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Abstract

Certain quadrature processes are considered for integrals with kernels (t − z)−1,

(t− z)−2 along piece-wise smooth closed contours, bounding finite or infinite domain

D involving z. Uniform estimates are given for the corresponding remainder terms

namely for the case of arbitrary closeness of z to the boundary of the domain.
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1 Introduction

The necessity of calculation of Cauchy type integrals mostly arises at nu-
merical solution of a number of problems, usually connected with boundary
problems of the theory of analytical functions of complex variable, both in
the case of finite and infinite domains. To such problems belong, e.g. clas-
sical and modified problems (see [1,2]) of the theory of harmonic functions,
problems of the plane theory of elasticity and other similar problems, which
are reduced to boundary integral equations both with regular and singular
kernels. Usually the final step at solving such problems, assuming that
the solution to the corresponding boundary integral equation is already
found, consists in computation of Cauchy type integrals and their deriva-
tives (whose densities are connected in a known way with the solution of
the mentioned integral equations). Such situation occurs e.g. at solving
the basic problems of elasticity theory by the method of boundary integral
equations (see, e.g. [2,3]). Namely, the basic characteristics of the solu-
tion to the problem – the components of vectors of stress and displacement
are expressed via certain Cauchy type integrals (so-called complex poten-
tials), connected with the solution of the corresponding boundary integral
equation in a known way.
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The main considerations of the present paper concern the question of
uniform approximation of integrals of the form

I(ϕ; z) =
1

2πi

∫

L

ϕ(t)dt

t− z
(z ∈ D)

and also the derivatives of such integrals for values z from some finite
or infinite domain D of complex plane with boundary L, representing a
smooth (generally piece-wise smooth) closed oriented contour. Concerning
the derivatives of such integrals it should be noted, that though the deriva-
tives of the Cauchy type integrals may be reduced to integrals with the
same kernel (t− z)−1, using elementary transformation, however, from the
viewpoint of obtaining the provided quadrature formulas and estimates,
it’s more preferable to consider the corresponding derivatives in the form
of Cauchy type integral with the initial density and differentiated kernel
at this. Namely, using such consideration, it is not necessary to apply for-
mulas of numerical differentiation with approximate values of function ϕ
found by means of solution of this or that boundary problem. By that,
in the present paper along with I(ϕ; x) to the similar extent we will also
consider the integral

I ′(ϕ; z) =
1

2πi

∫

L

ϕ(t)dt

(t− z)2
(z ∈ D).

2 On construction of approximation formula

First of all, before proceeding to the question of construction of supposed
calculation schemes (quadrature formulas) for the indicated integrals, we
note that for the fixed values of z in domain D the corresponding inte-
grals may be calculated applying directly ordinary quadrature formulas.
However, it is clear that in the general case the accuracy of such formulas
decreases perceptibly as z tends to boundary points of the domain (to points
of contour L). Meanwhile such situations represent the biggest interest from
the viewpoint of applications. In the present paper, an approximate calcu-
lation scheme for Cauchy type integrals, based on a certain special process
of approximation of their densities, is offered. The mentioned schemes bring
to relatively conveniently realizable calculation processes and at this enable
us to get uniform (with respect to z) error estimates in the whole domain
D, among them, for arbitrarily closeness of point z to the boundary L.
Realization of such estimates is carried out by appropriate variation of cer-
tain variable parameters, generated by the very structure of approximating
expressions constructed here.
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We introduce a system of points {τj}n+1
j=1 (n > 1, τn+1 = τ1) on L

partitioning the given contour into arcs τστσ+1; σ = 1, n (it is meant that
increase of index j corresponds to positive direction on L). Depending on
the way of definition of L by this or that equation or graphically (which
usually may take place in applied problems) we will consider the given
partitioning possibly close to an uniform one. in other words, if sσ is a
length of arc τστσ+1, then for some positive (independent of n) constants
q1, q2 (q1 < q2) independently of the values σ (1 ≤ σ ≤ n) condition

(q1h ≤ sσ ≤ q2h) for h =
l

n
is fulfilled, where l is a length of contour L.

Below everywhere, speaking about concrete schemes of approximation of
integrals I(ϕ; z) and I ′(ϕ; z), we will mean that the indicated condition is
fulfilled.

Now, assuming that the corresponding division of contour L by points
{τσ} is realized and

lσ0(t) =
t− τσ+1

τσ − τσ+1
, lσ1(t) =

t− τσ

τσ+1 − τσ
(t ∈ τστσ+1, σ = 1, n),

we will denote by Lσ(ϕ; t) the Lagrange linear interpolating polynomial:

Lσ(ϕ; t) = lσ0(t)ϕ(τσ) + lσ1(t)ϕ(τσ+1) (t ∈ τστσ+1).

Further, assuming that as yet t0 is an arbitrary point of contour L, and
ν (1 ≤ ν ≤ n) is a number for which t0 ∈ τντν+1, we will approximate
function ϕ(t) (t ∈ τστσ+1) for each σ = 1, n on arcs τστσ+1 by expression
of the form

ϕ(t) ≈ Lν(ϕ; t0) + (t− t0)
1∑

k=0

lσk(t)
ϕ(τσ+k)− Lσk(ϕ; t0)

τσ+k − t0
(1)

(t ∈ τστσ+1; 1 ≤ σ ≤ n),

where (assuming that k takes on values 0 and 1)

Lσk(ϕ; t0) =
{

ϕ(t0), σ + k 6= ν, ν + 1;
Lν(ϕ; t0), σ + k = ν, ν + 1 (t0 ∈ τντν+1; ν = 1, n).

Here, in accordance with the indicated above,

Lν(ϕ; t0) = lν0(t0)ϕ(τν) + lν1(t0)ϕ(τν+1) (t0 ∈ τντν+1).

In further considerations the indicated conditions will be mostly considered
in the form σ 6= ν, ν ± 1 and σ = ν, ν ± 1 respectively.

13
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From the viewpoint of more detailed representation of approximate ex-
pressions based on formula (1) we will write separately formulas, corre-
sponding to values σ = ν, ν ± 1 :

ϕ(t) ≈ Lν(ϕ; t0) + (t− t0)
{

lν−10(t)
ϕ(τν−1)− ϕ(t0)

τν−1 − t0

+lν−11(t)
ϕ(τν)− Lν(ϕ; t0)

τν − t0

}

(t0 6= τν), σ = ν − 1;

ϕ(t) ≈ Lν(ϕ; t0) + (t− t0)
1∑

k=0

lνk(t)
ϕ(τν+k)− Lν(ϕ; t0)

τν+k − t0
(t0 6= τν , τν+1),

σ = ν;

ϕ(t) ≈ Lν(ϕ; t0)+(t−t0)
{

lν+10(t)
ϕ(τν+1)− Lν(ϕ; t0)

τν+1 − t0
+

+lν+11(t)
ϕ(τν+2)− ϕ(t0)

τν+2 − t0

}
(t0 6= τν+1), σ = ν+1.

The last formulas show that for the considered values of σ certain addi-
tional consideration of cases t0 → τν , τν+1 is required. Analogous situation
must be taken into account in the quadrature formula itself for I(ϕ; z),
constructed further on the base of formula (1), also, in constructed further
quadrature formula for differentiated integral I ′(ϕ; z).

Considering firstly integral I(ϕ; z), we will change in it the function ϕ(t)
by approximate formula (1). Denoting at this

pσk(t0, z) =
1

2πi

∫

τστσ+1

(t− t0)lσk(t)
t− z

dt (σ = 1, n),

we will have

I(ϕ; z) = I(1; z)Lν(ϕ; t0) +
n∑

σ=1

1∑

k=0

pσk(t0, z)
ϕ(τσ+k)− Lσk(ϕ; t0)

τσ+k − t0
+ (2)

+Rn(ϕ; z, t0),

Rn(ϕ; z, t0) =
1

2πi

n∑

σ=1

∫

τστσ+1

Rnσ(ϕ; t, t0)
t− z

dt (t0 ∈ τντν+1),
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where Rnσ(ϕ; t, t0) is a remainder of approximation of ϕ(t) by formula (1)
on the corresponding arc τστσ+1. we note that coefficients pσk may be
written in a form more convenient for calculations:

pσk(t0, z) =
1

2πi
pσ +

z − t0
2πi

∫

τστσ+1

lσk(t)dt

t− z
, pσ =

τσ+1 − τσ

2
.

Now we will consider a question of approximation of the derivative of
integral I(ϕ; z) :

I ′(ϕ; z) =
1

2πi

∫

L

ϕ(t)
(t− z)2

dt.

Assuming again t ∈ τστσ+1 (σ = 1, n), we will start from approximation of
ϕ(t) by the scheme

ϕ(t) ≈ ϕ(t0) + (t− t0)ϕ(t0, t1) + (t− t0)(t− t1) (3)

×
1∑

k=0

lσk(t)
ϕ(τσ+k, t1)− ϕ(t0, t1)

τσ+k − t0
,

where the point t1 ∈ L (t1 6= t0) is arbitrary for a while, ϕ(t0, t1), ϕ(τσ+k, t1)
represent the first kind difference quotients. Further, the difference quotient

ϕ(τσ+k, t1) =
ϕ(τσ+k)− ϕ(t1)

τσ+k − t1
(τσ+k 6= t1)

in the expression (3) will be changed by the ratio

ϕ(τσ+k)− Lσk(ϕ; t1)
τσ+k − t1

,

and ϕ(t0, t1) will be changed by the expression

Lν(ϕ; t1)− Lν(ϕ; t0)
t1 − t0

(t0 6= t1).

as a result starting from (3), we will have approximation of ϕ(t) by the
scheme

ϕ(t) ≈ ϕ(t0) + (t− t0)
Lν(ϕ; t1)− Lν(ϕ; t0)

t1 − t0
+ (t− t0)×

(t− t1)
1∑

k=0

lσk(t)
τσ+k − t0

{
ϕ(τσ+k)− Lσk(ϕ; t1)

τσ+k − t1
− Lν(ϕ; t1)− Lν(ϕ; t0)

t1 − t0

}
, (4)

15
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where it is assumed that, t ∈ τστσ+1, t0, t1 ∈ τντν+1 (ν, σ = 1, n) and , as
yet, t0 6= t1. Besides, t0, t1 6= τσ+k. After introducing (4) in the expression
of derivative I ′(ϕ; z) we will have

I ′(ϕ; z) = I ′(t; z)
{
Lν(ϕ; t1)− Lν(ϕ; t0)

} 1
t1 − t0

+
n∑

σ=1

1∑

k=0

p
(1)
σk (t0, t1, z)

× 1
τσ+k − t0

{
ϕ(τσ+k)− Lσk(ϕ; t1)

τσ+k − t1
− Lν(ϕ; t1)− Lν(ϕ; t0)

t1 − t0

}
(5)

+R(1)
n (ϕ; z, t0, t1),

where it is clear that

p
(1)
σk (t0, t1, z) =

1
2πi

∫

τστσ+1

(t− t0)(t− t1)
(t− z)2

lσk(t)dt

(and R
(1)
n (ϕ; z, t0, t1) is the corresponding remainder). Here also, t ∈ τστσ+1;

t0, t1 ∈ τντν+1 (t0 6= t1). Further in expressions (2) and (5) transform the
terms, corresponding to τσ+k− t0, τσ+k− t1 = 0. Firstly we use the relation

ϕ(τν)− Lν(ϕ; t0)
τν − t0

=
ϕ(τν+1)− ϕ(τν)

τν+1 − τν

and, similarly,

ϕ(τν+1)− Lν(ϕ; t0)
τν+1 − t0

=
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
.

Taking into account such transformations, from (2) we can write

I(ϕ; z) = I(1; z)Lν(ϕ; t0) + pν−10(t0, z)
ϕ(τν−1)− ϕ(t0)

τν−1 − t0
+

{
pν−11(t0, z)+

+pν0(t0, z) + pν1(t0, z) + pν+10(t0, z)
}

ϕ(τν+1)− ϕ(τν)
τν+1 − τν

+ pν+11(t0, z)×

ϕ(τν+2)− ϕ(t0)
τν+2 − t0

+
n−1∑

σ 6=ν±1,ν

1∑

k=0

pσk(t0, z)
ϕ(τσ+k)− ϕ(t0)

τσ+k − t0
+Rn(ϕ; z, t0). (21)

It is clear that the right hand side of (21) is defined also for t0 = τν , t0 =
τν+1 already explicitly. As for the similar transformations of (5) note that
for arbitrary t0, t1 (assuming again as yet t0 6= t1) the following is true

Lν(ϕ; t0)− Lν(ϕ; t1)
t0 − t1

=
{

t0 − t1
τν − τν+1

ϕ(τν) +
t0 − t1

τν+1 − τν
ϕ(τν+1)

}
1

t0 − t1
=

16
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=
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
.

Besides, in accordance with the considered above,

ϕ(τν)− Lν(ϕ; t1)
τν − t1

=
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
.

Along with that, for each from the mentioned above t0, t1 we have
{

ϕ(τν)− Lν(ϕ; t1)
τν − t1

− Lν(ϕ; t0)− Lν(ϕ; t1)
t0 − t1

}
1

τν − t0
= 0.

Similarly,
{

ϕ(τν+1)− Lν(ϕ; t1)
τν+1 − t1

− Lν(ϕ; t1)− Lν(ϕ; t0)
t1 − t0

}
1

τν+1 − t0
= 0.

By that, the approximate formula corresponding to (5) obtains the form

I ′(ϕ; z) = I ′(t; z)
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
+

p
(1)
ν−10(t0, t1, z)
τν−1 − t0

{
ϕ(τν−1)− Lν(ϕ; t1)

τν−1 − t1
− ϕ(τν+1)− ϕ(τν)

τν+1 − τν

}
+

p
(1)
ν+11(t0, t1, z)
τν+2 − t0

{
ϕ(τν+2)− Lν(ϕ; t1)

τν+2 − t1
− ϕ(τν+1)− ϕ(τν)

τν+1 − τν

}
+

∑

σ 6=ν±1,ν

1∑

k=0

p
(1)
σk (t0, t1, z)
τσ+2 − t0

{
ϕ(τσ+k)− Lν(ϕ; t1)

τν+k − t1
− ϕ(τν+1)− ϕ(τν)

τν+1 − τν

}
+

R(1)
n (ϕ; z, t0, t1). (51)

In the last expression t0, t1 ∈ τντν+1 (at that their equality with knots
τν , τν+1) may be meant as well; in addition to that equality t0 = t1 may
take place also, and this fact will be taken into account where necessary.
In accordance with this, namely, coefficients p

(1)
σk (t0, t1, z) in (51) obtain the

following form

1
2πi

∫

τστσ+1

(t− t0)2lσk(t)dt

(t− z)2
(σ = 1, n). (6)

17
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Our further considerations concern the question of accuracy estimate
(convergence rate) of the above mentioned quadrature formulas, what was
agreed at the beginning. For this the corresponding formulas excluding
a number of details, will be considered more frequently in the form (2),
(5). But, from the viewpoint of practical realization, it must be noted that
formulas (21), (51) are more convenient (noting at this that expressions (6)
can be reduced to relatively easily computable integrals in an evident way).

3 On error estimates of quadrature formulas

Everywhere in further considerations concerning the functions ϕ(t) we will
mean that on the considered contour L they have bounded second order
derivatives ϕ′′(t). Now we proceed to estimation of error, generated in
the issue of changing I(ϕ; z) and I ′(ϕ; z) by their approximate expressions.
For this purpose in this section, similarly to theory of ordinary quadra-
ture formulas (see, e.g.,[4],[5]), we will indicate integral representations of
the corresponding remainder terms, using the assumed above statement
concerning ϕ(t). Considering, firstly, the case of approximation of inte-
gral I(ϕ; z), we will start from representation of remainder Rnσ(ϕ; t, t0) of
approximation of function ϕ(t) involved in (2):

I(1; z)
[
ϕ(t0)− Lν(ϕ; t0)

]
+ (t− t0)rnσ(ϕ; t, t0)

(t ∈ τστσ+1, t0 ∈ τντν+1; σ, ν = 1, n),

where the expression rnσ, connected with Rnσ by relation Rnσ = (t−t0)rnσ,
has the form

rnσ(ϕ; t, t0) =
ϕ(t)− ϕ(t0)

t− t0
−

1∑

k=0

lσk(t)
ϕ(τσ+k)− Lσk(ϕ; t0)

τσ+k − t0
(t 6= t0).

The difference ϕ(t0) − Lν(ϕ; t0), evidently, represents remainder of ap-
proximation of function ϕ(t0) on arc τντν+1 by interpolating polynomial
Lν(ϕ; t0). Taking this into account, under the agreed assumption on func-
tion ϕ we can easily get an estimate:

ϕ(t0)− Lν(ϕ; t0) = O(h2) sup
t0∈L

|ϕ′′(t0)|. (7)

By that, error of the first term in approximating sum (2) is O(h2)I(1; z).
Now let us find the estimate of rnσ(ϕ; t, t0). For this we will use its cer-

tain integral representation, based in turn on the following representation

18
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of function ϕ(t) :

ϕ(t) = λσν(ϕ; t, t0) + (t− t0)
∫

τσt

[
2(t− τ)
(t0 − τ)3

∫

τt0

(t0 − u)ϕ′′(u)du−

− t− τ

t0 − τ
ϕ′′(τ)

]
dτ, t ∈ τστσ+1, t0 ∈ τντν+1 (σ 6= ν ± 1, ν), (8)

λσν(ϕ; t, t0) = ϕ(t0) +
t− t0
τσ − t0

[ϕ(τσ)− ϕ(t0)]+

(t− t0)(t− τσ)
(t0 − τσ)2

∫

τσt0

(t0 − u)ϕ′′(u)du

(at this integration everywhere in (8) is considered along positive direction
on L). In order to prove (8), we may see that the expression in square
brackets in (8) can be substituted by the integral

∫

τσt

(t− τ)
{

d

dτ

1
(t0 − τ)2

∫

τt0

(t0 − u)ϕ′′(u)du

}
dτ.

After this, applying integration by parts to it, we come to (8). Evidently,
λσν(ϕ; t, t0) represents a polynomial of order ≤ 2 with respect to t (t ∈
τστσ+1), taking on values ϕ(t0) at t = t0 (t0 ∈ τντν+1, 0 ≤ ν ≤ n). Via the
fact that for σ 6= ν, ν±1 the equality Lσk(ϕ; t0) = ϕ(t0) is valid, substituting
ϕ(t) by formula (8) in the above indicated expression of rnσ(ϕ; t, t0), we get

rnσ(ϕ, t, t0) =
∫

τσt

[
2(t− τ)
(t0 − τ)3

∫

τt0

(t0 − u)ϕ′′(u)du− t− τ

t0 − τ
ϕ′′(τ)

]
dτ−

−lσ1(t)
∫

τστσ+1

[
2(τσ+1 − τ)
(t0 − τ)3

∫

τt0

(t0 − u)ϕ′′(u)du− τσ+1 − τ

t0 − τ
ϕ′′(τ)

]
dτ. (9)

The expression in the right hand side of (9), can evidently be considered
as remainder of linear interpolation by t of function (vanishing at t = τσ)

∫

τσt

[
2(t− τ)
(t0 − τ)3

∫

τt0

(t0 − u)ϕ′′(u)du− t− τ

t0 − τ
ϕ′′(τ)

]
dτ

by its values at the knots τσ, τσ+1 (σ 6= ν ± 1, ν). We will use this in
order to estimate the corresponding rnσ, starting from the known estimates
of remainder of complicated (according to terminology introduced in [4])
quadrature formulas under condition of boundedness of the second order
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derivative of the integrand. Along with this we note that representation of
rnσ for the values σ = ν, ν ± 1 can be obtained from the above indicated
general formula for rnσ. Thus, e.g. at σ = ν − 1 we have:

rnν−1(ϕ; t, t0) = ϕ(t, t0)− lν−10(t)
ϕ(τν−1)− ϕ(t0)

τν−1 − t0
−

lν−11(t)
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
, t ∈ τν−1τν .

In order to estimate the corresponding values in the given case we will use
the representation of ϕ(t) by the Taylor formula with the remainder in the
integral form

ϕ(t) = ϕ(τν−1) + (t− τν−1)ϕ′(τν−1) +
∫

τν−1t

(t− u)ϕ′′(u)du.

Due to application of such formulas, via the fact that the expressions rnσ

vanish on linear functions, we can see the validity rnσ(ϕ; t, t0) = O(h)M
(σ = ν, ν ± 1), M = sup

L
|ϕ′′(t)|. Before proceeding to estimation of

rnσ(ϕ; t, t0) for the rest of the values σ, we note that according to the
above indicated representation of Rn(ϕ; t, t0) the general estimation of the
remainder of approximation of I(ϕ; z) is reduced mainly to estimation of
the sum

n−1∑

σ=1

∫

τστσ+1

(t− t0)rnσ(ϕ; t, t0)
t− z

dt =

=
n−1∑

σ=1

{ ∫

τστσ+1

rnσ(ϕ; t, t0)dt + (z − t0)
∫

τστσ+1

rnσ(ϕ; t, t0)
t− z

dt

}
.

Estimation for
n−1∑

σ=1

∫

τστσ+1

rnσ(ϕ; t, t0)dt can be obtained using (9) and the

indicated above estimates of rnσ(ϕ; t, t0) for σ = ν, ν±1. Finally we get con-
vinced in the validity of estimate O(h2)M (n > 1), which fulfills uniformly
with respect to t0. Concerning the integral of form

(z − t0)
∫

τστσ+1

rnσ(ϕ; t, t0)
t− z

dt,

we will mean that t0, which was assumed to be an arbitrarily chosen point
on L, is selected in such a way that for the given z the distance between z

20
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and t0 does not exceed the minimal distance between z and the points of
the boundary L. Then for each considered σ we can write

(z − t0)
∫

τστσ+1

rnσ(ϕ; t, t0)
t− z

dt = O(1)

sσ+1∫

sσ

|rnσ(ϕ; t, t0)|ds.

Via this, we get for the sum

∑
σ

(z − t0)
∫

τστσ+1

rnσ(ϕ; t, t0)
t− z

dt

also analogous to the above indicated estimate. Finally, taking into account
estimation (7), we may say that for any z ∈ D (taking into account also the
points, lying arbitrarily close to the boundary) by appropriate selection of t0
we can obtain estimation O(h2 lnn) (n →∞) for the remainder Rn(ϕ; z, t0)
on the above indicated class of functions. The constant involved in the
estimation can be meant to be independent of z and t0.

Now we proceed to estimate error R
(1)
n (ϕ; z, t0, t1) of approximation

I ′(ϕ; z) (assuming meanwhile, as in the beginning, t1 6= t0). Similarly to the
above, the corresponding estimate bases on the estimation of expressions
of the form

I ′(t; z)rν(ϕ; t0, t1) + (t− t0)(t− t1)r(1)
nσ (ϕ; t, t0, t1),

where
rν(ϕ; t0, t1) =

ϕ(t1)− Lν(ϕ; t1)− [ϕ(t0)− Lν(ϕ; t0)]
t1 − t0

(t0, t1 ∈ τντν+1, t1 6= t0),

and r
(1)
nσ (ϕ; t, t0, t1) represents an error of approximation of expression

ϕ(t, t1)− ϕ(t, t0)
t1 − t0

on the basis of application of the approximating formula (4). Firstly we
find estimation of expression rν(ϕ; t0, t1). For this in each of differences
in the numerator we will use the Taylor formula on arcs τνt0, τνt1 in the
neighborhood of point τν :

ϕ(tj) = ϕ(τν) + (tj − τν)ϕ′(τν) +
∫

τνtj

(tj − u)ϕ′′(u)du (j = 0, j = 1).

Introducing this into the indicated differences for the corresponding j via
a number of transformations in the numerator of rν(ϕ; t0, t1) brings us to
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estimate O(h)|t1 − t0|M (M = sup
u
|ϕ′′(u)|), which is valid uniformly with

respect to t0, t1 ν. By that we have

rν(ϕ; t0, t1) = O(h)M. (10)

Further, according to obtained in the beginning notations, for values σ =
ν, ν ± 1 the following is true

r(1)
nσ (ϕ; t, t0, t1) =

ϕ(t, t1)− ϕ(t0, t1)
t− t0

−

1
t− t0

1∑

k=0

lσk(t)
τσ+k − t0

{
ϕ(τσ+k)− Lσk(ϕ; t1)

τσ+k − t1
− Lν(ϕ; t1)− Lν(ϕ; t0)

t1 − t0

}
, (11)

(t0, t1 ∈ τντν+1),

where, as above, ϕ(t, t1), ϕ(t0, t1) denote the divided differences with the
corresponding arguments. At this, as it was noted already while obtaining
(51), the following is true:

Lν(ϕ; t1)− Lν(ϕ; t0)
t1 − t0

=
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
.

Similarly to approximation of integral I(ϕ; z), here we will use formula
(11) in order to represent r

(1)
nσ for the values σ = ν, ν ± 1. For the sake of

clearness we will write, e.g. the formula:

r
(1)
nν−1(ϕ; t, t0, t1) =

ϕ(t, t1)− ϕ(t0, t1)
t− t0

− 1
t− t0

{
lν−1 0(t)
τν−1 − t0

[
ϕ(τν−1)− ϕ(t1)

τν−1 − t1
− ϕ(τν+1)− ϕ(τν)

τν+1 − τν

]}

− lν−1 1(t)
τν − t0

[
ϕ(τν)− Lν(ϕ; t1)

τν − t1
− ϕ(τν+1)− ϕ(τν)

τν+1 − τν

]
(t ∈ τν−1τν).

which corresponds to σ = ν − 1. At this, remembering that

ϕ(τν)− Lν(ϕ; t1)
τν − t1

=
ϕ(τν+1)− ϕ(τν)

τν+1 − τν
,

we get

r
(1)
nν−1(ϕ; t, t0, t1) =

ϕ(t, t1)− ϕ(t0, t1)
t− t0

− 1
t− t0

lν−1 0(t)
τν−1 − t0

{
ϕ(τν−1)− ϕ(t1)

τν−1 − t1
− ϕ(τν+1)− ϕ(τν)

τν+1 − τν

}
.
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Formulas, corresponding to σ = ν, ν + 1 in (11) can be obtained analo-
gously. Now, taking into account that σ = ν− 1 corresponds to t ∈ τν−1τν ,
we will apply the Taylor formula to function ϕ(t) on the arc t1t (consid-
ering, that t1t is the shortest arc on L) in the neighborhood of t1 with
remainder in an integral form. Writing the corresponding formula in the
form

ϕ(t, t1) = ϕ′(t1) +
1

t− t1

∫

t1t

(t− u)ϕ′′(u)du (t 6= t1), (12)

we will change in it t by t0 and combine the obtained one with (12). Finally
we get

ϕ(t, t1)− ϕ(t0, t1)
t− t0

=
1

t− t0

{
1

t− t1

∫

t1t

(t− u)ϕ′′(u)du

− 1
t0 − t1

∫

t1t0

(t0 − u)ϕ′′(u)du

}
.

Further, we denote µ(ϕ; t, t1) =
1

t− t1

∫

t1t

(t−u)ϕ′′(u)du. Differentiating the

last by t we get µ′t(ϕ; t, t1) = O(1)M (M = sup
u∈L

|ϕ′′(u)|), uniformly with

respect to t, t1. On this basis for expression
ϕ(t, t1)− ϕ(t0, t1)

t− t0
we obtain

similar estimate on the set of the considered values of t, t0, t1. Further,

noticing that the ratio
lν−1 0(t)

(t− t0)(τν−1 − t0)
is bounded with respect to t, t0

(t ∈ τν−1τν), (t0 ∈ τντν+1), for r
(1)
nν−1(ϕ; t, t0, t1) we have the estimation

O(1)M . Similar estimations are valid also for values σ = ν, ν + 1 for
r
(1)
nσ (ϕ; t, t0, t1).

Now let us proceed to the question of estimation of r
(1)
nσ (ϕ; t, t0, t1) for

values σ 6= ν, ν ± 1. Taking into account the previous considerations, we
may start from the formula

ϕ(t, t1)− ϕ(t, t0)
t1 − t0

≈ 1
t1 − t0

1∑

k=0

lσk(t)
τσ+k − t0

× (13)

{
ϕ(τσ+k)− ϕ(t1)

τσ+k − t1
− ϕ(τσ+k)− ϕ(t0)

τσ+k − t0

}
.

In the given case on the basis of this formula we have to obtain an integral
representation of r

(1)
nσ (similar to (9)) for the mentioned values of σ. For this
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purpose, meaning t ∈ τστσ+1, we will rewrite formula (8) in the following
form

ϕ(t, t1)− ϕ(t, t0) = λ∗σ(ϕ; t, t1)− λ∗σ(ϕ; t, t0)+
∫

τσt

[
2(t− τ)
(t1 − τ)3

∫

τt1

(t1 − u)ϕ′′(u)du− t− τ

t1 − τ
ϕ′′(τ)

]
dτ−

∫

τσt

[
2(t− τ)
(t0 − τ)3

∫

τt0

(t0 − u)ϕ′′(u)du− t− τ

t0 − τ
ϕ′′(τ)

]
dτ. (14)

Taking into account that on arcs τστσ+1 the expressions

λ∗σ(ϕ; t, t1)− λ∗σ(ϕ; t, t0)
t− t0

(t0 6= t1)

are linear functions of variable t, on the basis of formulas (13), (14) we get

r(1)
nσ (ϕ; t, t0, t1) =

1
t1 − t0

{
Gσ(ϕ; t, t1)−Gσ(ϕ; t, t0)−

lσ1(t)[Gσ(ϕ; τσ+1, t1)−Gσ(ϕ; τσ+1, t0)]
}

,

where

Gσ(ϕ; t, tj) =
∫

τσt

[
2(t− τ)
(τj − τ)3

∫

τtj

(tj − u)ϕ′′(u)du− t− τ

tj − τ
ϕ′′(τ)

]
dτ

(j = 0, j = 1).

at this in the indicated formula we take into account (compare with (9))
that Gσ(ϕ; τσ, tj) = 0. Writing the obtained formula in the form

r(1)
nσ (ϕ; t, t0, t1) =

1
t1 − t0

∫

t0t1

[
(Gσ)′ξ(ϕ; t, ξ)− lσ1(t)(Gσ)′ξ(ϕ; τσ+1, ξ)

]
dξ

(ξ = t0, t1; t1 6= t0),

we will base the further estimation of r
(1)
nσ (ϕ; t, ξ) on the estimation of the

difference involved in the indicated integral. For this we notice that sim-
ilar to Gσ(ϕ; τσ, ξ) = 0 the following (Gσ)′ξ(ϕ; τσ, ξ) = 0 is valid too. By
that the corresponding integrand difference for each considered σ repre-
sents a remainder of linear interpolation (by variable t) of the function
(Gσ)′ξ(ϕ; t, ξ) differentiated by ξ. On the basis of integral representation of
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the remainder of the indicated difference for r
(1)
nσ (ϕ; t, t0, t1) we get an esti-

mate of form O(h2)|t1 − t0|max
t
|∂

2(G)′ξ
∂t2

| for the considered σ, at this the

constant in O(h2) does not depend on t0, t1. Observing the corresponding

details in estimate of
∂2(Gξ)′

∂t2
, via (10) and estimates obtained above for

σ = ν, ν ± 1 we get convinced in validity of estimations of type
n∑

σ=1

∫

τστσ+1

|rnσ(ϕ; t, t0, t1)|dt = O(h)M (M = sup
t∈L

|ϕ′′(t)|). (15)

Now, using the estimates obtained above, we can estimate the remainder
R

(1)
n (ϕ; z, t0, t1) of the considered quadrature process, which finally consists

in estimation of expression

1
2πi

n−1∑

σ=1

∫

τστσ+1

(t− t0)(t− t1)
r
(1)
nσ (ϕ; t, t0, t1)

(t− z)2
dt. (16)

As it was noted above, the approximating expression for integral I ′(ϕ; z)
(involving arbitrarily given parameters t0, t1 ∈ L) considered here has a
sense for t1 = t0 also. Assuming this in (16), the general value of these
parameters can be related with z, in a certain way (as it was done at
estimation of Rn(ϕ; z, t0)). This finally brings us to estimation with right
hand side of form (15) with a constant independent of z.

Concerning the results stated here we note, that the accuracy rate of
the indicated quadrature processes generally is conditioned by accuracy of
the approximation applied to density ϕ(t) of the given integrals (in com-
bination with selection of used at this correcting parameters). From this
viewpoint construction of more accurate quadrature formulas can be real-
ized with the help of interpolating (piece-wise interpolating) polynomials
of higher order. Naturally, such formulas have somewhat more complicated
structure, however, their numerical realization is not connected with some
essential difficulties.

Above it was already mentioned about application of the Cauchy type
integrals and their derivatives to the plane theory of elasticity. Thus, e.g.
for calculation of components of vectors of stresses and displacements in
problems of the plane theory of elasticity may be used formulas, offered in
[2,3]. We give the corresponding formulas (referring, for clearness, to the
first basic problem of the theory of elasticity):

Xx + Yy = 2[ϕ′1(z) + ϕ′1(z)],

Yy −Xx + 2iXy = 2[zϕ′′1(z) + ϕ′2(z)],
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where

ϕ1(z) =
1

2πi

∫

L

ω(t)dt

t− z
,

ϕ2(z) =
1

2πi

∫

L

ω(t)dt

t− z
+

1
2πi

∫

L

ω(t)d t

t− z
− 1

2πi

∫

L

tω(t)dt

(t− z)2
,

with ω(t) being the solution to the integral equation, corresponding to the
initial problem. From these integrals the two following

∫

L

ω(t)d t

t− z
,

∫

L

ω(t)d t

(t− z)2

are somehow different from the considered here I(ϕ; z) and I ′(ϕ; z), Though,
their calculation can be reduced to calculation of the considered above ones,
using the following equality

∫

L

ω(t)d t

t− z
=

∫

L

ω(t)
(

d t
dt

)

t− z
dt

and, analogously, for the second integral. Nevertheless, in dependence of

the way of giving the contour L, calculation of the values of derivative
d t

dt
at the knots is not desirable always (especially, when the boundary L of the
considered domain is not given by its exact equation, which generally occurs
in practical problems). We can bypass the situation using approximation of
the function ω(t) again, applied here. In this case in the role of coefficients
of the corresponding quadrature formulas we will have integrals of type

∫

τjτj+1

(t− t0)ljk(t)
t− z

d t,

∫

τjτj+1

(t− t0)2ljk(t)
(t− z)2

d t, (17)

at the values j and k known already. The first of the integrals in (17) will
be represented as a sum

∫

τjτj+1

ljk(t)d t + (z − t0)
∫

τjτj+1

ljk(t)
t− z

d t. (18)

We apply formula of integration by parts to the first integral in the present
sum

∫

τjτj+1

ljk(t)d t = τ j+1ljk(τj+1)− τ jljk(τj)−
∫

τjτj+1

t l′jk(t)dt (k = 0, 1).
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At this we remember that lj0(τj+1) = 0, lj1(τj+1) = 1, lj0(τj) = 1, lj1(τj) =

0. And the integrals of the form
∫

τjτj+1

t l′jk(t) can be calculated approxi-

mately via approximation (namely, linear interpolation) of the function t.
The second term in (18) we represent so:

(z − t0)

[
ljk(z)

∫

τjτj+1

d t

t− z
+

∫

τjτj+1

ljk(t)− ljk(z)
t− z

d t

]
. (19)

The first integral in (19) equals

tj+1

tj+1 − z
− tj

tj − z
+

∫

τjτj+1

tdt

(t− z)2
,

at that ∫

τjτj+1

tdt

(t− z)2
= z

∫

τjτj+1

dt

(t− z)2
+

∫

τjτj+1

(t− z)dt

(t− z)2
.

Now the question reduces to approximate calculation of the second integral
in the previous equality. Representing the last as

∫

τjτj+1

(t− z)2dt

|t− z|2(t− z)
=

∫

τjτj+1

e(i arg (t−z)
2

t− z
dt,

we can apply the approximation scheme (used in the beginning) to its
density e(i arg(t−z). The second integral in (19) can be transformed as well,

using integration by parts, which, similar to the case of integral
∫

τjτj+1

t l′jk(t)

with appropriate approximation of t brings us to calculation of certain
integrals from polynomials. As a result, the expression (19), thanks to
presence of factor z − t0, under agreed selection of t0, turns out to be
bounded while arbitrary approaching z to the points of contour L (the same
factor will play similar role at estimation of the remainder of approximate
expressions used here).

While computing approximately the following integrals
∫

τjτj+1

t l′jk(t),
∫

τjτj+1

ei arg (t−z)
2

t− z
dt,

from the viewpoint of obtaining final higher accuracy it may turn out to
be more reasonable for better approximation of the functions t ei arg (t−z)

2

to introduce additional points (with appropriate division of arcs τjτj+1).

27



AMIM Vol.15 No.1, 2010 J. Sanikidze, K. Ninidze +

Similar approaches may be used for calculation of the second integral
in (17).

Integral ϕ′1(z) can be computed with the help of above indicated ap-
proximate scheme for integral I ′(ϕ; z). As for calculation of integral ϕ′′1(z)
and the third integral in expression ϕ′2(z), for their approximate calcula-
tion (naturally, for z close to boundary points) we should use more precise
quadrature formulas (mentioned earlier). By that, the corresponding ques-
tion requires more detailed consideration.
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