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Abstract

The methods of mathematical statistics by their nature are universal in the sense

that the same methods can be used for solving the problems of absolutely different

nature. The same mathematical methods successfully solve a great diversity of prob-

lems from different areas of knowledge. For illustration of this fact, in this work, the

formalization of three absolutely different problems from different areas of knowledge

is given (air defense, the environment monitoring, sustainable development of produc-

tion). They show that, despite their absolutely different nature and character at first

sight, the formalization reduces to identical mathematical tasks which could be solved

by using the same methods of mathematical statistics. For solving of these tasks,

unconditional and conditional Bayesian methods of testing of many hypotheses are

used, which gives the opportunities of decision-making with certain significance level

of criterion.
Key words and phrases: air defence, Bayesian methods, the environment mon-

itoring, hypotheses testing, sustainable development.
AMS subject classification: 62C10.

1 Introduction

The modern level of development of science and engineering has been
achieved due to wide application of mathematics for research and designing.
As a means of penetration in the essence of the investigated phenomenon
and revealing the basic laws, which these phenomena are governed by, math-
ematics has long been necessary practically in any area of knowledge. Their
further advance is impossible without application of mathematical meth-
ods and means. The penetration of mathematics into different areas of
knowledge was considerably promoted by development of computer science
[1]. Due to it, practical resolution of many complex mathematical tasks
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and their use in man’s activity became possible. For example, without
wide spread use of modern computers, it would have been impossible to
achieve the available level of development in space research, nuclear engi-
neering, communication, mechanical engineering, transport etc., because of
complexity of the problems in these fields of knowledge [2]. Going deeper
into other fields of science and promoting their development, mathematics
as a science experiences favorable influence from their party, as they bring
up new problems to it, which requires the development of new approaches,
methods and techniques. For the needs of practical tasks, a lot of sections of
modern mathematics have emerged, such as the theory of optimum control,
the theory of random processes and fields, the theory of decision-making,
planning of experiments etc. [2]. Modern mathematics is a complex and
varied science consisting of many sections. All mathematics can be divided
into two integrally connected parts: determined and stochastic, which are
dialectically interconnected as the link from simple to complex, from com-
mon to individual. At the present stage, the development of mathematics
occurs in the direction of expansion by creation of new sections as well as
by detailed elaboration, deepening and improvement of the methods of res-
olution of the tasks from already generated sections of mathematics. In our
opinion, the development in both directions is necessary, requiring urgent
application of expert efforts.

The mathematical methods are universal by their nature in the sense
that they could be applied to solving the problems of completely different
origin. Most of non-experts in this area think that, for solution of his task,
it is necessary to use special methods which are different from the methods
used for the solution of other tasks. However it happens seldom enough.
The same methods of mathematics solve successfully diverse problems from
different fields of knowledge. For illustration of this fact, in this work the
formalization of three absolutely different problems from different areas of
knowledge is given (air defense, the environment monitoring, sustainable
development of production), which show that, in spite of their absolutely
different nature and character at first sight, the formalization reduces to
identical mathematical tasks which can be solved by using the same math-
ematical methods.

2 Detection and Tracking of Moving Objects on
the Basis of Radiolocation Information (RLI)

Let us consider the problems of detection and tracking of a number of
objects being in multidimensional space on the basis of radiolocation in-
formation (RLI). These problems are mathematically identical. In the first
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case, the space point which the position of the object corresponds to means
the point of physical space where the object is and, in the second case, the
parameters of trajectories which the objects follow [3]. For simplicity of
exposition, let us suppose that each device measures one co-ordinate of the
object.

Let M (M > 1) objects be at the points θj = (θj
1, θ

j
2, . . . , θ

j
q), q =

1, . . . , M of q-dimensional physical space, xj
i , i = 1, . . . , n , be the measured

value of the θj point detected by the i-th measuring device (MD):

xj
i = ai(θj) + εi, i = 1, . . . , n;

ε1, . . . , εn are the independent errors of measurement, which are normally
distributed random values with zero average and σ2 variance.

It is unknown which measurements have been detected from the same
object by different MD, i.e. ai(θj) = aj

i . Among aj
i , j = 1, . . . , M ; i =

1, . . . , n which belong to the same objects, there are n − q independent
equations of connection [3]:

Ψk(a1, a2, . . . , an) = 0, k = 1, . . . , n− q, (2.1)

a concrete form of which depends on the type and the geometry of dispo-
sition of MDs. From (2.1), it is obvious that for the measurement system
to be able of defining the location of the objects in q-dimensional physical
space, it is necessary to satisfy the condition q < n.

As the measurements are realized with errors, equation (2.1), in general
case, does not satisfy any sequence x1, . . . , xn. The value ηk = Ψk(x1, . . . , xn)
is random which, in accordance with (2.1), can be presented as follows:

ηk ≈
n∑

i=1

(xi − ai)
∂Ψk

∂xi
,

where ∂Ψk
∂xi

is the partial derivative.
At normality of measurement errors, ηk obeys normal distribution with

zero average (E(ηk) = 0 ) and variance

V (ηk) = σ2
n∑

i=1

(
∂Ψk

∂xi

)2

.

If tj = (xj1
1 , . . . , xjn

n ) are the measurement values of the same point,
then, with high chosen probability Ptj , the following inequality will be
satisfied:

∣∣∣∣∣
Ψk(tj)√
V (ηk(tj))

∣∣∣∣∣ ≡

∣∣∣∣∣∣∣∣∣∣

Ψk(x
j1
1 , . . . , xjn

n )√
σ2

n∑
i=1

(∂Ψk
∂xi

)2

∣∣∣∣∣∣∣∣∣∣

≤ h
(
Ptj

)
, (2.2)
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where h
(
Ptj

)
is some threshold which depends on the chosen certainty

Ptj and is defined by ratio h = Φ−1
(

1+Ptj

2

)
. Here Φ−1(.) is the inverse

function of standard normal distribution.
The fulfillment of condition (2.2) for all k = 1, . . . , n−q, is the necessary

condition (with Ptj probability) of belonging of measurements xj1
1 , . . . , xjn

n

to the same object. If we suppose the distribution of errors being truncate
normal, then, for some h1, conditions (2.2) could be fulfilled with probabil-
ity one.

Let’s designate:

Gj =

{
t :

∣∣∣∣∣
Ψk(t)√
V (ηk(t))

∣∣∣∣∣ ≤ h
(
Ptj

)
; ∀k : k ∈ (1, . . . , n− q)

}
,

j = 1, . . . , N,

where Gj are the areas from n-dimensional space of measurement, where
the objects could be present; N is the quantity of such areas.

In practice N - the number of areas Gj is always greater than M - the
number of detected objects. This is caused by measurement errors and by
presence, in the measurement space, of ”symmetrical” points in reference
MD which give identical measurement information even at the absence of
measurement errors.

The problem consists in optimal selection of those areas where the ob-
jects from total number of Gj areas are. The optimality of decision rule
consists in the minimization of false decisions about the presence of objects
in the given areas at restrictions on the number of incorrectly rejected true
decisions (conditional task of optimization) or in the minimization of the
total error of incorrectly taken decisions of both types (unconditional task
of optimization).

Let Hi, i = 1, . . . , S, S ≤ CM
N be the hypothesis supposing the presence

of the objects in the areas Gi1 , . . . , GiM . It is implied that the same object
could not be present in two or more different areas simultaneously (or a
stronger restriction Gi

⋂
Gj = 0 at i 6= j i, j ∈ (1, . . . , N)).

Let us designate: p(Hi) a priori probabilities of hypotheses; x are the
measurement results; X is the space of values of x; p(x|Hi) is the probability
distribution of x under the condition that hypothesis Hi is true; δ(x) =
{δ1(x), . . . , δn(x)} is the decision rule, herewith

δj(x) =
{

1, if the decision about the presence of the object in Gj is made;
0, on the contrary ;

Γj = {x : δj(x) = 1}, i.e. Γj is the set of such x for which the decision
about the presence of the object in Gj is made, Γj ⊆ X. It is obvious
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that δj(x) is defined by the set of areas Γj , i.e. δ(x) = {Γ1, . . . , ΓN}. The
problem consists in taking the decision about the validity one of statistical
hypotheses Hi, i = 1, . . . , S, on the basis of measurement results x.

3 Formalization of the problem of Identification
of River Water Emergency Pollution Sources

The problem of monitoring and controlling the water environment condi-
tion includes the problem of identification of pollution sources in order to
take measures on their elimination [4]. The latter problem is especially
actual for city conditions, when the number of pollution sources is rather
great and there is no possibility to control each of them separately. Identifi-
cation of pollution sources has not only ecological and technological effects,
but a significant economical effect as well. The economical effect is reached
by minimization of technical facilities, in particular, the measurement fa-
cilities, needed for the stand alone control of each pollution source.

Let’s consider the problem of identification of the river water pollution
sources located between two controlled ranges by means of automated sys-
tems [5]. The proposed algorithms are built with the assumption that the
pollution sources have either different composition of waste water or (at
the same composition) different ratios of ingredients.

Let the river water condition be controlled by M automated stations on
the section under consideration. Each of the stations controls m− physical
chemical parameters. Let’s denote the water quality index at the j−th
station, i.e. in the j − th controlled range of the river at tN moment, by
X̂j(tN ) = {x̂jp(tN )}, j = 1, . . . ,M ; p = 1, . . . ,m.

The symbol over x indicates that not exact values of the controlled
parameters but their estimations are known in the j−th range.

Let pollution take place at tN moment in the j−th range, i.e.

X̂j(tN ) = {x̂jp(tN )} ∈ Γ,

where Γj = R−Γj ; R−m is dimensional parametric space; Γj m is dimen-
sional region of the unpolluted water in the j−th range,

Γj =
{

x̂jp(t) : µ1
jp < x̂jp(t) ≤ µ2

jp; ∀p ∈ (1, ..., m)
}

;

(µ1
jp, µ

2
jp] is region of the unpolluted by parameter p water in the j−th

range.
In formation of water quality in the j−th range X̂j(tN ) are the following

participants: the (j−1)−th range, X̂j−1(tN − τj−1), where τj−1 is the time
for water to run from the (j − 1)−th range to the j-th one; K− controlled

7



AMIM Vol.14 No.2, 2009 K.J. Kachiashvili, M. A. Hashmi, ... +

objects with the known concentrations of the substances being released
Zj−1,k(tN − τk), k = 1, ..., K , where τk is the time for water to run from
the k−th controlled object to the j−th range; R− uncontrolled objects,
which in the normal mode of operation release concentrations Yj−1,r(tN −
τr), r = 1, ..., R, and in the emergency mode may have additional releases
∆Yj−1,r(tN − τr), r = 1, ..., R , where τr is the time for water to run from
the r−th uncontrolled object to the j−th range.

Other uncontrolled factors are called ”noise”. Let’s denote their influ-
ence on the quality of water in the j−th range by X

j
0(t) = {xj

0p(t)}, p =
1, ..., m.

After introducing of denotations the model of water quality formation
in the j−th range assumes the following form:

X̂j(tN ) = Fj

[
X̂j−1(tN − τj−1), λj−1;Zj−1,k(tN − τk), αj−1,k(k = 1, . . . , K);

Yj−1,r(tN − τr), βj−1,r(r = 1, . . . , R)
]

+ X
j
0(tN ), (3.1)

where Fj is the known operator corresponding to the process of formation of
water quality in the j− th range; τ, λ, α, β are parameters characterizing
the time of running to the j − th range and the peculiarities of formation
of water quality in it.

If there is a pollution, i.e. when X̂j
0(tN ) ∈ Γj , the model of water quality

formation takes the following form

X̂j(tN ) = Fj

[
X̂j−1(tN − τj−1), λj−1; Zj−1,k(tN − τk), αj−1,k

(k = 1, . . . ,K);Yj−1,r1(tN − τr1), βj−1,r1(r1 ∈ R′);Yj−1,r2+

∆Yj−1,r2 , βj−1,r2(r2 ∈ R′′)
]

+ X
j
0(tN ), (3.2)

where R′ ∪ R′′ = R, R′ ∩ R′′ = 0, division of set R into subsets R′ and R′′

being unknown.
The task consists in dividing the set R into subsets R′ and R′′ at the mo-

ment of pollution detection. Upon detection of pollution in the j−th range
by means of operator Fj from (1.1), the concentrations in the j−th range are
determined with the assumption that the emergency release was made by
one or two, etc., or uncontrolled objects, i.e. are calculated m−dimensional
points Xi1,...,ir

j (tN ), where ij ∈ (1, ..., R); ij1 6= ij2 ; r indicates the number
of uncontrolled objects, which are suspected in the simultaneous emer-
gency release. The number of points Xi1,...,ir

j (tN ) for each population r
out of R objects is equal to Cr

R, and the total number of all the points

8
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is
R∑

γ=1
Cγ

R = 2R − 1. It is necessary to decide which population r of un-

controlled objects made the emergency release, i.e. it is necessary to test
hypotheses

Hi : M
(
X̂j (tN )

)
= Xi1,...,ir

j (tN ) , i = 1, 2, ..., 2R − 1. (3.3)

4 Formalization of the problem of sustainable
development of production

Let the technological process be characterized by parameters b = (b1, . . . , bm).
Depending on the values of these parameters, as a result of realization of
technological process, the specified quality (including the quantity) of pro-
duction which is characterized by the values of corresponding parameters
a = (a1, . . . , an) is obtained. As a rule, n 6= m, and these parameters, as
a matter of fact, differ from each other. Between the parameters of tech-
nological process b and the quality of production a, there are functional
relations

ai = fi

(
bi1 , bi2 , . . . , bimi

; ci
i1 , c

i
i2 , . . . , c

i
iki

)
, (4.1)

1 ≤ mi ≤ m, i = 1, . . . , n;

where mi is the number of parameters of the technological process which
the value of the parameter ai of the index of production quality depends
on; ci = (ci

1, c
i
2, . . . , c

i
ki

) are the parameters of this dependence; ki is their
number.

Dependencies (4.1) define the values of indicators of the finished product
quality depending on the values of technological process parameters.

In a real situation, as a rule, dependencies (4.1) are regression depen-
dencies at a passive or an active experiment, i.e. generally, in real situation
instead of (4.1) there are the dependencies:

ai = fi

(
bi1 + δi1 , · · · , bimi

+ δimi
; ci

i1 , c
i
i2 , . . . , c

i
iki

)
+ εi,

1 ≤ mi ≤ m, i = 1, . . . , n,
(4.2)

where εi, δij are the random variables with certain probability characteris-
tics. As a rule, the normal approximation of these distributions is accept-
able. The dependence or the independence among them is possible.

The problem of identification of dependence (4.2) at different values of
characteristics is very important and widely discussed in the literature [6-
9]. This problem has also been considered in the work of the author [10].
Below, dependencies (4.1) are supposed to be given.
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By controllable parameters, the production can have one of the set
S qualities. Each state of quality is defined by belonging of controllable
parameters a = (a1, . . . , an) of the finished product to corresponding areas
Ai, i = 1, . . . , S, from parametrical space Rn. As a rule, the i-th quality of
production is defined by fulfillment of the condition:

Ai =
{

a : a
′
ij ≤ aj ≤ a

′′
ij ;∀j : j ∈ (1, . . . , n)

}
, i = 1, . . . , S, (4.3)

where S is the total number of possible states of production quality which
the finished product can have.

To each state of production quality, there corresponds the certain area
in parametrical space of technological process which is defined by relations:

bj = φj

(
aj1 , aj2 , . . . , ajQj

; dj1 , dj2 , . . . , djRj

)
, j = 1, . . . , m, (4.4)

where Qj is the number of indices of production quality which the param-
eter of technological process bj influences; dj =

(
dj1 , dj2 , . . . , djRj

)
are the

dependencies parameters; Rj is the number of these parameters.
The kind of functional dependence φj and its parameters dj can be de-

termined by solution of the system of equations (4.1) in relation to param-
eters bj if such a solution exists, or they can be obtained by identification
of this dependence on the basis of experimental data [10].

Thus, to each area Ai from the parametrical space of production qual-
ity, area Bi in the parametrical space of technological process corresponds.
Functional dependencies fi, i = 1, . . . , n, reflect area Bi in area Ai, and
functional dependencies φj , j = 1, . . . , m, reflect area Ai in area Bi . At
monotony of fi, i = 1, . . . , n, and n ≥ m, mapping of Ai in Bi, i.e. func-
tional dependencies φj , j = 1, . . . , m, can be identically determined by solv-
ing system of equations (4.1) provided that it exists. As a rule, for real tech-
nological processes, the functions fi, i = 1, . . . , n, are monotonous even in
the certain sub area of their definition area, and system of equations (4.1)
has a simple solution [11]. At n < m, additional conditions can be found
for mutual uniqueness of mappings f and φ .

Thus, we consider the case when, at monotony of functions fi, i =
1, . . . , n, it is always possible to find the conditions of mutual uniqueness
of mappings f and φ.

In that case, to areas Ai determined by relations (4.3), there correspond
areas Bi determined by the formulae:

Bi =
{

b : b
′
ij ≤ bj ≤ b

′′
ij ; ∀j : j ∈ (1, . . . , m)

}
, i = 1, . . . , S, (4.5)

10
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where boundary values b
′
ij also b

′′
ij are defined as follows:

b
′
ij = min

{a∈Ai}
φj

(
aj1 , aj2 , . . . , ajQj

; dj1 , dj2 , . . . , djRj

)
,

b
′′
ij = max

{a∈Ai}
φj

(
aj1 , aj2 , . . . , ajQj

; dj1 , dj2 , . . . , djRj

)
,

(4.6)

i = 1, . . . , S.

Let there be available Θ technological processes. Generally Θ 6= S. At
each j-th technological process, the area of possible values of its parameters
Bj

t , j = 1, . . . ,Θ , can intersect one or several (in the limit, all) areas
Bi, i = 1, . . . , S, determined by relations (4.5) and (4.6). We shall designate
these intersections as follows:

Bj,lk
t = Bj

t ∩Blk , l
k
∈ (1, . . . , S) , k = 1, . . . , Sj , (4.7)

i.e., when its parameter values belong to area Bj,lk
t , the j-th technological

process can provide the l
k
∈ (1, . . . , S) quality of finished product and the

quantity of such qualities is equal to Sj ≤ S.
For the j-th technological process, for supporting the values of the pa-

rameters in area Bj,lk
t , it is necessary to determine the expenses by the

relations:

Ej,lk = Ψj

(
b1, b2, . . . , bm; ej

1, e
j
2, . . . , e

j
qj

)
, b ∈ Bj,lk

t ,

lk ∈ (1, . . . , S) , k = 1, . . . , Sj , j = 1, . . . ,Θ,
(4.8)

where Ψj is the function defining the expenses size at the j-th technological
process; ej

1, e
j
2, . . . , e

j
qj are the parameters of this function; qj is the quantity

of these parameters.
If by

Ij,lk = ψj

(
a1, a2, . . . , an; θj

1, θ
j
2, . . . , θ

j
pj

)
, a ∈ Alk ,

lk ∈ (1, . . . , S) , k = 1, . . . , Sj , j = 1, . . . , Θ,
(4.9)

where θj
1, θ

j
2, . . . , θ

j
pj are the parameters of corresponding functional de-

pendencies, we designate the income from the sale of the production of
lk ∈ (1, . . . , S) quality (k = 1, . . . , Sj) obtained by the j-th technological
process (i.e. ψj is the function defining the income at the j-th technologi-
cal process, and pj is the quantity of its parameters), then the amount of
possible profit obtained by the j-th technological process can be calculated
by the relation:

Gj,lk = Ij,lk −Ej,lk , (4.10)

11
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lk ∈ (1, . . . , S) , k = 1, . . . , Sj , j = 1, . . . ,Θ.

The decision concerning the quality of production to be made on the
basis of the measured values x = (x1, . . . , xn) of the parameters a =
(a1, . . . , an) . As a rule, the measured values x contain random errors just
as because of the essence of the considered technological process (at which,
as a rule, the values of corresponding parameters fluctuate randomly) and
the method of control (the finished products cannot be absolutely homoge-
neous, i.e. the quality parameters fluctuate randomly and the quantity of
controllable products is limited) so because of the random character of mea-
surement errors. Therefore each decision about the quality of production
on the basis of is accompanied by a certain risk of being erroneous. The
problem consists in the choosing such a mode of operation from all given
technological processes and such values of the parameters of the technologi-
cal process in the given mode of operation which will provide the maximum
profit at the minimum risk, i.e. with the minimum average probability of
obtaining the production undesirable quality and making the erroneous
decision concerning the production quality at the given likelihood charac-
teristics of random distortions.

The j-th technological process (j = 1, . . . ,Θ) can ensure obtaining the
products of Sj ≤ S qualities by choosing the corresponding values of the
parameters. We shall designate the probability distribution law of mea-
surement results of production quality parameters on the basis of which
the decision is made at the supposition that the production has the i-th
quality by p(x/Hi), where Hi : a ∈ Ali , li ∈ (1, . . . , S, ), i = 1, . . . , Sj , is
the supposition (or that is the same - the hypothesis) that manufactured
production on the whole has the i-th quality. The problem consists in the
following: for each technological process in the corresponding areas of pro-
duction quality Ali , li ∈ (1, . . . , S, ), i = 1, . . . , Sj there are defined such
values of parameters a = (a1, a2, . . . , an) , i.e. such n-dimensional points,
that the averaged risk of obtaining the production of some quality at other
planned quality was minimum and the profit resulting from the realization
of the corresponding mode of technological process at corresponding values
of parameters was maximum. For choosing the optimum (in the sense of
the above mentioned) technological process and the corresponding mode of
operation, it is necessary to define the solving rules of taking the optimum
decisions about the production quality and to calculate the corresponding
value of average risk:

r (δ(x)) =
S∑

i=1

ρ (Hi, δ(x)) p (Hi)

12
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=
S∑

i=1

p(Hi)
∫

Rn
L (Hi, δ(x)) p (x/Hi) dx, (4.11)

where Hi, i = 1, . . . , S , is the hypothesis that the production quality is in
the i-th state, i.e. ai ∈ Ai, i = 1, . . . , S; p(Hi) is a priori probability of the
Hi hypothesis; δ(x) = {δ1(x), δ2(x), . . . , δS(x)} is the solving rule which,
to each vector of observation x, assigns a certain decision, i.e. a certain
hypothesis, where

δj(x) =
{

1, if hypothesis Hi is accepted ;
0, on the contrary.

Thus, from the above mentioned, it is obvious that three absolutely
different problems can be formalized as identical mathematical problems
of testing of many hypotheses. Obviously, besides these problems, there
are some other ones which by formalization, could be reduced to the same
problem of mathematical statistics of testing of many hypotheses. As an
example, let us note the problem of detection of the earthquake center by
registered seismological waves and a lot of others.

Depending on the available a priori information and the aim, for so-
lution of these problems different methods of statistical hypothesis testing
could be used [12-20]. Among these methods, at availability suitable a pri-
ori information, the most universal and perfect methods are unconditional
and conditional Bayesian methods of many-hypotheses tasting, which al-
low decision-making with certain significance level of criterion [12-15,17].
Below we give solution of conditional and unconditional Bayesian problems
of many-hypotheses testing.

5 Statement and Solution of Conditional and
Unconditional Bayesian Problems of
Many-Hypotheses Testing

The essence of Bayesian problem of testing many hypotheses is as fol-
lows. On the basis of measured n-dimensional point x = (x1, x2, ..., xn),
it is necessary to accept one of Hi, i = 1, ..., S, hypotheses. For simplic-
ity of representation, below we shall use the following denotations: x−
the n-dimensional measured point in Xn− space of measurement; ai =
(ai

1, a
i
2, ..., a

i
n) is the mathematical expectation of measurement point x =

(x1, x2, ..., xn) on condition that hypothesis Hi is true, i.e. E(x|Hi) = ai;
p(Hi) is the a priori probability of hypothesis Hi; p(x|Hi) is the probability
distribution of x on condition that hypothesis Hi is true; D = {d} is a set

13
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of solutions, where d = {d1, ..., dS}, it being so that

di =
{

1, if hypothesis Hi is accepted,
0, otherwise;

δ(x) = {δ1(x), δ2(x), ..., δS(x)} is the decision function that associates each
observation vector x with a certain decision

x
δ(x)−→ d ∈ D.

Ei = {x : δi(x) = 1} is the region of hypotheses Hi acceptance. As hypothe-
ses Hi, i = 1, ..., S, are non-interceptable, Ei ∩ Ej = 0 and

⋃S
i=1 Ei = Xn,

where S is the number of hypotheses.
Let hypothesis Hi be true. We introduce loss function L(Hi, δ(x)).

Then the risk, corresponding to hypotheses Hi, is determined in the follow-
ing way:

ρ(Hi, δ(x)) =
∫

Xn

L(Hi, δ(x)) · p(x|Hi)dx.

For each decision rule δ(x), the risk function is [17]:

r(δ(x)) =
S∑

i=1

ρ(Hi, δ(x))p(Hi) =
S∑

i=1

P (Hi)
∫

Xn

L(Hi, δ(x))p(x|Hi)dx.

(5.1)
The problem consists in finding of such decision rule δ∗(x), i.e. such Ei,

i = 1, ..., S, hypotheses Hi acceptance regions, for which we would have

r(δ∗(x)) = min
{δ(x)}

r(δ(x)). (5.2)

5.1 Stepwise Loss Function

Let’s consider the case, when the losses for falsely accepted hypotheses are
identical, while those for correctly made decisions are equal to zero, i.e.

L(Hi, Hj) =
{

C npu i 6= j,
0 npu i = j.

(5.3)

The risk function being

r(δ(x)) = C

(
1−

S∑

i=1

p(Hi)
∫

Ei

p(x|Hi)dx

)
. (5.4)

The minimum in (5.4) is reached by solving the following problem

S∑

i=1

p(Hi)
∫

Ei

p(x|Hi)dx ⇒ max
{Ei}

. (5.5)

14
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It is seen from here, that we may consider C = 1 without any loss of
generality. The solution of problem (5.5) has the following form:

Ei =
{

x : p(Hi)p(x|Hi) > p(Hj)p(x|Hj);∀j :

j ∈ (1, ..., i− 1, i + 1, ..., S)
}

. (5.6)

5.2 Non-stepwise Loss Function

Let’s rewrite expression (5.1) in the following way:

r(δ(x)) =
S∑

j=1

S∑

i=1,
i6=j

L(Hi,Hj)p(Hi)
∫

Ej

p(x|Hi)dx. (5.7)

It is not difficult to make sure that optimal region Ej of hypothesis Hj

acceptance, which minimizes the risk function (5.7), assumes the following
form:

Ej =

{
x :

S∑

i=1

L(Hi,Hj)p(Hi)p(x|Hi) <
S∑

i=1

L(Hi, Hk)p(Hi)p(x|Hi);

∀k : k ∈ (1, ..., j − 1, j + 1, ..., S)

}
, j = 1, ..., S. (5.8)

5.3 Conditional Bayesian Problem of Many-Hypotheses
Testing

If, for some reason or other, it is difficult to define loss function L(Hi, δ(x)),
or it is required to have the guaranteed decision concerning errors of first
and second kind, e.g. to have the guaranty that the error probability of
omitting true decisions would not exceed the prescribed level, then, instead
of unconditional Bayesian problem [17], it is necessary to solve conditional
problem of optimization with respect to losses, caused by the made decision
[17].

The problem is stated as follows: it is necessary to find a decision rule
δ(x) such that the mean number of false decisions would be minimized

r(δ(x)) =
S∑

i=1

p(Hi)
S∑

j=1
j 6=i

∫

Ej

p(x|Hi)dx ⇒ min
{Ej}

(5.9)

15
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at restrictions imposed on the mean probability of correctly made decisions

S∑

i=1

p(Hi)
∫

Ei

p(x|Hi)dx ≥ 1− α, (5.10)

where 1− α specified probability.
Solution of problem (5.9), (5.10) has the following form

Ei =





x :
S∑

j=1,
j 6=i

p(Hj)p(x|Hj) <λ · p(Hi)p(x|Hi)





, i = 1, ..., S. (5.11)
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