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Abstract

In the present work the high order accuracy rational splitting for cosine operator

function is constructed. On the basis of this formula, the fourth order of accuracy

decomposition scheme for homogeneous abstract hyperbolic equation with operator

A is constructed. This operator is a self-adjoint, positive definite operator and is

represented as a sum of the same type operators. Error of approximate solution is

estimated. In the work a method for constructing any order accuracy splitting formula

for cosine operator function is also introduced.
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1 Introduction

Let A is a self-adjoint, positive definite operator and be represented as a
finite sum of the same kind of operators. In the present work the high order
accuracy rational splitting for cos

(
τA1/2

)
operator function (obviously, ac-

curacy of the splitting formula is understand with respect to parameter τ)
is constructed. Our goal is also to introduce the method for constructing
2p + 2 order accuracy splitting formula on the basis of 2p order accuracy
formulas. Finally, on the basis of these formulas, we aim to construct high
order accuracy decomposition schemes for abstract hyperbolic equation.

As is known, the solution of Cauchy problem for an abstract hyperbolic
equation can be given by means of sine and cosine operator functions, where
square root from the main operator is included in the argument. Using this
formula, for the equally distanced values of time variable, the precise three-
layer semi-discrete scheme can be constructed whose transition operator is
a cosine operator function. On the basis of this relation we can obtain
decomposition scheme for an abstract hyperbolic equation. Of course, for
this purpose it is necessary to replace cosine operator function by splitting
formula. In the present work, using the fourth order of accuracy splitting
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formula for cosine operator function, decomposition scheme is constructed
and error for approximate solution is estimated.

Qin Sheng, Voss David A. and Khaliq Abdul Q. M. in the work [10] con-
structed the second order accuracy decomposition scheme for sin-Gordon
equation. It should be pointed out that these authors have constructed the
schemes using exponential splitting and only then they have obtained the
corresponding rational splitting using Pade approximation.

Let us note that, using the above-mentioned precise three-layer scheme,
Baker G. A., Dougalis V. A. and Serbin S.M. (see [1]) for the first time con-
structed high order accuracy unsplitted scheme for an abstract hyperbolic
equation for solution of Cauchy problem.

In [8] we have constructed the fourth order accuracy decomposition
scheme for a homogeneous hyperbolic equation in two-dimensional case. Let
us note that the scheme constructed in [8] does not represent a particular
case of the scheme given in the present paper.

Let us note that high order precision decomposition schemes for parabolic
equations constructed in the works [2],[3],[4] and [9] are also based on the
splitting of the solving operator (semigroup).

2 Rational splitting for cosine operator function

Let A be a self-adjoint, positive definite (generally unbounded) operator
in the Hilbert space H, with domain D (A) everywhere dense in H. Let
A = A1 + A2 + ... + Am, where Aj (j = 1, ..., m) are self-adjoint positive
definite operators. Our aim is to construct high order accuracy rational
splitting for the operator function cos

(
τA1/2

)
, τ > 0 .

As it is known cos
(
tA1/2

)
operator function is defined by Euler gener-

alization formulas:

cos
(
tA1/2

)
=

1
2

(
e−it

√
A + eit

√
A
)

, (1)

where
{

e±it
√

A
}

is a unitary group of operators generated by operators(±iA1/2
)
.

It is proved that there exists limit lim
n→∞

(
I ± t

n iA1/2
)−n

ϕ (I is a unit

operator), for any ϕ ∈ H-and this limit is defined as e±it
√

Aϕ (see [5],
Chapter IX).
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Let us consider the following rational splitting:

V (τ) =
1

m + 2
[V0 (τ ; A1, ..., Am) + V0 (τ ; Am, ..., A1)

+
m∑

j=1

(
I + λτ2Aj

)−1


 , (2)

V0 (τ ; A1, ..., Am) =
(
I + ατ2A1

)−1
...

(
I + ατ2Am

)−1

× (
I + ατ2Am

)−1
...

(
I + ατ2A1

)−1
,

where λ = m+2
2 −

√
m+2√

6
, α =

√
m+2

4
√

6
± i

√
m+2
96 + λ2

2 , α is a conjugate of
α.

Let us show that (2) formula gives splitting of cosine operator function
with locally sixth order of accuracy.

Let us introduce the following notation:

‖ϕ‖A = ‖A1ϕ‖+ ... + ‖Amϕ‖ , ϕ ∈ D (A) ,

‖ϕ‖A2 =
m∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D
(
A2

)
.

Analogously is defined ‖ϕ‖Ak (k > 2).
According to formula (1) the following expansion is valid for cosine

operator function:

cos
(
τA1/2

)
=

k∑

i=0

(−1)i τ2i

(2i)!
Ai + Rk (τ, A) , (3)

where Rk (τ,A) is a residual member, for which the following estimate holds:

‖Rk (τ,A) ϕ‖ ≤ 1
(2k + 2)!

τ2k+2 ‖ϕ‖Ak+1 , ϕ ∈ D
(
Ak+1

)
. (4)

Using the method of induction, the following expansion can be obtained:

(
I + τ2A

)−1 =
k∑

i=0

(−1)i τ2iAi + R̃k (τ,A) , (5)

where
R̃k (τ,A) = (−1)k+1 τ2k+2

(
I + τ2A

)−1
Ak+1. (6)

It is obvious that for the residual member of R̃k (τ, A) the following estimate
holds: ∥∥∥R̃k (τ,A) ϕ

∥∥∥ ≤ τ2k+2 ‖ϕ‖Ak+1 , ϕ ∈ D
(
Ak+1

)
. (7)
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We expand the operator V (τ) from the right to the left using the for-
mula (5) in the way that each residual member be of sixth order with
respect to τ . Therefore we obtain:

V (τ) =
1

m + 2
[V0 (τ ; A1, ..., Am) + V0 (τ ; Am, ..., A1)

+
m∑

j=1

(
I + λτ2Aj

)−1




=
1

m + 2

[
(m + 2) I + τ2

m∑

i=1

(2 (α + α) + λ) Ai

+τ4

(
m∑

i=1

(
2

(
α2 + αα + α2

)
+ λ2

)
A2

i

+
m∑

i,j=1,i6=j

(α + α)2 AiAj





 + R̃ (τ) , (8)

where for R̃ (τ), according to (7), the following estimate holds:
∥∥∥R̃ (τ) ϕ

∥∥∥ ≤ cτ6 ‖ϕ‖A3 , ϕ ∈ D
(
A3

)
. (9)

Parameters α, α and λ satisfy the following equalities:

2 (α + α) + λ =
m + 2

2
,

2
(
α2 + αα + α2

)
+ λ2 =

m + 2
24

,

(α + α)2 =
m + 2

24
.

Taking into account these equalities, from (8) we obtain:

V (τ) = I − τ2

2
A +

τ4

24
A2 + R̃ (τ) . (10)

Due to (3), we have:

cos
(
τA1/2

)
= I − τ2

2
A +

τ4

24
A2 + R2 (τ, A) . (11)

From (10) and (11), taking into account inequalities (4) and (9), we
obtain:

∥∥∥
(
cos

(
τA1/2

)
− V (τ)

)
ϕ
∥∥∥ ≤ cτ6 ‖ϕ‖A3 , ϕ ∈ D

(
A3

)
. (12)
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3 Decomposition scheme for homogeneous
abstract hyperbolic equation

Let us consider the Cauchy problem for an abstract hyperbolic equation in
the Hilbert space H:

d2u(t)
dt2

+ Au (t) = 0, t ∈ [0, T ] , (1)

u (0) = ϕ0,
du (0)

dt
= ϕ1, (2)

where A is a self-adjoint (A does not depend on t), positive definite (gen-
erally unbounded) operator with domain D (A) everywhere dense in H,
D (A) = H, A = A∗ and

(Au, u) ≥ a ‖u‖2 , ∀u ∈ D (A) , a = const > 0,

where ‖·‖ and (·, ·) define the norm and scalar product in H, respectively;
ϕ0 and ϕ1 are the given vectors from H; u (t) is a continuous, twice con-
tinuously differentiable, sought function with values in H.

It is well-known that if ϕ0 ∈ D (A) , ϕ1 ∈ D
(
A1/2

)
then there exists

such twice continuously differentiable function u (t), that satisfies equation
(1) and initial conditions (2) (see [6], Chapter III, \1 ). In this case the
solution is given by the following formula:

u(t) = cos
(
tA1/2

)
ϕ0 + A−1/2 sin

(
tA1/2

)
ϕ1, (3)

where operator functions cos
(
tA1/2

)
and sin

(
tA1/2

)
are defined by Euler

generalization formulas.
Let A = A1 + A2 + ... + Am, where Aj (j = 1, ...,m) are self-adjoint

positive definite operators.
Let us introduce the grid:

ωτ =
{

tk = kτ, k = 0, 1, ...n, n > 1, τ =
T

n

}
.

From the formula (3), the following three-point recurrent relation can be
easily obtained:

u(tk+1) = 2 cos
(
τA1/2

)
u(tk)− u (tk−1) . (4)

If in this formula we replace cosine operator function by rational splitting
obtained in the previous section, we receive the following decomposition
scheme

uk+1 = 2V (τ) uk − uk−1, k = 1, ..., n− 1, (5)
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where

u0 = ϕ0, u1 = V (τ) ϕ0 + τV

(
τ√
3

)
ϕ1. (6)

We declare function uk as an approximation of u (t) in the node t = tk.

4 Theorem on error estimate for approximate
solution

The following theorem takes place (everywhere below c denotes a positive
constant).

Theorem 4.1 Let the following conditions be fulfilled:

(a) λ = m+2
2 −

√
m+2√

6
, α =

√
m+2

4
√

6
± i

√
m+2
96 + λ2

2 ;
(b) A, Aj (j = 1, ..., m) are self-adjoint positive definite (generally un-

bounded) operators;
(c) ϕ0 ∈ D

(
A3

)
, ϕ1 ∈ D

(
A2+1/2

)
;

Then for error of the approximate solution obtained by scheme (5)-(6),
the following estimate holds:

‖u(tk)− uk‖ ≤ cντ4

(
‖ϕ1‖A2 + τ ‖ϕ0‖A3 + tk max

1≤i≤k
‖u (ti)‖A3

)
,

where ν =
(
1 + τ2ν0

)
/
√

ν0, ν0 is the minimum lower boundary of operators
Aj (j = 1, ..., m) .

Proof. Let us note that if ϕ0 ∈ D
(
A3

)
and ϕ1 ∈ D

(
A2+1/2

)
, then from

formula (3) it automatically follows that u (t) ∈ D
(
A3

)
for every t ∈ [0, T ] .

We denote an error of the approximate solution at t = tk by zk, zk =
u (tk)− uk. Due to formulas (4) and (5), we have:

zk+1 = 2V (τ) zk − zk−1 + 2R (τ) u (tk) , (7)

where
R (τ) = cos

(
τA1/2

)
− V (τ) . (8)

From (7), using induction we obtain:

zk+1 = Ũk (L) z1 − Ũk−1 (L) z0 +
k∑

i=1

Ũk−i (L)R (τ) u (ti)

= Ũk−i (L) z1 +
k∑

i=1

Ũk−i (L) R (τ) u (ti) , L = 2V (τ) , (9)
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where Ũk(L) operator-polynomials satisfy the following recurrent relation:

Ũk(L) = LŨk−1(L)− Ũk−2(L), (10)
Ũ0(L) = I, Ũ−1(L) = 0.

Let us consider the scalar polynomial Ũk(x), corresponding to the operator-
polynomial Ũk(L) . It is important that Uk(x) = Ũk(2x) represent Cheby-
shev polynomials of second kind, for which the following well-known repre-
sentation is valid (see, e. g., [11]):

Uk(x) =
sin ((k + 1) arccosx)

sin (arccosx)
, x ∈]− 1, 1[.

From here it follows:

Ũk(x) =
sin

(
(k + 1) arccos x

2

)

sin
(
arccos x

2

) , x ∈]− 2, 2[. (11)

Finally on the interval ]− 1, 1[ we obtain the estimate, which is analogous
to the well-known estimate for classical Chebyshev polynomial:

∣∣∣Ũk(x)
∣∣∣ ≤ 2√

4− x2
, x ∈]− 2, 2[. (12)

Let us estimate the norm of the operator
(
I + ατ2Ai

)−1. As, Ai is self-
adjoint and positive definite operator, we have:

∥∥∥
(
I + ατ2Ai

)−1
∥∥∥ = sup

x∈[ν0,+∞)

1
|1 + ατ2x|

≤
(

1 +
√

m + 2
4
√

6
τ2ν0

)−1

. (13)

Analogously, we obtain:
∥∥∥
(
I + ατ2Ai

)−1
∥∥∥ ≤

(
1 +

√
m + 2
4
√

6
τ2ν0

)−1

, (14)
∥∥∥
(
I + λτ2Ai

)−1
∥∥∥ ≤ 1

1 + λτ2ν0
≤ 1

1 + τ2ν0
. (15)

From the estimates (13) and (14) it follows:

‖V0 (τ ;A1, ..., Am)‖ ≤
(

1 +
√

m + 2
4
√

6
τ2ν0

)−2m

≤
(

1 +
m
√

m + 2
2
√

6
τ2ν0

)−1

≤
(

1 +
√

6
3

τ2ν0

)−1

. (16)
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Similarly we obtain:

‖V0 (τ ;Am, ..., A1)‖ ≤
(

1 +
√

6
3

τ2ν0

)−1

. (17)

From (2), taking into account (16) and (17), we obtain:

‖L‖ ≤ 2
m + 2

(
2

1 +
√

6
3 τ2ν0

+
m

1 + τ2ν0

)
≤ 2

1 +
√

6
3 τ2ν0

. (18)

As L is self-adjoint operator, from (18) it follows:

Sp (L) ⊂ [−ν1, ν1] , (19)

where ν1 = 2/
(
1 +

√
6

3 τ2ν0

)
.

Let us estimate the norm of the operator τŨk (L). As it is known, when
the argument is a self-adjoint bounded operator, the norm of the operator
polynomial is equal to the C-norm of the corresponding scalar polynomial
on the spectrum (see, e.g., [7] Chapter VII). Due to this fact, from (12),
taking into account (19), we obtain

τ
∥∥∥Ũk (L)

∥∥∥ = τ max
x∈Sp(L)

∣∣∣Ũk (x)
∣∣∣ ≤ τ max

x∈[−ν1,ν1]

2√
4− x2

=
2τ√
4− ν2

1

≤ ν. (20)

For z1 we have:

z1 = u (t1)− u1 = R (τ) ϕ0 +
(

A−1/2 sin
(
τA1/2

)
− τV

(
τ√
3

))
ϕ1. (21)

Analogously to the estimate (12), we obtain:
∥∥∥∥
(

A−1/2 sin
(
τA1/2

)
− τV

(
τ√
3

))
ϕ1

∥∥∥∥ ≤ cτ5 ‖ϕ1‖A2 , ϕ ∈ D
(
A2

)
.

(22)
From (21), taking into account (12) and (22) the following estimate can

be obtained:
‖z1‖ ≤ cτ5 (‖ϕ1‖A2 + τ ‖ϕ0‖A3) . (23)

From the formula (9), taking into account inequalities (12), (23) and
(20) we obtain the sought estimate.
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5 Arbitrary order accuracy splitting for
cosine operator function

In this section we introduce an algorithm, which allows us to construct
any order accuracy splitting formula for cosine operator function. Main
idea of the algorithm consists in the following: we take any 2p (p > 1 is
natural power) order accuracy splitting formula, and using this formula
we construct new 2p + 2 order accuracy splitting formula. This idea, for
exponential operator function, for the first time was used by us to obtain
the third and fourth order accuracy splitting formulas ((see [4])), but for the
general case this idea was developed by Castella F., Chartier P., Descombes
S., and Vilmart G. (see [2]). For cosine operator function we will use the
algorithm which is similar to the algorithm used by these authors.

Let U (τ) represent 2p order of accuracy splitting formula for cosine
operator function. In the expansion of this formula even powers of τ will
be included. Thus, the following representation is valid:

cos
(
τA1/2

)
= U (τ) + τ2pF (A1, A2..., Am) + R (τ) , (24)

where F (A1, A2..., Am) is a homogeneous operator function of its argu-
ments; Residual member R (τ) is of O

(
τ2p+2

)
order, more precisely ‖R (τ) ϕ‖ =

O
(
τ2p+2

)
, ϕ ∈ D

(
Ap+1

)
.

It is clear that the summary formula for cosine operator function is
valid. Using this formula we obtain:

1
2

cos
(
τA1/2

)
=

1
2

cos
(
(γ1 + γ2) τA1/2

)

= cos
(
γ1τA1/2

)
cos

(
γ2τA1/2

)

−1
2

cos
(
(γ1 − γ2) τA1/2

)
, (25)

where γ1 + γ2 = 1.
From the formula (25), using (24) we obtain:

1
2

cos
(
τA1/2

)
=

1
2

cos
(
(γ1 + γ2) τA1/2

)

=
(
U (γ1τ) + (τ2pγ2p

1 )F
)(

U (γ2τ) + (τ2pγ2p
2 )F

)

−1
2

(
U ((γ1 − γ2) τ) + τ2p (γ1 − γ2)

2p F
)

+ R1(τ)

= U (γ1τ) U (γ2τ)− 1
2
U ((γ1 − γ2) τ)

+τ2p

(
γ2p
2 U (γ1τ) F + γ2p

1 FU (γ2τ)− 1
2

(γ1 − γ2)
2p F

)

+R1(τ), (26)
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where the residual member R1(τ) is of order O
(
τ2p+2

)
.

As U(τ) represents an expansion of cosine operator function, it is clear
that the first term will be identity operator, and other terms will have even
powers of τ as multipliers. According to this, we obtain:

γ2p
2 U (γ1τ) F + γ2p

1 FU (γ2τ)− 1
2

(γ1 − γ2)
2p F

=
(

γ2p
2 + γ2p

1 − 1
2

(γ1 − γ2)
2p

)
F + R2(τ), (27)

where the residual member R2(τ) is of order O
(
τ2

)
.

It is clear that, if the parameter γ1da γ2 satisfies condition:

γ2p
2 + γ2p

1 − 1
2

(γ1 − γ2)
2p = 0,

then from (26) according to (27) we obtain:

1
2

cos
(
τA1/2

)
= U (γ1τ) U (γ2τ)− 1

2
U ((γ1 − γ2) τ) + R̃(τ),

where the residual member R̃(τ) is of order O
(
τ2p+2

)
.

Finally we obtain that the formula

Ũ (τ) = U (γ1τ) U (γ2τ)− 1
2
U ((γ1 − γ2) τ) ,

where parameters γ1da γ2 satisfy conditions:

γ1 + γ2 = 1,

γ2p
2 + γ2p

1 − 1
2

(γ1 − γ2)
2p = 0, (28)

represents 2p + 2 order of accuracy splitting formulas for cosine operator
function.

If we insert γ2 = 1− α, α = γ1 in equation (27), we obtain:

(1− α)2p + α2p − 1
2

(2α− 1)2p = 0. (29)

Easily we can show that the equation (29) (p > 1) has a real solution.
This fact is very important for the case, when A is self-adjoint positive
definite operator. As it is known, for this case Euler’s generalized formula
(1) is valid. It is clear that this formula is not valid for complex t.

After this remark let us return to equation (29). Let us define the
right hand side of this equation by ψ(α). Using simple transformations we
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obtain:

ψ(1) =
1
2

> 0,

ψ(2) = 1 + 22p − 1
2
32p

= 1 +

(
1− 1

2

(
3
2

)2p
)

22p ≤ −1, p > 1.

Hence it follows that equation (29) has at least one real solution on the
interval [1, 2].
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