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Abstract

The paper proposes a theoretical solution scheme for a two-dimensional problem
of the theory of stationary liquid filtration through an earth dam. The dam foundation
is water-proof. The dam backslope is the broken line consisting of two segments of
the straight line which forms with the dam foundation an angle 7/2, whereas the
tail-water level is equal to zero.
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1 Introduction

In this paper we obtain an analytic solution of a mixed two-dimensional
problem of the theory of stationary filtration through a plain earth dam
with a backslope and a partially unknown boundary. The tail-water level
is assumed to be equal to zero. The dam foundation is assumed to be
water-proof, and the porous medium to be isotropic, homogeneous and non-
deformable. Liquid motion in the porous medium obeys the Darcy law. The
boundary [(z) of the domain S(z) occupied by the moving fluid consists of
an unknown depression curve and the known straight line segments. The
fluid motion scheme is shown in Fig.1.

In the domain S(z) with boundary [(z) we define the reduced com-
plex potential (the potential divided by the constant filtration coefficient
w(z) = ¢(x,y) + i (x,y) where the potential velocity ¢(z,y) and the flow
function ¥ (x,y) satisfy the Cauchy-Riemann conditions and the boundary
conditions [1-7, 15-22]. We derive analytic formulas for calculation of the
geometric and mechanical characteristics (parameters). The parametric
equations are derived for calculating the unknown part of the boundary
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and the depression curve. In solving the problem, we widely use the theory
of differential equations belonging to the Fuchs class and also non-linear
Schwartz differential equations.

2 Statement of the Problem

In this paper we give a Frolov type theoretical scheme for solution of the
two-dimensional problem of the theory of stationary filtration through an
earth dam, the backslope of which is a broken line formed by two segments
of the straight line which forms with the dam foundation an angle 7/2,
whereas the tail-water level is zero [1-9].

The plane of incompressible fluid motion is combined with the plane
of a complex variable z = x + 4y. The fluid motion obeys the Darcy law.
The porous medium is isotropic, homogeneous and non-deformable. The
boundary [(z) of the domain S(z) occupied by the moving fluid consists of
an unknown depression curve, and the known straight line segments. The
fluid motion scheme is shown in Fig.1.

In the domain S(z) with boundary I(z) we seek for a complex potential
(a potential divided by the constant filtration coefficient) w(z) = ¢(z,y) +
itp(z,y), where the velocity potential ¢(z,y) and the flow function ¢ (z,y)
satisfy the Cauchy-Riemann equations and the boundary conditions [15-22]

akl(p(xay) + aka(‘rvy) + ag3T + agay = fk? k= 172? ('Iay) € l(z)7 (11)

where ay;, fi, K = 1,2; i = 1,4, are the known piecewise-constant real
functions.

We denote by S(w) and S(w) respectively the domains of the com-
plex potential and the complex velocity, and by I(w), I(w) their respective
boundaries.

The angular points of the boundaries I(z), I[(w) and I(w) which may
occur on one of them at least when they are bypassed in the positive positive
direction are denoted by Ay, k = 1,6.

The boundary conditions for the considered problem are as follows: A1 As :
o(x,y) +y =0, y = —tan(nf)(x — L) along the seepage path, where H
is the head-water depth, L is the dam foundation length, 73 is the inter-
nal angle at the point Ag; AsAsAs @ ¢(x,y) +y = 0, ¥(z,y) = Q along
the depression curve; AgAs : p(z,y) = —H, y = tan(na)(z + L), where
L; = AsAg, along the head-water level A5Ag : p(z,y) = —H, x = 0, the
angle is equal to 7(1/2 4+ «) at the point As and to 7/2 at the point Ag;
AgAq s Y(x,y) =0, y = 0 along the dam foundation (Fig.1). It is proved in
[1-21] that the domain S(w) with boundary I(w) is the circular pentagon
(Fig. 2).
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A half-plane I,,,(¢) > 0 of the plane { =t + i7 is conformally mapped
onto the domains S(z), S(w) and S(w), whereas z((), w(¢), w(¢) =
W'()/7'(¢) denote the respective conformally mapping functions. To the
angular points Ay, k = 1,6 along the t-axis there correspond the points
t=-ep k=1,6;also, —0o < e; < ey < ---<e5 <eg < +oo, where t = 0o
is mapped into the point Ar(e7), ey = oco.

When ¢ — ¢, ¢ € I,,(¢) > 0, the boundary values of the functions
2(¢), w(¢) and w((¢), are denoted as follows: z(t) = z(t) + iy(t), w(t) =
o(t) + ip(t), w(t) = u(t) — iv(t), where u(t), v(t) are the velocity vector
components; the complex conjugate functions to the functions z(t), w(t)
and w(t) are respectively denoted by z(t), w(t) and w(t).

Let us introduce the vectors ®(t) = [w(t),z2(t)], ®(t) = [w(t), 2(t)],
o'(t) = [W'(t),2'(1)], () = [W'(2),2'(1)], f(t) = [fi(t), fa(t)]. Then the
boundary conditions (1.1) take the form:

O(t) = g(t) B(t) + f(t), —o0 <t < —+00, (1.2)
' (t) = g(t) D'(t), —00 < t < 400, (1.3)
where
g(t) =G 1N G(f), ¢(t)=G1t)G(1), (1.4)
Joo(t) = E, f_oo(t)=1[0,0], —oo<t<e,
w0~ (3 el ) e<t<e 08

0
fi(t) = 2Lsin(nB) exp(—inf)[—1,1], e1 <t < eq,
92(t) = g3(t) = <—12’z' (1)> , fa(t) = f3(t) = 2QIi, 1], ea <t < e3 < ey,

—1, 0 _ - IO
g4(t) = ( 0. exp(i27ra)) , fa(t) = 2[—H,1e"™ cos(mra)H], eq <t < e5,

0= (30 0). s =2

-1 0
g=(o Y)-

For the points t = ¢;, i = 1,6, consider the characteristic equation [16-21],

where

det ‘gijrll(ei +0)gi(e; — 0) — )\E‘ =0, (1.6)

with respect to the parameter A, where E is the unit matrix, ¢;(¢), e; <t <
€itl, g;rll(ei +0),gi(e; — 0) are the limiting values of the matrices gz;ll (1),
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gi(t) at the point e;, to the right and to the left, respectively. The numbers
T = (2mi) " 'In)g, K = 1,2, i = 1,6, are uniquely defined using the
roots Ag; of equation (1.6)[8-15, 16-19]. At the angular points A;[aq4, 2],
i = 1,6, and at the non-angular point ( = oo the characteristic exponents
for the functions w’(¢), 2’(¢) have the form:

Ai[=1/2;6—1], As[1/2-(;0],  As[2;0], A4[-1/2;—a],

As[0;a —1/2],  Ag[+1/2;-1/2], A7[3;2]. (1.7)

The point Ag is a removable singular point. To remove it we introduce
a new vector ®;(t) by the formula [8-15, 16-19]

(I)/(t) = Xl(t)¢1(t), —00 < t < 400, (1.8)

where

X1 = \/(t—e5)(t—€6)_1 >0, t>eg. (19)
The boundary condition with respect to ®;(t) takes the form

Bi(t) = g (1)D1(1), —o0 <t < +oo, (1.10)

where
g (6) = ha @) g(t)xa (@) (1.11)

The exponents at the points As and Ag take respectively the form
AE[1/2; a0 — 1], AG[0, 1].

Let us enumerate anew the singular points on the contour /(w) and
denote them by B;, i = 1,6, and denote the corresponding points along
the t-axis by a;, i = 1,6, ag = oo. Denote by ay;, k = 1,2, i = 1,6, the
characteristic numbers corresponding to the points ¢t = a;, i = 1,6, which
satisfy the Fuchs condition. We introduce the notation

Bi[-1/2;6 - 1], B»[1/2—05;0], Bjs[2;0],

(1.12)
Bi-1/2%—a], Bsl-1/%a—1], Bsl32].
Using (1.12) we write an equation of the Fuchs class [1-6, 17-22]
u”(€) + P(Q) u'(€) + g(t) u(¢) =0, (1.13)
where
5
p(C) = Zﬂz(( - az’)_l, Gi =1—ay; — ag;, (1.14)
i=1
5
9(¢) = Z [oi00i(¢ — ai) 2 + ¢i(¢ — a) 7. (1.15)
i=1

36



Solution of a Two-Dimensional Problem ... AMIM Vol.14 No.2, 2009

where ¢; are the unknown accessory parameters, satisfying the condition

M=) ¢=0. (1.16)

Using the linearly independent solutions w;(¢) and wus(t) of equation
(1.13), we construct a general solution

w(¢) = [pur(¢) + qua(Q)] [rur(¢) + suz(¢)] (1.17)

of the Schwartz equation [15-22]

{w(¢), ¢} = w"(Q)/w'(¢) = 1,5(w"(Q)/w'($))* = R(C), (1.18)

where
R(¢) = 24(¢) = p'(¢) — 0,5[p(¢))?
5
= Z {0, 5[1 — (Oéli — 0421')2](( — ai)_2 + C*(C — ai)_l}, (1.19)
=1

5
a1y — Oy = Vy, 1= 1,75, C: == QCZ' - ﬁz Z(al - ak)_l. (120)

=1

From (1.19) it follows that (1.14) depends on the difference ay; — ag; =
vi, i = 1,5, where mvi is the internal angle at the point B; of the circular
polygon. p, ¢, r and s are the integration constants of (1.18) which satisfy
the condition ps — qr # 0.

Among the points t = a;, i = 1,5, by the Riemann theorem we arbi-
trarily choose and fix three of them. In our case, the parameters ¢t = ay,
k =1,5, are fixed as follows

t=a;,i=1,5,a1=—b, a3 = —a,a3 =0, ay = a, a5 = b.

Since the point ( = ag = oo is the image of a non-angular point of the
boundary /(w), the following conditions must be fulfilled [11, 13]:

5
My =) ¢ =0, (1.21)
k=1
5
My =" [anc; +0,5(1 - 1)) =0, (1.22)
k=1
5
Ms=>"[ajci + ax(1 - 1})] = 0. (1.23)
k=1
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Condition (1.21) implies (1.16) and, conversely, condition (1.16) implies
(1.21).

Below we will obtain conditions (1.21)—(1.23) in a different manner [16—
21]. From conditions (1.22)—(1.23) we define three parameters ¢;, i = 1,3,
and therefore R(¢) will depend on the four unknown parameters a, b, c4,
Cs.

Equation (1.13) near the points ¢t = a;, i = 1,5, can be rewritten as

(t — a;)?u" (t) + (t — a;)pi(t) w' (t) + q;(t) u(t) = 0, (1.24)

where

pi(t) = poi + Y puilt — ai)",
- (1.25)
pi = (1" Y Brla;—ap)",

k=1,k#i

e}
¢ = g + ¢t —a;) + Z @it —ai)",  qoi = criqgi,  qui = ¢,
n=2

i=1,5, n=0,1,

5

Gni = (—1)"2 Z lawgazr(n — 1) + cpla; — ax)] (a; —a) ™", (1.26)
k=2 ki

n=23...

Local solutions of (1.24) for the points t = a;, i = 1,5, are sought in
the form

u,(t) = (t - ai)aiﬁi(t), ﬂl(t) =1 + Z ’}/m(t - ai)n, (127)
n=1

where 7,;, n = 1,00, i = 1,5, are defined by the following recurrent formu-
las:

foi(ai) = (o — 1) + poia; + qoi = 0, (1.28)
Y1 foi(ai + 1) + fri(a;) =0, (1.29)
Yai foi (i + 2) 4+ 1 fri(ai + 1) + fai(ai) = 0, (1.30)
where
fn(az) = QPni + Gni- (131)

38



Solution of a Two-Dimensional Problem ... AMIM Vol.14 No.2, 2009

If the difference a; — avg;, @ = 1,5, is not an integer number, then using
(1.28)—(1.31) we construct the linearly independent solutions (1.27),

upi(t) = (t — @) Ugg (), Ups(t) =1+ Y Ahi(t — ai)", (1.32)

k=12, i=1,5.

If however ay; — ag; = n, n = 0,1,2, then wuy;(¢) is constructed by
(1.28)—(1.31), whereas ug;(t) is constructed by the Frobenius method [10,
13]. When ay; — ag; = 0, we have [16-21]

ugi(t) = ups (8) In(t — a;) + (£ — @) > voi(t — a)", (1.33)

When aj; — ag; = n, n = 1,2, to construct ug;(t) we have to differentiate
the equality

usi(t) = (t — ;)™ [ai — i+ Y i) (t - ai)”} . (134)

n=1

with respect to «; and then a; — ;. As a result we obtain

ugi(t) = (t — a;)* [Z azlirgm Y (ai)(t — a;)" } In(t — a;)+

+@—a‘m{1+§:r7LJ}QF%}r—%W}. (1.35)

P. J. Polubarinova-Kochina proved that the solution us(t) does not
contain a logarithmic term all along the cut, and she obtained an algebraic
equation relating the parameters a;, ¢;, i = 1, 5. For the unique construction
of ug;(t), the following method was proposed in [16-21]. For such points
the condition ¢ = a; is not fulfilled since

foila +2) =0, o — ay;.

For equality (1.30) to hold as a; — «yg;, it is necessary and sufficient to
require the fulfilment of the condition [16-21]

ifi(oi + 1)+ fola;) =0, a1 — g = 2. (1.36)
After simplification (1.36) becomes
G2 + ¢3; + qip1i = 0. (1.37)
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For the unique construction of ug;(t), it is sufficient to construct uniquely
73 (a;), whereas the remaining v2;(c;), n = 1,2,4,... are calculated by
(1.28)—(1.31). Assume that ay; # ag; + 2, then (1.30) implies [16-21]

Y2i(ei) = = [yilaa) fri(ei + 1) + failew)]/ folew + 2). (1.38)

On the right-hand side of (1.38) the numerator and denominator vanish
for a; = ag; + 2. After evaluation of the indeterminate form in the right-
hand parr of (1.38) for a; = ag; + 2, we uniquely define v2,(a;) by

735 = —0,5[p1i(pi + 215) + pai] (1.39)

Let us proceed to constructing a local solution near the point ¢ = oo.
Functions p(t) and ¢(7") near t = oo are represented as follows:

oo o
p(t) = t_l anoot_na Q(t) = t_2 Z Qnoot_na (1'40)
n=0 n=0
where
5
Pnoo = Braf, Br=1— ik —agk, Ppoco =6,
i (1.41)
Gnoo = Z [alka2k(n + 1) + ckak] QZ‘

k=

1
The solution us(t) will be constructed in the form [16-21],

Uoo () = 79 4+ oot~ (* 1), (1.42)

n=1

where V00, 7 = 1,00, are defined by the formulas

fOoo(aoo) = aoo(aoo + 1) — PO oo + Qoo = 0, (1'43)

Yoo fooo (oo + 1) = Ploc@eo + Glee = 0, (1.44)

7200]0000(0400 + 2) + ’7100(0400 + 1) + ]9200(0400) + @200 = 0, (145)
where

froo = Qroo — (Qtoo + k) Pkoo- (1.46)

Since the point t = oo is the image of a non-angular point, equation
(1.43) must have the roots ajoc = 3, a200 = 2, therefore

5

qoco = Z [kor + arcy| = 6. (1.47)
k=1
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Equation (1.44) does not hold since oo — 200 = 1. Formulas (1.43)—
(1.46) allow us to define only one solution u1.0(t). To define uso(t), it is
necessary and sufficient to require the fulfilment of the condition

Jloo — Ploo0200 = 0. (1.48)

To define ’y%oo, we proceed as follows. Using(1.44),where it is assumed
that oo # 900, to define 414, we obtain

Voo = [plOOaOO - C.hoo] /ono(aoo + 1) (149)
After evaluating the indeterminate form we obtain
Yoo = Ploo- (1.50)

Now all Ypeo, n = 1,00, are defined by formulas (1.43)—(1.46). Hence
we define the linearly independent solutions at the point ¢ = oo
o
Ugoo(t) = £70%0 4 Y " gF 47 %emn k=12, (1.51)

n=1

The local solutions wuy;(t), k = 1,2; i = 1,5, contain the multi-valued
functions among which we choose one-valued functions as follows:

exp [ﬁki(t — ai)] >0, t>a;
{eXp [aki In(t — ai)] }+ = explimay;] [exp[aki In(a; — t)]], a; —t >0,
{exp [aki In(t — ai)] }_ = exp[—imayy] [exp[aki In(a; — t)]], a; —t > 0.

For equation (1.13), near the singular points ¢t = a;, i = 1,6, and near
the ordinary points ¢t = af = (a; + ai+1)/2, i = 1,4, in the sequel we will
construct ug;(t), k =1,2,i =1,6; op;(t), k = 1,2, i = 1,4.

2 Construction Solutions Equation (1.13)

Let us write equation (1.13) in the form [16-21]

X'(t) = x(t) P(t), (2.1)

(0 —a(t) _ (ml). )
Po=(3 T0) o=(al we) e

where
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Solution (1.10) will be sought by means of the matrix 7" x(¢) where x () is
the solution of (2.1). If x(¢) is the solution of (2.1), then T'x(t), too, is the
solution of (2.1), where T is a constant matrix,

T:(p’ Z) det T 0, (2.3)

T,

p, ¢, 7 and s are the integration constants of (1.18), (1.7) [1-7, 16-22].
The local fundamental matrices ©;(t), o;(t), ©%(t), ©F(t) are defined
as follows:

0;(t) = <uZi(t), dy (1)) a; <t<apq,i=1i—1, t=ua; i=1.5

:t)>’ a;i—1 <t <ay,

() =901 (1), a1 <t<a,

Oco(t) = <“10<>(t)’ U’loo(t)> 7

u20o0(t), oo (t)

where for ay; — ag; #0, n=0,1,2, are defined by

« _ [exp(Eimay), 0
vi = < 0, exp(iiwogﬂ) ’ (2:5)

and for a1; — ag; =n, n =0,1, 2, by the equations:

L 0), n=0,2

+ . .
¥;" = exp[Eimon] (:l:iﬂ', 1

4 ~1, 0
VE = explFimag] ( i, 1) , n=1.

It is important to remark [18-21] that the rows ug;(t), k = 1,2; i = 1,4,
converge slowly, which makes the calculation process rather difficult.

Let us replace the series uy;(t), k = 1,2, i = 1,6, by the rapidly and
uniformly converging functional series [18-21]:

ugi(t) = (t — ag) g (t — a;),

Upi(t—a;) =1+ Y Ak(t—a), k=12 i=14 (2.6)
n=1
teelt) = (14 Y 280 (2.7
n=1
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where vX.. vk are defined by fni(c;) and freo(a;) as follows:

f'fli [(t - ai)a ﬁk] = Qg pni(t — Gi) + CIm‘(t — a,i), (28)
° t—a; \"
pnl(t - ai) - (_1)7171 /B’L( : > ) n= 1727
,CIZ;# a; — ag

Qi(t —a;) = a1 (t — ai),

5 A\ "
Qni(t — a;) = (=1)"2 Z [agaor(n — 1) + cp(a; — an)) < t'_ a ) ;

k=1 ki @i — Ok
t—ai . >
<1, k 7£ L, ﬁnoo(t) = Zﬂk(ak/t)nu
a; — ag 1
25:[ (n+1) + ](a’“>n 0,1,2
= a100i(n ceap||l — 1, n=0,1,2,....
dnoo e 1G24 kU 1

The local matrix ©; (t) is complex-conjugate with respect to the matrix
of ©7 (t). The real matrices ©;(t), ©F(t) are the local solutions of a system
of equations near the points t = a;_1, t > a;_1, t = a;, t < a;.

Assume that the elements of these matrices converge to some part of
the interval a;—1 < t < a1, where the matrices O} (¢) and ©;_1(t) are related
by the following matrix identities [16-21]

O1(t) = Ty ©ia(t), i=54,3,2, (2.9)
O1(t) = T-oc O—os(t),

from which we uniquely define the matrix T}, i = 1,5. Assume that the
convergence domains of the matrices ©7(t), ©;—1(t) do not intersect. In
that case, at the point ¢ = af = (a;j—1 + a;)/2 we construct the matrix
0;(t) which converges in the interval a;—; < t < a;. Then it is obvious
that we can always pass from the matrix ©(¢) to the matrix ©;_;(¢) in the
following sequence:

O; (t) = Tuz 04(1), (2.10)

7

oi(t) = Ty O, 1(1). (2.11)

From (2.10) and (2.11) we uniquely define T, and T} ;. Hence it follows
that T - ©5(t) can be analytically continued along —oo < t < 400.

To define the functions w'(¢) and 2/(¢) in the interval (—oo,4o00) we
consider the matrices [16-21],

x(t) =TOs5(t), ©O5(t)=06s(t), t>as,
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where the matrix T is defined by (2.3). From (2.18) it follows that T =T
and thus 7' is a real matrix.

The matrices xT(t) are solutions of (2.1), where the signs + and —
denote respectively the limiting values of the matrix x(¢) from the upper
(I (¢) > 0) and lower (I,,(¢) < 0) half-planes of the plane (.

In the sequel, we will define the matrix x*(¢), whereas the matrix x = (¢)

will be defined from the matrix x*(¢) by using the formula x~(t) = xh(t).
The following notation will be used:

XT(t) =x®), 9 =9, =16,
x(t) = T¥505(t), as <t < as, X(t) = TT10cO40(t), a5 <t < 400,
X(t) = TY95T404(t), as <t < as, x(t) = TOTy0405(t), as < t < au,
X(t) = TOsTydaT303(t), a3z <t < a, (2.12)
X(t) = TUsTy04T309305(t), a2 <t < as,
X(t) = TO5Ty04T303T50(t), az <t < as,
X(t) = TU5Ty04T393T29205(t), a1 <t <az, ¥3=FE, Tz = 131>,
X(t) =TTy 04T3093T5092T1101(t), a1 <t < ag,
X(t) = TI5Ty0,T393T20: 119107 (1), —oo <t < ay,
X(t) = T Ty 04T3009T1 N T-00Ooo(t), T2 = T3Tn, —c0 <t < ay,

OF(t) = Ty4(t), a4 <t < as, (2.13)
O5(t) = T3095(t), a3z <t < aa, (2.14)
O5(t) = Toa(t), a2 <t < as, (2.15)
O5(t) =T101(t), a1 <t < ag, (2.16)
O7(t) = TV (t), —o0<t<ay. (2.17)

From system (2.13)-(2.16) we define the matrices T;, i = 1,4, which
depend on the parameters a;, ¢;, ¢ = 1, 5.

Substituting successively the matrices x(t), m defined respectively in
the intervals (a;—1,a;), i = 5,4,3,2,1, ag =t = —o0, and then performing
right-multiplication by [0 (#)]7!, i = 5,4,3,2,1, we obtain the following
system of matrix equations [16-21]

TY5 = g4T V5, (2.18)

TI5Tyy = gsT 93Ty, (2.19)
T95Ty94T3209 = g1 T U5 Ty04T3002, (2.20)
TI5Ty94T3299T191 = T I5Ty04T32092T101. (2.21)

The matrices 9;, i = 1,5 are defined as follows:

(=i, 0 _ (iexp(—inB) 0 (1,0
o= (0, —exp(mﬁ)>’ V2 = < 0, 1)’ Vs = <0, 1) ’
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—1, 0 (i, 0
V4 = < 0, exp(—iwﬁ)) » U5 = < 0, —exp(iwa)) ‘ (2.22)
From the matrix equations (2.18)—(2.21) we respectively obtain the sys-
tems of equations:

g=0, =0, (2.23)
qs =0, (2.24)
p/s = [racos(ma)] /pa, (2.25)
r4q32 cos [m(a + B)] — sasgzsin(wB) = 0, (2.26)
r4p32 sin(mwa) 4 s4r30 = 0, (2.27)
pazp1sin(mB) + gz2r1 = 0, (2.28)
q1p32 + s1g32 sin(m3) = 0, (2.29)
where
T3o = T3T5. (2.30)

We have obtained two equations for each singular point t = a;, ¢ =
1,2,3,5,, and only one equation (1.37) for the point ¢ = a3 — as a result we
have a system of nine equations. In addition to these equations, we have
obtained a system of three equations My =0, i =1,2,3.

Systems (2.26), (2.27) and (2.28), (2.29) are homogeneous with respect
to (r4,s4) and (ps2,qs2), respectively. For them to be compatible, the
following conditions must be fulfilled:

p32522/[r32qs32] = — cosm(a+ B)/[sin(7a) sin(73)], (2.31)
pisi/[ra] = 1/ sin®(73). (2.32)

Equalities (2.31) and (2.32) are related to double or anharmonic rela-
tions of four points of one circle.

To determine the parameters a, b, cx, k = 1,5, we have system (2.24),
(2.26), (2.27), (2.28), (2.29), (1.16), (1.47), (1.48), (1.37). As has been
shown above, system (1.16), (1.47) and (1.48) is equivalent to the system
My, =0, k = 1,2,3 [19-21]. From system (1.16), (1.47), (1.48), (1.37) we
define the parameters c1, co, ¢4, ¢5 depending on a, b, c3, and substitute
them into (2.24)—(2.29). Now, a, b, c3 are defined by system (2.24), (2.26),
(2.27), (2.28) and (2,29) [16-21].

From system (2.13)—(2.16) we define the elements of the matrices T}, k =
1,4, and substitute them into system (2.24)—(2.32).The number of equations
is 2 units greater than the number of the unknown parameters. From
system (2.24), (2.26)—(2.38) we choose system (2.24), (2.31) and (2.32). Ifin
this system we find the parameters a, b, ¢ and substitute them into (2.25)—
(2.29), then from (2.25) we obtain p/s, ps — rq # 0, and the remaining
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equations (2.26)—(2.29) must be satisfied identically. It remains to define
the parameter s.

At this stage, we must define w’(¢), 2/({), w(¢) and then w(¢) and z({).
For this, we need to define the linearly independent solutions w;(¢) and
u2(() of equation (1.13), but to do so we must first define the matrix z(t),
we have:

_ (W 0 uis(t), u'is(t)
x(t) = < 0, _geime <U§5(t), u'§5(t) , U <as;
_ —1ppa, 0 uia(t), ufy(t) _
X(t) = (—37“4 exp(iTa), —ss4 exp(z'wa)) <u24(t), uby(t) )’ t> ay;
ppa 00 (uly(0) wi(0)
X <4 exp(ima), _584) <u;4<t>, () s 2
_ —PDP4p3, —DPP4gs3
X(t) = 18T ) — ; ; _
4p3 exp(ima) — s8413, 1sT4q3 €Xp(iTQ) — $S483

y (ulg(t), U/ls(t)> , t>as;

ug3(t), us3(t)

_ D32, 932
X(t) = —DPDP4 <—ip32, eXp(_iW,B)qiiQ/Sin(ﬂ-ﬂ))
u12(t), uiy(t)
. <u22(t), U;z t)) to o

q32 exp(im3)

x(t) = (—pp4 exp(—in (3 ) fjj q32/sm(7rﬁ)>

o (ui2(t), wia() a
(i ). e<en
x(t) = (— ppsexp(—inf3))
o (ip32p1 cos(73) exp(imf3), q3251 cos([3) )
0, q3251 cos®(wB)/ sin(m )

y (ull(t), ulll(t)) . t>an;

ug (1), us (1)
X(t) = (— ppa cos(nf3) exp(—in3)) <p3(2)]’01’ —a381 )

—q3251 cos(m3)/ sin(m )
ujy (t), u'11(t)
‘ (u;(t% M(t)), t<ar

From (2.33) we can define u;(t) and uz(t) in the interval (—oo < t < 400),
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we have:
ui(t) = puis(t), wa(t) = sugs(t), t> as;
ui(t) = —ipuis(t), wua(t) = —sexp(imra)uss(t), < as;
ui(t) = —ippaura(t),
ug(t) = —sryexp(ima)uyg(t) — ssgexp(ima)ugg(t), t> ay;
ui(t) = —ippauis(t), ua(t) = isrgexp(ima)ui (t) — ssqusy, t < ag;
u1(t) = —ppa(psuis(t) + qzuas(t)), t> as;
ug(t) = s[iraps exp(ire) — sqrs|uis(t)+
+ 8[27‘4(]3 exp(ira) — 5453] ugs(t), t> as;
uy(t) = —ppa[ps2ui2(t) + gsauoa(t)], > as; (2.34)
ua(t) = ppalipsauia(t) — g2 exp(—in3)/[sin(m3)|uga(t)], > as;
ui(t) = —pplipsz exp(—imB)uis(t) + qouds(t)], ¢ < ag;
u(t) = —ppa [p32 exp(—imB)uiy(t)

+ g3a exp(—in )/ sin(wﬁ)ué}(t)], t < as;

uy(t) = —ppa cos(nB) [ipsapruni (t) + gs2s1 exp(—imB)uai (t)], t > ax;

us(t) = —ppagzap1 exp(—in3) cos®(x8)/ sin(wf)ugr(t), ¢ > as;

i (t) = —ppa cos(m3) exp(—imB) [psapauis (t) — gs2s1us; ()], t < ay;
us(t) = ppagsesi cos®(nB) exp(—inB)/sin(rf)ud, (t), t< ay.

After defining u; (¢) and uy(t), we define w(¢) and z(¢). The components
of the vector ®'(t) along the t-axis are defined to within the sign as follows:

() =xa(t)ur(t), 2'(t) = x1(t)ua(t), —oo <t < +oo. (2.35)
Equalities (2.35) can be rewritten as
dw(t) = x1(t) ui(t)dt, dz(t) = x1(t) ua(t)dt, —oo <t < +oo.  (2.36)

The integration of (2.36) gives

w(t):/t X1 (8) wr (t)dt + w(—o0); (2.37)
:/t (t)dt + 2(—o0); (2.38)
:/atX1 (t)dt + w(a; + 0); (2.39)
:/ X1 (t) 1 (t)dt + z(a; + 0), (2.40)
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where w(a; + 0), z(a; + 0) denote the limiting values of these functions at
the points ¢ = a;, ¢ = 1,5 on the right.

It is obvious that the functions w(t), z(¢) defined by (2.37)—(2.40) will
satisfy the boundary conditions (1.2) because the vector f(t) is piecewise-
constant [18-21].

Separating the real parts from the imaginary ones in (2.37)—(2.40), we
obtain the expressions for the functions ¢(t), ©(t), z(t) and y(t). Moreover,
if we take ¢t = a; in (2.37) and (2.38) and ¢ = a;4;1 in (2.39) and (2.40),
then we obtain

al
wlar=0) = [l w(e)dt + o), (2.41)
ai
(a1 - 0) = / () wr (£)dt + 2(—o0), (2.42)
,CZOH B
w(aH_l - 0) = / X1 (t) ul (t)dt + w(ai + 0), 1= 1, 5, (243)
’;47,4»1 -
z(ai_H - 0) = / X1 (t) UQ(t)dt + Z(CLZ' + 0), 1= 1, 5. (2.44)
For the interval (as, eg) we must take into account that xi(t) = ix;(t).
Upon the integration of (2.34), for the intervals (a;,a;11), 7 = 1,2, 3,4,
we respectively have:
aj
slaf = 0) — w(ar +0) = —pprcos(ng) [ xa(t)ipmaprun ()
a1
+ g3251 exp(fz'ﬂ'ﬁ)um(t)] dt, (2.45)
z(al —0) — z(a; +0) = —ppagsepr cos*(n3)
1
x exp(—inB)/ sin(x ) / Y (B (t)dt, (2.46)
al

w(ag —0) —w(aj +0) =

_ o / 1 (t) [ipsz exp(—imPYuly(t) + gsnuda(t)]dt, (247)

*
1

“laz = 0) = 2(ai +0) = —ppoexp(—inp) [ 0 [pria(t)

+ (gs2/ sin(m3) Jusy (1)) dt, (2.48)
w(az —0) —w(az +0) = —pp4 /az [psau12(t) + gsouz(t)] x1(t)dt, (2.481)

2(al — 0) — 2(as + 0) = pp4 / () [ipsusa(t)

a2
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— q32 exp(—in3)/ Sin(ﬂ'ﬁ)um(t)] dt, (2.49)
w(ag — 0) — w(ah +0) = —pps / a0 [prua(t) + asues()]dr, (2.50)
a3
z(ag —0) — z(a5+0) = s [ir4p3 exp(ira) — 547“3] /* X1 (t)uis(t)dt
a3 ’

+ s[irags exp(ima) — sas3] /* X1 (t)uas(t)dt, (2.51)
wlar—0) ~wla+0) =ppr [ a(uis0)de (252)
z(ag —0) — z(az +0) = s /514 x1(t)

x [irgexp(ima)uiy(t) — squsy(t)]dt, (2.53)
w(ag —0) —w(ag +0) = —pps /% X1 (t)ur4(t)dt, (2.54)

z(aj —0) — z(aq +0) = (—1)sexp(imra)

« / () [rauna(t) + squza(0)] dt, (2.55)
wias — 0) — w(ak +0) = —ip / 25 (s (), (2.56)
2(as — 0) — 2(a§ + 0) = —s exp(ia) / Y (t)uss (t)dt, (2.57)
wieg — 0) — wlas — 0) = pi / :6 X (Burs (£)dt, (2.58)
+(e6 — 0) — 2(as + 0) = si / 6 - (Duss (t)dt. (2.59)

Based on formulas (2.45)—(2.59), we consider the sums

w(a; —0)—w(a; +0) + w(aj+1 —0) —w(a; +0)

=w(a;i+1 —0) —w(a; +0), (2.60)
z(aj —0)—z(a; +0) + z(aj+1 — 0) — z(a; +0)
= z(ai+1 —0) — z(a; +0), i=1,5. (2.61)

Thus we obtain

*

w(az — 0) — wlay +0) = —pps cos(mf) / (0 [ipsaprun (0)

al

+ g3251 exp(—imB)ug ()] dt—
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— Pp4 / - X1(t) [ips2 exp(—imB)uiy(t) + gaauds(t)] dt, (2.62)

al

z(ag — 0) — z(a1 + 0) = —ppagsep1 cos®(n3) exp(—in3)/ sin(n3)

X /al x1(t)u21(t)dt + (—1)ppa exp(—7p)

al

< / N (0) [Pzt t) + (gs2) sin(mB) (1) de, (2.63)

*
1
*

w(az —0) —w(az +0) = —pp /a2 X1(t) [pa2u1a(t) — gzauza(t)]dt

a2

— pp4 /a3 x1(t) [psurs(t) + qauas(t)]dt, (2.64)

*
2

z(az — 0) — z(az + 0) = pp4 /a2 x1(t) [ips2ura(t)

a2

+ g2 exp(—imB)/ sin(m3)uga(t)] dt

+ s [z’r4p3 exp(ira) — 347«3] /aB x1(t)uisdt
ag
+ s[irags exp(imar) — s453] /j3 x1(t)ugsdt, (2.65)
a2
w(as —0) —w(as +0) = —ipps /a4 X1 (t)ui4(t)dt
a4
_@/fm@m%@ﬁ, (2.66)
Gy
z(as — 0) — z(ag + 0) = (—1)sexp(ira) /aZ x1(t) [rawia(t) + sauoa(t)]dt
a4
— sexp(ira) /j5 X1 (t)ugs(t)dt. (2.67)
ay

Separating the real parts from the imaginary ones in (2.52), (2.53),
(2.58), (2.62)—(2.67), we get:

*

y(az) = pp4{£]3281 cos?(mf3) /al X1 (t)ua1 (t)dt

al

+ /fz X1 (t) [pgg sin(ﬂﬁ)u“fg (t) + q32u§2 (t)] dt}, (2.68)

1

Q = ppa COS(Wﬁ){ /al X1(t) [ — psaprui (t) + gzzs1 sin(wB)ug: (t)]dt

al
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o [ m(t)uﬁ(t)dt}, (2.69)

z(az) = L — pps cos(ﬂﬁ){qggpl Cosz(ﬂﬂ)/ sin(73) /a1 X1 (t)uzi(t)dt
# [ a0 aialo) + /sl ), @10

y(az) = pp4{<132p1 cos?(m3) /a1 X1(t)ug1(t)dt

+ /az x1(t) [Sin(ﬂﬂ)p32u>{2(t) + Q32u§2(t)]dt}, (2.71)

1

y(az) —y(az) = pp4{ /a2 x1(t) [ps2u12(t) + gsauza(t)]dt

+ / jz x1(t) [psuis(t) + q3U23(t)]dt}, (2.72)

2

slas) = oaz) = —pmraszcot(rd) [ xa(Ouaalt)i
_s[r4p3 sin(mar) + 847’3] /az X1 (t)uis(t)dt

.
Ay

—s[ragz sin(ra) + sys3] /as X1 (t)uas(t)dt, (2.73)

y(az) —y(az) = PP4{ /a2 x1(t) [ps2u12(t) + gsauza(t)]dt

+s74 cos(ma) /a3 x1(t) [psurs(t) + qzuas(t)]dt, (2.74)

ylas) = (en) =po1 [ a(uiu(o (2.75)
z(aq) — x(ag) = —s /a4 x1(t) [rasin(ra)uiy(t) + suz,(t)]dt, (2.76)

y(aq) — y(ag)ag = sry cos(ma) /a4 x1(t)ui,(t)dt, (2.77)

Q=@ = [ aud+ [ ausid, @

*
4

x(ayq) = scos(ma) /% x1(t) [rauia(t) + sauoq(t)]dt

+s cos(ra) / (B (1), (2.79)

*
4
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*

H — H; = ssin(ra) /a4 x1(t) [raura(t) + sauoq(t)]dt

tssin(ra) / js N (D) (£)dt, (2.80)
Q' = p /66 X (t)us (£)dt, (2.81)
Hi = —s / (s (Bt (2.82)

It can be immediately verified that the following equalities are fulfilled:

y(az) = [z(a1) — z(az)] tan(ma), (2.83)
H — Hy = z(a4) tan(ma). (2.84)

From (2.80) we can define the parameter s and substitute it into (2.82),
we obtain an equation with respect to eg. From this equation we can define
the parameter eg. Then we can solve equation (2.80) with respect to the
parameter s. Now we can define all the parameters, for example, y(a2),
Q, Q" and so on. Thus, using formula (2.40) we can define the parametric
equation x(t) and y(t).

Fig.1 LI — i< L >
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Fig.2 As As
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