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Abstract

The quadratic form of type (-2, q, 1) are derived. Explicit formulas are obtained

for q ≡ −1(mod6). These quadratic forms are reduced. Then it is shown how formulae

can be obtained for the number of representations of positive integers by means the

constructed quadratic forms.
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1 Introduction

Let
Q(x) = Q(x1, · · · , xf ) =

∑

0≤r≤s≤f

brsxrxs (1.1)

be an integer positive definite quadratic form in an even number f of vari-
ables. That is, brs ∈ Z and Q(x) > 0 if x 6= 0. To Q(x) we associate
the even integral symmetric f × f matrix A defined by arr = 2brr and
ars = asr = brs, where r ≤ s. If X = [x1, · · · , xf ] ′ denotes a column vector,
where ′ denotes the transpose, then we have Q(x) = 1

2X ′AX. Let Aij de-
note the cofactor to the element aij in D = detA and a∗ij the corresponding

element of A−1. ∆ = (−1)
f
2 D denote the discriminant of the quadratic

form Q(x);

δ = gcd (
1
2
Arr, Ars) (r, s = 1, 2, · · · , f),

N = D
δ is the step of quadratic form Q(x); χ(d) is a character of quadratic

form Q(x), e.i. if ∆ is square, then χ(d) = 1, and if ∆ is not square, then

χ(d) =

{
( d
|∆|) if d > 0,

(−1)
f
2 χ(−d) if d < 0,
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where ( d
|∆|) is the generalized Jacobi symbol. A positive quadratic form

of weight f
2 , step N and character χ is called a quadratic form of type

(−f
2 , N, χ).
Below we shall use the notions, notation and some results from [1]. In

the follows q is odd prime, z = exp(2πiτ), Im τ > 0.

A homogeneous polynomial Pν(x) = Pν(x1, · · · , xf ) of degree ν with
complex coefficients, satisfying the condition

∑

1≤i,j≤f

a∗ij

(
∂2P

∂xi ∂xj

)
= 0,

is called a spherical polynomial of order ν with respect to Q(x) (see [2]).
It is known, that ([1], pp. 874, 817) if Q(x) is a quadratic form of type

(−k, q, 1), 2|k, k > 2, then the discriminant

∆ = q2l 1 ≤ l ≤ k − 1 (1.2)

and

E(τ, Q(x)) = 1 +
∞∑

n=1

(α σk−1(n)zn + βσk−1(n)zqn) (1.3)

is the corresponding Eisenstein series, where σk−1(n) =
∑

d|n
dk−1 and

α =
ik

ρk

qk−l − ik

qk − 1
, β =

1
ρk

qk − ikqk−l

qk − 1
,

ρk = (−1)
k
2
(k − 1)!
(2π)k

ζ(k), (ζ(k) is theRiemann ζ−function)

In particular,

ρ4 =
1

240
.

For each positive quadratic form Q(x)

ϑ(τ, Q(x)) = 1 +
∞∑

n=1

r(n,Q(x)) zn (1.4)

is the corresponding theta-series, where r(n,Q(x)) denote the number of
representation of the positive integer n by the quadratic form Q(x).
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Let quadratic form Q(x) has a form (1.1) and

4b11Q(x) = (2b11x1 + b12x2 + · · · , b1F xf )2 + G(x2, · · · , xf ).

Lemma 1. ([3], p.10) The quadratic form Q(x) is reduced by Hermite,
if

minQ(x) = |b11| > 0, |b1j | ≤ |b11| (j = 2, 3, · · · , f)

and G(x2, · · · , xf ) is reduced.
Lemma 2. ([1], p. 853) Among homogenous quadratic polynomials in

f variables

ϕij = xixj − Aij

fD
2Q(X) (i, j = 1, ...f)

exactly f(f+1)
2 − 1 ones are linearly independent and form the basis of the

space of spherical polynomials of second order with respect to Q(x).

Lemma 3. ([1], p. 808, 855) Let Q(x) be a positive reduced quadratic
form of type (−f

2 , N, χ), 2|k, and Pν(x) is a spherical polynomial of order
ν with respect to Q(x), then for ν > 0 the generalized r-fold theta-series

ϑ(τ, Pν(x), Q(x)) =
∑

x∈Zf
Pν(x)zQ(x) =

∞∑

n=1

(
∑

Q(x)=n

Pν(x))zn

is a cusp form of type (−(f
2 + ν), N, χ).

Lemma 4. ([1], p. 846) Let quadratic forms Q1(x) and Q2(x) have
the same step N and characters χ1(d) and χ2(d), respectively, then the
quadratic form Q1(x) + Q2(x) has the step N and character χ1(d)χ2(d).

Lemma 5. ([1], pp. 874, 875) Let Q(x) be a positive reduced quadratic
form of type (−k, q, 1), 2|k, k > 2 then difference ϑ(τ, Q(x))−E(τ, Q(x)) is
a cusp form of type (−k, q, 1) .

It is known the some reduced quadratic forms of type (−2, q, 1) with
discriminant q2, when q = 3, 5, 7 ([4]), q = 11, 17 ([1], pp. 901-902).

M. Eichler ([5] pp. 234-235) proof, that the cusp form of type (−k, q, 1)
is represented in the linear combination of generalized quaternary theta-
series.

In this paper is also constructed the reduced quadratic forms of type
(−2, q, 1) with discriminant q2 for every prime q > 3. By using these
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quadratic forms, the basis of spaces of cusp forms of type (−4, q, 1) when
q = 13 is constructed. Then formulae are derived for the number of rep-
resentations of positive integers by the quadratic forms of corresponding
types.

2 The construction of the quadratic form of type
(-2, q, 1)

The matrix A and its determinant D = detA of quadratic forms of type
(−2, q, 1) with discriminant q2 must satisfy the following conditions:
1. The matrix A should be a fourth order symmetric matrix;
2. Its elements of main diagonal should be positive even numbers and other
elements -

integer numbers;
3. All its principal minor should be positive;
4. D = q2 and δ = gcd (1

2Arr, Ars)r,s=1,2,3,4 = q.
Let find D with form

∣∣∣∣∣∣∣∣

2 1 b13 0
1 2b22 0 0

b13 0 2b33 q
0 0 q 2q

∣∣∣∣∣∣∣∣
,

where b13, b22 and b33 are integer numbers.
The determinant D satisfies the conditions 1-4 if

2q

∣∣∣∣∣∣

2 1 b13

1 2b22 0
b13 0 2b33

∣∣∣∣∣∣
− q2

∣∣∣∣
2 1
1 2b22

∣∣∣∣ = q2

and ∣∣∣∣
2 1
1 2b22

∣∣∣∣ > 0.

It is sufficient to show that there exists an integer numbers b13, b22 and
b33 that ∣∣∣∣∣∣

2 1 b13

1 2b22 0
b13 0 2b33

∣∣∣∣∣∣
= 2b22q, 4b22 > 1,

i.e.
b33(4b22 − 1)− b2

11b22 = b22q, b22 > 0. (2.1)
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From (2.1) it follows that b22|b33, i.e. b33 = b22t and condition (2.1) takes
the form

t(4b22 − 1)− b2
13 = q,

i.e.
b2
13 ≡ −q(mod4b22 − 1). (2.2)

Thus the determinant D satisfies conditions 1-4 if we find the integer num-
ber b22 > 0, such that 4b22−1 will be prime and ( −q

4b22−1) = 1 (where ( −q
4b22−1)

is the Legandre symbol and ( −q
4b22−1) = −( q

4b22−1) = −(−1)
q−1
2 (4b22−1

q )).
If we solve the congruence (2.2), we get b13 and from (2.1) we obtain
b33 = b22q+b213b22

4b22−1 .
Hence, our problem is following: Find the integer number b22 > 0,

such that 4b22 − 1 will be prime number and quadratic residue of q, if
q ≡ 3(mod4), or quadratic nonresidue of q, if q ≡ 1(mod4).

We now prove the following
Lemma. if q 6= 3 is an odd prime, then there are exactly q−1

2 natural
numbers b22, such that 4b22 − 1 will be prime and

(4b22 − 1
q

)
= 1, if q ≡ 3(mod4),

or (4b22 − 1
q

)
= −1, if q ≡ 1(mod4).

.
Proof. a) Let q ≡ 3(mod4), consider the system of congruence

{
x ≡ −1 (mod 4)
x ≡ c (mod q)

(2.3)

where c is some quadratic residue of q. From the Chinese remainder theo-
rem, there are exactly one solution x0 modulo 4q, x0 = −qy1 +4cy2, where
y1 is the solution of congruence qy ≡ 1 (mod 4) and y2 is the solution of
congruence 4y ≡ 1 (mod q).

Consider now the arithmetic progression x0 + 4qt. In this progression
(x0, 4q) = 1 and from the Dirichlet’s Theorem on primes in arithmetic
progressions there are infinitely many primes, where satisfies the system of
congruence (2.3).

It is known that c can get q−1
2 different values, accordingly there exists

q−1
2 incongruent integers modulo q, where satisfies the system (2.3).

b) Similarly consider the case q ≡ 1(mod4).In the system of congruence
(2.3) c is nonquadratic residue of q. We get there exists q−1

2 incongruent
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integers modulo q, where satisfies the system (2.3). ¥

Below the values of q and b22 for prime q ≤ 29 are obtained: For q = 5,
b22 = 1, 2;
For q = 7, b22 = 3, 6, 11;
For q = 11, b22 = 1, 6, 8, 15, 18;
For q = 13, b22 = 2, 3, 5, 8, 12, 17;
For q = 17, b22 = 1, 2, 6, 8, 12, 27, 41, 50;
For q = 19, b22 = 2, 3, 6, 11, 12, 33, 35, 48, 66;
For q = 23, b22 = 1, 8, 12, 15, 18, 32, 33, 42, 45, 54, 60;
For q = 29, b22 = 1, 3, 5, 8, 11, 12, 20, 33, 48, 54, 68, 83, 123, 188.

Construct now some quadratic forms of type (−2, q, 1).
If q = 13 and b22 = 2, from (2.2) and (2.1) we have b13 = ±1, b33 = 4.

Thus the quadratic form

Q1(x) = x2
1 + 2x2

2 + 4x2
3 + 13x2

4 + x1x2 + x1x3 + 13x3x4

is the quadratic form of type (−2, 13, 1) with discriminant 132.
If q = 119 and b22 = 2, from (2.2) and (2.1) we have b13 = ±3, b33 = 8.

Thus the quadratic form

Q2(x) = x2
1 + 2x2

2 + 8x2
3 + 19x2

4 + x1x2 + 3x1x3 + 19x3x4

is the quadratic form of type (−2, 19, 1) with discriminant 192.

Consider now the particular case q ≡ −1(mod6).
It is easily to verify that the determinant

∣∣∣∣∣∣∣∣

2 1 1 0
1 2 1 0
1 1 2

3(q+) q
0 0 q 2q

∣∣∣∣∣∣∣∣
= q2

satisfies the condition 1-4, i.e.

Q3(x) = x2
1 + x2

2 +
q + 1

3
x2

3 + qx2
4 + x1x2 + x1x3 + x2x3 + qx3x4

is the quadratic form of type (−2, q, 1) with discriminant q2 (where q ≡
−1(mod6)).

3 The reduction of the constructed quadratic forms

Find now an equivalent reduced quadratic form of

Q3(x) = x2
1 + x2

2 +
q + 1

3
x2

3 + qx2
4 + x1x2 + x1x3 + x2x3 + qx3x4.
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It is clear that

4Q3(x) = 4x2
1 +4x2

2 +
4
3
(q+1)x2

3 +4qx2
4 +4x1x2 +4x1x3 +4x2x3 +4qx3x4 =

= (2x1 + x2 + x3)2 + G(x2, x3, x4),

where

G(x2, x3, x4) = 3x2
2 +

4q + 1
3

x2
3 + 4qx2

4 + 2x2x3 + 4qx3x4.

Similarly
12G(x2, x3, x4) = (6x2 + 2x3)2 + g(x3, x4),

where
g(x3, x4) = 16q(x2

3 + 3x3x4 + 3x2
4).

By using well-known algorithm ([6] p. 141-144), the linear transformation
with matrix ∥∥∥∥

1 −1
0 1

∥∥∥∥
takes the quadratic form g(x3, x4) into the equivalent reduced quadratic
form. Now use the linear transformation with matrix∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

∥∥∥∥∥∥∥∥

for quadratic form Q3(x), we get

Q(x) = x2
1+x2

2+
q + 1

3
x2

3+
q + 1

3
x2

4+x1x2+x1x3−x1x4+x2x3−x2x4+
q − 2

3
x3x4.

It is easy to verify that Q(x) is a reduced quadratic form of type (−2, q, 1)
with discriminant q2 for every prime number q ≡ −1(mod6)).

Similarly by using the linear transformation with matrix
∥∥∥∥∥∥∥∥

1 0 −1 0
0 1 0 0
0 0 2 1
0 0 −1 0

∥∥∥∥∥∥∥∥

for quadratic form Q1(x), and the linear transformation with matrix
∥∥∥∥∥∥∥∥

1 0 −3 −1
0 1 1 0
0 0 2 1
0 0 −1 0

∥∥∥∥∥∥∥∥
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for quadratic form Q2(x), we obtain that

Q4(x) = x2
1 + 2x2

2 + 2x2
3 + 4x2

4 + x1x2 + x1x4 − x2x3 + 2x3x4

is a reduced quadratic form of type (−2, 13, 1) with discriminant 132 and

Q5(x) = x2
1 + 2x2

2 + 3x2
3 + 6x2

4 + x1x2 + x1x3 + x1x4 + x2x3 − x2x4 + 3x3x4

is a reduced quadratic form of type (−2, 19, 1) with discriminant 192.

4 The number of representations of the positive
integer n by the quadratic form of type (−4, q, 1)

For quadratic form of type (−2, 13, 1)

Q4(x) = x2
1 + 2x2

2 + 2x2
3 + 4x2

4 + x1x2 + x1x4 − x2x3 + 2x3x4

we have that ∆ = D = 132, A11 = 104, A12 = −26, A13 = 0 .

According to the lemma 2 the spherical polynomials has the form

ϕ11 = x2
1 − A11

4D 2Q4 = x2
1 − 4

13Q4,

ϕ12 = x1x2 − A12
4D 2Q4 = x1x2 + 1

13Q4,
ϕ13 = x1x3.

Consider the equation

x2
1 + 2x2

2 + 2x2
3 + 4x2

4 + x1x2 + x1x4 − x2x3 + 2x3x4 = n. (4.1)

For n = 1, equation has 2 solutions x1 = ±1.
For n = 2, equation has 6 solutions x2 = ±1; x3 = ±1; x1 = ±1, x2 =

∓1.
For n = 3, equation has 8 solutions x1 = ±1, x3 = ±1; x1 = ±1, x3 =

∓1; x2 = ±1, x3 = ±1; x1 = ±1, x2 = ∓1, x3 = ∓1. Here all other
xi = 0.

Using these solutions and performing easy calculations by lemma 3 we
obtain

ϑ(τ, ϕ11, Q4) =
∞∑

n=1

( ∑

Q4=n

x2
1 −

4
13

n)zn =
18
13

z − 22
13

z2 − 18
13

z3 + . . . ,

ϑ(τ, ϕ12, Q4) =
∞∑

n=1

( ∑

Q4=n

x1x2 +
1
13

n)zn =
2
13

z− 14
13

z2− 2
13

z3 + . . . ,
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ϑ(τ, ϕ13, Q4) =
∞∑

n=1

( ∑

Q4=n

x1x3)zn = −2z3 + . . . .

These generalized quaternary theta-series are the cusp form of type (-4, 13,
1), they are linearly independent, since the determinant constructed from
the coefficients of these theta-series is not equal to zero. It is known ( [1] p.
899) that the maximal number of linearly independent cusp form of type
(-4, 13, 1) is 3. Thus we have proved

Theorem 1. The generalized quaternary theta-series

ϑ(τ, ϕ11, Q4) =
∑∞

n=1

(∑
Q4=n x2

1 − 4
13n)zn,

ϑ(τ, ϕ12, Q4) =
∑∞

n=1

(∑
Q4=n x1x2 + 1

13n)zn,

ϑ(τ, ϕ13, Q4) =
∑∞

n=1

(∑
Q4=n x1x3)zn

(4.2)

form a basis of the space of cusp form of type (-4, 13, 1).
Consider the quadratic form

F = Q4(x1, x2, x3, x4) + Q4(x5, x6, x7, x8).

By lemma 4 and (1.2) we have ∆ = D = 134, l = 2, N = q = 13, χ(d) = 1,
i.e. the quadratic form F is a form of type (−4, q, 1).

From (1.4) using the number of solutions of equation (4.1) we obtain
that

ϑ(τ,Q4) = 1 +
∞∑

n=1

r(n, Q4) zn = 1 + 2z + 6z2 + 8z3 + . . .

hence

ϑ(τ, F ) = ϑ2(τ, Q4) = 1 + 4z + 16z2 + 40z3 + . . . (4.3)

if q = 13 and l = 2 from (1.3) we have

E(τ, F ) = 1 +
24
17

∞∑

n=1

( σ3(n)zn + 169σ3(n)z13n)

= 1 +
24
17

z +
24 · 9
17

z2 +
24 · 28

17
z3 + . . (4.4)

According to the Lemma 5, ϑ(τ, F ) − E(τ, F ) is a cusp form of type
(−4, 13, 1). Thus, from Theorem 1 there are constants c1, c2 and c3 such
that

ϑ(τ, F )− E(τ, F ) = c1ϑ(τ, ϕ11, Q4) + c2ϑ(τ, ϕ12, Q4) + c3ϑ(τ, ϕ13, Q4).
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Equating the coefficients of z, z2 and z3 on the both sides of this iden-
tity, using (4.3), (4.4), (4.2) we obtain

c1 =
91
34

, c2 = −247
34

, c3 = −26
17

.

Hence

ϑ(τ, F ) = E(τ, F ) +
91
34

ϑ(τ, ϕ11, Q4)− 247
34

ϑ(τ, ϕ12, Q4)− 26
17

ϑ(τ, ϕ13, Q4).

Equating the coefficients of zn on the both sides of this identity we deduce
the following result.

Theorem 2. The number of representations of the positive integer n
by the quadratic form F is given by

r(n, F ) =
24
17

σ∗3(n) +
91
34

( ∑

Q4=n

x2
1 −

4
13

n)

−247
34

( ∑

Q4=n

x1x2 +
1
13

n)− 26
17

( ∑

Q4=n

x1x3).

where

σ∗3(n) =

{
(σ3(n)) if 13†n,

σ3(n) + 169σ3( n
13) if 13|n.

This paper dedicated to my teacher Professor Giorgi Lomadze on the
occasion of his 100th birthday.
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