each) to convert all these n numbers (i.e. 1, 2, 3, . . . , n) to
binary form.

Let’s split the vector K into m-bit blocks (obviously, we’ll get n blocks),
each representing binary form of a certain number from {1, 2, 3, . . . , n}. As
a result, we’ve got:

K = (k1k2 . . . km, . . . , k(n−1)m+1k(n−1)m+2knm) ≡ (α1, α2, . . . , αn). (3.9)

We should notice, that it’s quite impossible to predict exact components
of K - thus they could be arbitrary ones and this fact yields two problems:
(i) How to make these m-bit blocks be different from each other?
(ii) How to make them be in range {1, 2, 3, . . . , n} (as we know, m-bit blocks
may represent all numbers from 0 up to 2m−1, which could be greater than
n in general)?

Well, solutions of these two problems are quite easy: (ii) issue could
be fixed if after converting m-bit blocks to numbers, we’ll calculate them
modulo n + 1; for (i) issue we can perform the following actions: if αi = αj

for i < j (including the case when αi = 0), we’ll set αi to be equal to
αi + 1 (if αi = 0 occurs) and αj - to be equal to αj + 1 (if the value αj + 1
already exists in the set {α1, . . . , αj−1}, we’ll repeat the last procedure until
αk 6= αl for every k 6= l, such that k, l ∈ {1, . . . , j}).

Therefore, our original digital signature algorithm is fully presented and
our goal is achieved!

The author objectively hopes that the above-described digital signature
algorithm will be put beside well-known algorithms of modern cryptography
in the nearest future because of its relatively huge steadiness and simplicity
at the same time!

In conclusion, we’d like to emphasize the following important, but obvi-
ous fact: it’s not possible to figure out the exact permutation of {1, 2, . . . , n}
for sufficiently big values of n in real time, because exhaustive (i.e. brute-
force) search requires O(n!) operations to be performed. Thus steadiness
is even above exponential in this case!
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