AN ERROR OF THE ITERATION METHOD FOR A TIMOSHENKO NONHOMOGENEOUS EQUATION

J. Peradze ${ }^{*, * *}$, Z. Tsiklauri**
Ivane Javakhishvili Tbilisi State University*
0186 University Street 2, Tbilisi, Georgia
Georgian Technical University**
77 Kostava Str., Tbilisi 0175, Tbilisi, Georgia

(Received: 19.02.10; accepted: 26.11.10)
Abstract

We consider the initial boundary value problem for an integro-differential equation describing the vibration of a beam. Using the Galerkin method and a symmetric difference scheme, the solution is approximates with respect to a spatial and a time variable. Thus the problem is reduced to a system of nonlinear discrete equations which is solved by the iteration method. The convergence of the method is proved.

Key words and phrases: Timoshenko beam equation, error of the iteration method.

AMS subject classification: 45K05, 65N06, 35K55.

1 Statement of Problem

Let us consider the following initial boundary value problem

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{4} u}{\partial x^{4}}-h \frac{\partial^{4} u}{\partial x^{2} \partial t^{2}}-\left(\lambda+\frac{1}{2 L} \int_{0}^{L}\left(\frac{\partial u}{\partial x}\right)^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=f(x, t), \tag{1.1}\\
0<x<L, \quad 0<t \leq T, \\
u(x, 0)=u^{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=u^{1}(x) \\
u(0, t)=u(L, t)=0, \quad \frac{\partial^{2} u}{\partial x^{2}}(0, t)=\frac{\partial^{2} u}{\partial x^{2}}(L, t)=0, \tag{1.2}\\
0 \leq x \leq L, \quad 0 \leq t \leq T
\end{gather*}
$$

where h and λ are some non-negative constants, $f(x, t), u^{0}(x)$ and $u^{1}(x)$ are the given functions, and $u(x, t)$ is the function to be defined. In the homogeneous case the equation (1.1) describing a dynamic beam was obtained by Henriques de Brito [1] and is a Timoshenko type equation [8].

Menzala and Zuazua [3], [4] arrived at the corresponding equation by making an additional assumption $\lambda=0$ and passing to the limit in the system of von Karman equations [2]

$$
\begin{gathered}
v_{t t}-\left(v_{x}+\frac{1}{2} w_{x}^{2}\right)_{x}=0 \\
w_{t t}+w_{x x x x}-h w_{x x t t}-\left[w_{x}\left(v_{x}+\frac{1}{2} w_{x}^{2}\right)\right]_{x}=0
\end{gathered}
$$

for a prismatic beam. In [5], the same authors write a generalized variant of the equation under discussion.

Note that the solvability of an operator equation, the particular case of which is the equation (1.1), is proved in [1].

In the present paper, we consider one numerical method of solution of the problem (1.1), (1.2). In [6], one can partly get acquainted with the bibliography on approximate algorithms for equations having nonlinearity analogous to that of (1.1).

2 The Algorithm

a. Galerkin method. A solution of the problem (1.1), (1.2) will be sought for as a finite sum

$$
\begin{equation*}
u_{n}(x, t)=\sum_{i=1}^{n} \frac{L}{i \pi} u_{n i}(t) \sin \frac{i \pi x}{L}, \tag{2.3}
\end{equation*}
$$

where the coefficients $u_{n i}(t)$ are defined by the Galerkin method from the system of ordinary differential equations

$$
\begin{align*}
& \left(h+\left(\frac{L}{i \pi}\right)^{2}\right) u_{n i}^{\prime \prime}(t)+ \\
& \quad+\left(\lambda+\left(\frac{i \pi}{L}\right)^{2}+\frac{1}{4} \sum_{j=1}^{n} u_{n j}^{2}(t)\right) u_{n i}(t)=f_{i}(t) \tag{2.4}\\
& \quad i=1,2, \ldots, n
\end{align*}
$$

with the initial conditions

$$
\begin{gather*}
u_{n i}(0)=u_{i}^{0}, \quad u_{n i}^{\prime}(0)=u_{i}^{1} \tag{2.5}\\
i=1,2, \ldots, n .
\end{gather*}
$$

We have used here the notation

$$
\begin{gathered}
f_{i}(t)=\frac{2}{i \pi} \int_{0}^{L} f(x, t) \sin \frac{i \pi x}{L} d x \\
u_{i}^{p}=\frac{2 i \pi}{L^{2}} \int_{0}^{L} u^{p}(x) \sin \frac{i \pi x}{L} d x, p=0,1, \quad i=1,2, \ldots, n .
\end{gathered}
$$

The problem of accuracy of this part of the algorithm is studied in [7] for the case $f(x, t)=0$.
b. Difference scheme. On the time interval $[0, T]$ we introduce the net with constant step $\tau=\frac{T}{M}$ and nodes $t_{m}=m \tau, m=0,1, \ldots, M$.

Denote by $u_{n i}^{m}, m=0,1, \ldots, M$, a difference analogue of the function $u_{n i}(t)$ from the expansion (2.3). To the system (2.4) we put into correspondence the symmetric implicit scheme

$$
\begin{gather*}
\left(h+\left(\frac{L}{i \pi}\right)^{2}\right) \frac{u_{n i}^{m+1}-2 u_{n i}^{m}+u_{n i}^{m-1}}{\tau^{2}}+\frac{1}{4} \sum_{p=0}^{1}\left[\lambda+\left(\frac{i \pi}{L}\right)^{2}+\right. \\
\left.+\frac{1}{8} \sum_{j=1}^{n}\left(\left(u_{n j}^{m+p}\right)^{2}+\left(u_{n j}^{m+p-1}\right)^{2}\right)\right]\left(u_{n i}^{m+p}+u_{n i}^{m+p-1}\right)= \\
=\frac{1}{4} \sum_{p=0}^{1}\left(f_{i}^{m+p}+f_{i}^{m+p-1}\right) \tag{2.6}\\
m=1,2, \ldots, M-1, \quad i=1,2, \ldots, n
\end{gather*}
$$

and, using (2.4), replace the relations (2.5) by

$$
\begin{align*}
u_{n i}^{0}= & u_{i}^{0} \\
u_{n i}^{1}= & u_{i}^{0}+\tau u_{i}^{1}+\frac{\tau^{2}}{2}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-1}\left[-\left(\lambda+\left(\frac{i \pi}{L}\right)^{2}+\right.\right. \tag{2.7}\\
& \left.\left.+\frac{1}{4} \sum_{j=1}^{n} \frac{\left(u_{n j}^{1}\right)^{2}+\left(u_{n j}^{0}\right)^{2}}{2}\right) \frac{u_{n i}^{1}+u_{n i}^{0}}{2}+\frac{f_{i}^{1}+f_{i}^{0}}{2}\right] \\
& i=0,1, \ldots, n .
\end{align*}
$$

Here we have used the notation $f_{i}^{m}=f_{i}\left(t_{m}\right), m=0,1, \ldots, M, i=$ $1,2, \ldots, n$.
c. Iteration method. Let us rewrite the system $(2.6),(2.7)$ in the form

$$
\begin{align*}
& u_{n i}^{0}=u_{i}^{0}, \quad i=1,2, \ldots, n \\
& \frac{4}{\tau^{2}}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right) u_{n i}^{m}+\left[\lambda+\left(\frac{i \pi}{L}\right)^{2}+\right. \\
& \left.\quad+\frac{1}{8} \sum_{j=1}^{n}\left(\left(u_{n j}^{m}\right)^{2}+\left(u_{n j}^{m-1}\right)^{2}\right)\right]\left(u_{n i}^{m}+u_{n i}^{m-1}\right)= \tag{2.8}\\
& =\frac{4}{\tau^{2}}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right) \sum_{p=0}^{2} \tau^{p} a_{n i, p}^{m}, \\
& \quad m=1,2, \ldots, M, \quad i=1,2, \ldots, n,
\end{align*}
$$

where

$$
\begin{gathered}
a_{n i, 0}^{1}=u_{i}^{0}, \quad a_{n i, 1}^{1}=u_{i}^{1}, \quad a_{n i, 2}^{1}=\frac{1}{4}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-1}\left(f_{i}^{1}+f_{i}^{0}\right) \\
a_{n i, 0}^{m}=2 u_{n i}^{m-1}-u_{n i}^{m-2}, \quad a_{n i, 1}^{m}=0 \\
a_{n i, 2}^{m}=-\frac{1}{4}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-1}\left[\lambda+\left(\frac{i \pi}{L}\right)^{2}+\right. \\
\left.+\frac{1}{8} \sum_{j=1}^{n}\left(\left(u_{n j}^{m-1}\right)^{2}+\left(u_{n j}^{m-2}\right)^{2}\right)\left(u_{n i}^{m-1}+u_{n i}^{m-2}\right)-\left(f_{i}^{m}+2 f_{i}^{m-1}+f_{i}^{m-2}\right)\right] \\
m=2,3, \ldots, M
\end{gathered}
$$

We split the system (2.8) into subsystems corresponding to each $m=$ $1,2, \ldots, M$ and will solve them individually by iteration

$$
\begin{align*}
& \frac{4}{\tau^{2}}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right) u_{n i, k+1}^{m}+ \\
& \quad+\left[\lambda+\left(\frac{i \pi}{L}\right)^{2}+\frac{1}{8}\left(\left(u_{n i, k+1}^{m}\right)^{2}+\left(u_{n i}^{m-1}\right)^{2}\right)+\right. \\
& \left.\quad+\frac{1}{8} \sum_{\substack{j=1 \\
j \neq i}}^{n}\left(\left(u_{n j, k}^{m}\right)^{2}+\left(u_{n j}^{m-1}\right)^{2}\right)\right]\left(u_{n i, k+1}^{m}+u_{n i}^{m-1}\right)= \tag{2.9}\\
& \quad=\frac{4}{\tau^{2}}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right) \sum_{p=0}^{2} \tau^{p} a_{n i, p}^{m} \\
& \quad k=0,1, \ldots, \quad i=1,2, \ldots, n .
\end{align*}
$$

Here $u_{n i, k+l}^{m}$ denotes the $(k+l)$-th approximation of $u_{n i}^{m}, l=0,1$.
Assume that we have already found $u_{n i}^{o}$ for $m=1$, and $u_{n i}^{m-2}$ and $u_{n i}^{m-1}$ for $m>1$. For the sake of simplicity, we neglect the error corresponding to the values of these functions.

Since (2.9) is a cubic equation with respect to $u_{n i, k+1}^{m}$, the latter can be written in the explicit form

$$
\begin{gather*}
u_{n i, k+1}^{m}=-\frac{1}{3} u_{n i}^{m-1}+\sum_{l=1}^{2}(-1)^{l+1}\left[(-1)^{l} s_{i}+\left(s_{i}^{2}+r_{i}^{3}\right)^{1 / 2}\right]^{1 / 3}, \tag{2.10}\\
k=0,1, \ldots, \quad i=1,2, \ldots, n,
\end{gather*}
$$

where

$$
\begin{align*}
r_{i}= & \frac{1}{3}\left[8\left(\lambda+\left(\frac{i \pi}{L}\right)^{2}\right)+\frac{2}{3}\left(u_{n i}^{m-1}\right)^{2}+\sum_{\substack{j=1 \\
j \neq i}}^{n}\left(\left(u_{n j, k}^{m}\right)^{2}+\right.\right. \\
& \left.\left.+\left(u_{n j}^{m-1}\right)^{2}\right)+\frac{32}{\tau^{2}}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)\right], \\
s_{i}= & \frac{1}{3} u_{n i}^{m-1}\left[8\left(\lambda+\left(\frac{i \pi}{L}\right)^{2}\right)+\frac{10}{9}\left(u_{n i}^{m-1}\right)^{2}+\sum_{\substack{j=1 \\
j \neq i}}^{n}\left(\left(u_{n j, k}^{m}\right)^{2}+\right.\right. \tag{2.11}\\
& \left.\left.+\left(u_{n j}^{m-1}\right)^{2}\right)\right]-\frac{16}{\tau^{2}}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)\left(\frac{1}{3} u_{n i}^{m-1}+\sum_{p=0}^{2} \tau^{p} a_{n i, p}^{m}\right) .
\end{align*}
$$

Thus the iteration method used here should be understood as counting by (2.10).

3 Error of the iteration method

Let us rewrite the system (2.10) as

$$
\begin{gather*}
u_{n i, k+1}^{m}=\varphi_{i}\left(u_{n 1, k}^{m}, u_{n 2, k}^{m}, \ldots, u_{n n, k}^{m}\right), \tag{3.12}\\
k=0,1, \ldots, i=1,2, \ldots, n .
\end{gather*}
$$

To estimate the error of the method (3.12) we need to consider the matrix-jacobian

$$
J=\left(\frac{\partial \varphi_{i}}{\partial u_{n j, k}^{m}}\right)_{i, j=1}^{n}
$$

Taking into account (2.10)-(3.12), we conclude that the principal diagonal of the matrix J consists of zeros

$$
\frac{\partial \varphi_{i}}{\partial u_{n i, k}^{m}}=0
$$

as to the nondiagonal elements, for them we have

$$
\begin{aligned}
\frac{\partial \varphi_{i}}{\partial u_{n j, k}^{m}} & =-\frac{1}{9} u_{n j, k}^{m} \sum_{l=1}^{2}\left[(-1)^{l} s_{i}+\left(s_{i}^{2}+r_{i}^{3}\right)^{\frac{1}{2}}\right]^{-\frac{2}{3}} \times \\
& \times\left[2 u_{n i}^{m-1}+(-1)^{l}\left(2 s_{i} u_{n i}^{m-1}+3 r_{i}^{2}\right)\left(s_{i}^{2}+r_{i}^{3}\right)^{-\frac{1}{2}}\right], \quad i \neq j
\end{aligned}
$$

Performing some transformations and using (2.11), we obtain

$$
\begin{align*}
\left|\frac{\partial \varphi_{i}}{\partial u_{n j, k}^{m}}\right| & =\frac{4}{9 r_{i}}\left|u_{n j, k}^{m}\right|\left(\left|u_{n i}^{m-1}\right|+\frac{\left|s_{i}\right|}{r_{i}}\right) \leq \\
& \leq \frac{\tau^{2}}{24}\left|u_{n j, k}^{m}\right|\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-1} \times \\
& \times\left\{\frac { \tau ^ { 2 } } { 3 2 } (h + (\frac { L } { i \pi }) ^ { 2 }) ^ { - 1 } | u _ { n i } ^ { m - 1 } | \left[8\left(\lambda+\left(\frac{i \pi}{L}\right)^{2}\right)+\right.\right. \\
& \left.+\sum_{\substack{l=1 \\
l \neq i}}^{n}\left(\left(u_{n l, k}^{m}\right)^{2}+\left(u_{n l}^{m-1}\right)^{2}\right)+\frac{10}{9}\left(u_{n i}^{m-1}\right)^{2}\right]+ \\
& \left.+\frac{7}{6}\left|u_{n i}^{m-1}\right|+\sum_{p=0}^{2} \tau^{p}\left|a_{n i, p}^{m}\right|\right\} \tag{3.13}
\end{align*}
$$

Let us apply the principle of compressed mappings. We define the vector and matrix norms by the expressions $\sum_{i=1}^{n}\left|v_{i}\right|$ and $\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|m_{i j}\right|$, respectively, for $v=\left(v_{i}\right)_{i=1}^{n}$, and $M=\left(m_{i j}\right)_{i, j=1}^{n}$.

Let in the vector domain

$$
\begin{equation*}
\left\{\left.\left(u_{n i}\right)_{i=1}^{n} \in R^{n}\left|\sum_{i=1}^{n}\right| u_{n i}-u_{n i, 0}^{m}\left|\leq \frac{1}{1-q} \sum_{i=1}^{n}\right| u_{n i, 1}^{m}-u_{n i, 0}^{m} \right\rvert\,\right\} \tag{3.14}
\end{equation*}
$$

the inequality

$$
\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|\frac{\partial \varphi_{i}}{\partial u_{n j, k}^{m}}\right|<q
$$

be fulfilled for $q, 0<q<1$. As follows from (3.13) and (3.14), for this it suffices that the relation

$$
\begin{equation*}
\alpha \tau^{4}+\beta \tau^{2}-\gamma \leq 0 \tag{3.15}
\end{equation*}
$$

holds, where the following notation is used

$$
\begin{aligned}
\alpha= & \sum_{i=1}^{n}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-2}\left\{\lambda+\left(\frac{i \pi}{L}\right)^{2}+\frac{1}{8}\left[\sum _ { j = 1 } ^ { n } \left(\left|u_{n i, 0}^{m}\right|+\right.\right.\right. \\
& \left.\left.\left.+\frac{1}{1-q}\left|u_{n i, 1}^{m}-u_{n i, 0}^{m}\right|\right)\right]^{2}+\frac{5}{36} \sum_{j=1}^{n}\left(u_{n j}^{m-1}\right)^{2}\right\}\left|u_{n i}^{m-1}\right|+ \\
& +4 \sum_{i=1}^{n}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-1}\left(\frac{\varepsilon}{4}\left|a_{n i, 1}^{m}\right|+\left|a_{n i, 2}^{m}\right|\right), \\
\beta= & \sum_{i=1}^{n}\left(h+\left(\frac{L}{i \pi}\right)^{2}\right)^{-1}\left(\frac{14}{3}\left|u_{n i}^{m-1}\right|+\left|a_{n i, 0}^{m}\right|+\frac{1}{\varepsilon}\left|a_{n i, 1}^{m}\right|\right), \\
\gamma= & 96 q\left[\sum_{i=1}^{n}\left(\left|u_{n i, 0}^{m}\right|+\frac{1}{1-q}\left|u_{n i, 1}^{m}-u_{n i, 0}^{m}\right|\right)\right]^{-1}
\end{aligned}
$$

and ε is an arbitrary positive number.
The relation (3.15) will be fulfilled if the set of the grid satisfies the inequality

$$
\tau \leq\left[\frac{1}{2 \alpha}\left(-\beta+\left(\beta^{2}+4 \alpha \gamma\right)^{\frac{1}{2}}\right)\right]^{\frac{1}{2}}
$$

In that case, in the domain (3.14) there exists a unique vector $\left(u_{n i}^{m}\right)_{i=1}^{n}$ such that $u_{n i}^{m}, i=1,2, \ldots, n$, are a solution of the system (2.8), the sequence $u_{n i, k}^{m}$ of the process (2.10) tends to $u_{n i}^{m}, i=1,2, \ldots, n$, as $k \rightarrow \infty$, whereas the method error decreases at a geometrical progression rate

$$
\begin{gathered}
\sum_{i=1}^{n}\left|u_{n i, k}^{m}-u_{n i}^{m}\right| \leq \frac{q^{k}}{1-q} \sum_{i=1}^{n}\left|u_{n i, 1}^{m}-u_{n i, 0}^{m}\right|, \\
k=0,1, \ldots
\end{gathered}
$$

Acknowledgements

The first author J. Peradze acknowledges a support under the grant 7353 of Estonian Science Foundation.

References

1. Henriques de Brito E., A nonlinear hyperbolic equation. Internat. J. Math. Math. Sci. 3 (1980), no. 3, 505-520.
2. Lagnese J. E., Leugering G., Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differential Equations 91 (1991), no. 2, 355-388.
3. Menzala G. P., Zuazua E., The beam equation as a limit of a 1-D nonlinear von Karman model. Appl. Math. Lett. 12 (1999), no. 1, 47-52.
4. Menzala G. P., Zuazua E., Timoshenko's beam equation as limit of a nonlinear one-dimensional von Karman system. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 4, 855-875.
5. Menzala G.P., Zuazua E., On a one-dimensional version of the dynamical Marguerre-Vlasov system. Dedicated to Constantine Dafermos on his 60 th birthday. Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), no. $3,303-319$.
6. Peradze J., An approximate algorithm for a Kirchhoff wave equation. SIAM J. Numer. Anal. 47 (2009), no. 3, 2243-2268.
7. Peradze J., On the accuracy of the Galerkin method for onr nonlinear beam equation. Math. Meth. Appl. Sci. 34 (2011), 1725-1732.
8. Timoshenko S. H., Young D. H., Weaver W., Vibration problems on engineering. John Willey \& Sons, 1974.
