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Abstract

Cauchy problem for a Kirchhoff-type abstract equation is considered with the

general nonlinearity and self-adjoint positive definite operator, which is more than or

equal to the square of the operator in the nonlinear term. Kirchhoff type equation

for a beam represents a particular case of this equation. For the stated problem, the

semi-discrete scheme is constructed, where for approximation of the term containing

the gradient, the integral averaging is used. Stability of the scheme is proved and the

error of the approximate solution is estimated.
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Introduction

In the present work we consider a Kirchhoff type abstract equation for a
beam in the Hilbert space with the self-adjoint positive definite operators
A and B, which satisfy the condition A2 ≤ c0B and with the general non-
linearity with respect to the gradient (here the role of the gradient is played∥∥A1/2u

∥∥2
, where u is a solution). This equation represents a generalization

of the Kirchhoff type nonlinear equation for a beam (it was obtained by
S. Woinowsky-Krieger [18]. Our aim is to find an approximate solution of
the Cauchy problem stated for this equation. For this purpose we suggest
the symmetric three-layer semi-discrete scheme, where for approximation
of the term containing the gradient, the integral averaging is used.

Existence and uniqueness issues for local as well as global solutions of
initial-boundary problem for the Kirchhoff string equation were first studied
by Bernstein [2]. The issues of solvability of the classical and generalized
Kirchhoff equations were later considered by many authors (see, for ex-
ample, A. Arosio, S. Panizzi [1], L. Berselli, R. Manfrin [3], P. D’Ancona,
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S. Spagnolo [5], [6], R. Manfrin [8], L.A. Medeiros [10], M. Matos [9], K.
Nishihara [11], S. Panizzi [12], S.I. Pohozaev [15] and references therein).

The following works are devoted to approximate solution of nonlinear
Kirchhoff type equation: A. I. Christie, J. Sanz-Serna [4], I. S. Liu, M. A.
Rincon [7], J. Peradze [13], [14], J. Rogava, M. Tsiklauri [17]. In the work
[14] the case is considered when the nonlinear term contains the sufficiently
general function with respect to the gradient (the work [14] became known
just before the publishing of the present work). Approximation of the term
containing the gradient coincides with the approximation given in the work
[14].

Investigation of the stability and convergence issues of the semi-discrete
scheme given in this work are based upon the following two facts: (a)
(uk − uk−1) /τ , A1/2uk and B1/2uk are uniformly bounded (uk is an ap-
proximate solution, and τ is a step with respect to time variable); (b) For
the corresponding linear discrete problem, the a priori estimate is valid,
where in the left-hand side is the norm of B1/2uk, and in the right-hand
side – the norm of fk (fk is a value of the right-hand side of the equation
in the point t = tk = kτ). The mentioned fact allows to weaken the nonlin-
ear term in the given nonlinear equation to such a degree that taking into
account the fact (a), one can use Gronwell’s lemma.

1 Statement of the problem and the integral
semi-discrete scheme

Let us consider the Cauchy problem for an abstract hyperbolic equation in
the Hilbert space H:

d2u(t)
dt2

+ Bu (t) + ψ

(∥∥∥A1/2u
∥∥∥

2
)

Au (t) = f (t) , t ∈ [0, T ] , (1.1)

u (0) = ϕ0,
du (0)

dt
= ϕ1. (1.2)

where A and B are self-adjoint, positively defined (generally unbounded)
operators with the definition domains D (A) and D(B) which are every-
where dense in H, besides, the following conditions are fulfilled

‖Au‖2 ≤ c0 (Bu, u) , ∀u ∈ D(B) ⊂ D (A) , c0 = const > 0,

where by ‖·‖ and (·, ·) are defined correspondingly the norm and scalar
product in H; scalar function ψ(s), s ∈ [0, +∞) is continuous and twice
continuously differentiable, in addition ψ(s) ≥ λ > 0; ϕ0 and ϕ1 are given
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vectors from H; u (t) is a continuous, twice continuously differentiable,
sought-for function with values in H and f (t) is a given continuous function
with values in H (here continuity and differentiability is meant under the
metric of H).

Existence and uniqueness of the solution of the problem (1.1), (1.2) (in
case when B = A2 and the scalar function ψ (s) = λ + s, λ > 0) is shown
in [10]. Let us note that in this case equation (1.1) is an abstract analogue
of Kirchhoff-type equation for a beam. Kirchhoff-type equation for a beam
has the following form (see [18])

∂2u

∂t2
+

∂4u

∂x4
−


λ +

L∫

0

u2
ξ (ξ, t) dξ


 ∂2u

∂x2
= f (x, t) .

We are searching solution of the problem (1.1), (1.2) by the following
semi-discrete scheme:

uk+1 − 2uk + uk−1

τ2
+ B

uk+1 + uk−1

2
+ ak

Auk+1 + Auk−1

2
= fk, (1.3)

where k = 1, ..., n− 1, τ = T/n (n > 1), fk = f (tk), tk = kτ , u0 = ϕ0,

ak = ψ̃ (γk−1, γk+1) , γk =
∥∥∥A1/2uk

∥∥∥
2
,

and where the function ψ̃(a, b) is defined by the formula

ψ̃(a, b) =
1

b− a

b∫

a

ψ(s)ds. (1.4)

It is obvious that if the length of the interval b − a is small, then the
formula (1.4) gives a good approximation of the value of the function ψ(s)
at the point s = (a + b)/2.

As an approximate solution u (t) of problem (1.1), (1.2) at point tk = kτ
we state uk, u (tk) ≈ uk.

2 First step for the proof of the stability of
the discrete problem (1.3)

In this section we will show in the standard way that (uk − uk−1) /τ, A1/2uk

and B1/2uk are uniformly bounded for the discrete problem (1.3).
Our final aim is to obtain such a priori estimates for the scheme (1.3)

from which follows the stability and convergence. Proof of the uniform
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boundedness of the solution to the discrete problem (1.3) and the differ-
ence analog of its corresponding first order derivative is a first step in this
direction. Uniform boundedness means that for the concrete equation, dur-
ing the numerical calculations, we should not expect the sharp increase of
the solution value in case of the step’s decrease.

The following theorem takes place (below everywhere c denotes positive
constant).

Theorem 2.1 For the discrete problem (1.3), the vectors (uk − uk−1) /τ ,
A1/2uk and B1/2uk are equally bounded, i.e there exist constants c1, c2 and
c3 (independent of n) such that

∥∥∥∥
uk − uk−1

τ

∥∥∥∥ ≤ c1,
∥∥∥B1/2uk

∥∥∥ ≤ c2,
∥∥∥A1/2uk

∥∥∥ ≤ c3, k = 1, ..., n.

Proof. If we multiply scalarly both sides of equality (1.3) on vector
uk+1 − uk−1 = (uk+1 − uk) + (uk − uk−1), we obtain

∥∥∥∥
uk+1 − uk

τ

∥∥∥∥
2

−
∥∥∥∥
uk − uk−1

τ

∥∥∥∥
2

+
1
2

(∥∥∥B1/2uk+1

∥∥∥
2
−

∥∥∥B1/2uk−1

∥∥∥
2
)

+
1
2
ak

(∥∥∥A1/2uk+1

∥∥∥
2
−

∥∥∥A1/2uk−1

∥∥∥
2
)

= (fk, (uk+1 − uk)) + (fk, (uk − uk−1)) . (2.1)

Let us introduce denotations:

αk =
∥∥∥∥
uk − uk−1

τ

∥∥∥∥
2

, βk =
∥∥∥B1/2uk

∥∥∥
2
, γk =

∥∥∥A1/2uk

∥∥∥
2
.

If we take into account that according to the formula (1.4), we have

ak (γk+1 − γk−1) = ψ̃ (γk−1, γk+1) (γk+1 − γk−1)

=

γk+1∫

γk−1

ψ(s)ds =

γk+1∫

0

ψ(s)ds−
γk−1∫

0

ψ(s)ds,

Then from (2.1) we obtain

αk+1 +
1
2

(βk+1 + βk + µk+1 + µk)

= αk +
1
2

(βk + βk−1 + µk + µk−1)

+ (fk, (uk+1 − uk)) + (fk, (uk − uk−1)) , (2.2)
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where

µk =

γk∫

0

ψ1(s)ds.

According to Schwartz inequality, we have:

|(fk, (uk+1 − uk)) + (fk, (uk − uk−1))| ≤ τ
(√

αk+1 +
√

αk

) ‖fk‖ .

Taking into account this inequality, from (2.2) it follows:

λk+1 ≤ λk + εk, (2.3)

where

λk = αk+1 +
1
2

(βk+1 + βk + µk+1 + µk) ,

εk = τ
(√

αk+1 +
√

αk

) ‖fk‖ .

Obviously from (2.3) we obtain

λk+1 ≤ λ1 + (ε1 + ε2 + ... + εk)

= λ1 + τ
k∑

i=1

(
√

αi +
√

αi+1) ‖fi‖ .

Obviously from here we get:

δ2
k+1 ≤ δ2

1 + τ
k∑

i=1

(δi + δi+1) ‖fi‖ , δk =
√

λk.

From here we obtain the following inequality

δk+1 ≤ δ1 + 2τ
k∑

i=1

‖fi‖

From here it follows that αk, βk and γk are equally bounded. ut

3 The a priori estimates for perturbation of
the solution of the discrete problem

Our aim is to show the stability of the scheme (1.3). Since the additiveness
does not take place for a nonlinear problem, we naturally try to obtain the
a priori estimate directly for perturbation of the solution. Hence (analo-
gously to the linear problem) there automatically follows the stability and
convergence of the nonlinear scheme.
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In this section, based on the results of the previous sections, we will
obtain the a priori estimates for perturbations of the solution of the semi-
discrete scheme (1.3) and the difference analog of its corresponding first
order derivative.

The following theorem takes place (below everywhere c denotes positive
constant).

Theorem 3.1 Let uk and uk be solutions of difference equation (1.3)
corresponding to initial vectors (u0, u1, fk) and

(
u0, u1, fk

)
, components of

which are sufficiently smooth. Then for zk = uk−uk the following estimates
are true:

∥∥∥B1/2zk+1

∥∥∥ ≤ c

(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥ + τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥

+ τ
k∑

i=1

∥∥fi − fi

∥∥
)

, (3.1)

∥∥∥∥
∆zk

τ

∥∥∥∥ ≤ c

(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥ + τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥

+ τ
k∑

i=1

∥∥fi − fi

∥∥
)

, (3.2)

where k = 1, ..., n− 1, ∆zk = zk+1 − zk.

Proof of the theorem is base a upon lemma, which will be given below.

Let us consider in Hilbert space H the following difference linear equa-
tion:

uk+1 − 2uk + uk−1

τ2
+ B

uk+1 + uk−1

2
= fk, k = 1, ..., n− 1, (3.3)

where u0, u1 and fk are the given vectors from H.

The difference equation (3.3) represents a main part of the nonlinear
difference equation (1.3).

The following lemma takes place.

Lemma 3.2 (see [16]). Let B be a self-adjoint positive definite opera-
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tor. Then for the scheme (3.3), the following a priori estimates are valid:

∥∥∥B1/2uk+1

∥∥∥ ≤
√

2
(∥∥∥B1/2u0

∥∥∥ +
∥∥∥∥
∆u0

τ

∥∥∥∥
)

+ τ

∥∥∥∥B1/2 ∆u0

τ

∥∥∥∥

+ τ
k∑

i=1

‖fi‖ , u0, u1 ∈ D(B1/2), (3.4)

∥∥∥∥
∆uk

τ

∥∥∥∥ ≤
∥∥∥B1/2u0

∥∥∥ +
√

2
∥∥∥∥
∆u0

τ

∥∥∥∥

+ τ

k∑

i=1

‖fi‖ , u0 ∈ D(B1/2), (3.5)

where k = 1, ..., n− 1, ∆uk = uk+1 − uk.

Let us return to the proof of the Theorem 3.1.

Proof. According to (1.3) zk = uk − uk will satisfy the following equa-
tion:

zk+1 − 2zk + zk−1

τ2
+ B

zk+1 + zk−1

2
= −1

2
gk, k = 1, ..., n− 1, (3.6)

where

gk = akA (uk+1 + uk−1)− akA (uk+1 + uk−1)− 2
(
fk − fk

)
.

and where ak = ψ̃
(
γk+1, γk−1

)
, γk =

∥∥A1/2uk

∥∥2
.

From (3.6) according to (3.4) it follows

∥∥∥B1/2zk+1

∥∥∥ ≤
√

2
(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥ +
τ

2

k∑

i=1

‖gi‖ . (3.7)

Obviously for gk we have

gk = (ak − ak) (Auk+1 + Auk−1) + ak (Azk + Azk+1)− 2
(
fk − fk

)
. (3.8)
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By simple transformations, for the difference ak − ak, we obtain:

ak − ak =
1

γk+1 − γk−1

γk+1∫

γk−1

ψ (s) ds− 1
γk+1 − γk−1

γk+1∫

γk−1

ψ (s) ds

=

1∫

0

[
ψ (γk−1 + (γk+1 − γk−1) ξ)− ψ

(
γk−1 +

(
γk+1 − γk−1

)
ξ
)]

dξ

=

1∫

0

ξk∫

ξk

ψ′ (η) dηdξ, (3.9)

where

ξk = γk−1 + (γk+1 − γk−1) ξ,

ξk = γk−1 +
(
γk+1 − γk−1

)
ξ.

From (3.9), according to Lemma 3.1, we have

|ak − ak| ≤
1∫

0

∣∣∣∣∣∣∣

ξk∫

ξk

ψ′ (η) dη

∣∣∣∣∣∣∣
dξ ≤ c

1∫

0

∣∣ξk − ξk

∣∣ dξ

= c

1∫

0

∣∣(γk−1 − γk−1

)
+

((
γk+1 − γk+1

)− (
γk−1 − γk−1

))
ξ
∣∣ dξ

≤ c
(∣∣γk−1 − γk−1

∣∣ +
∣∣γk+1 − γk+1

∣∣) .

Taking this into account, from (3.8) we obtain

‖gk‖ ≤ c
(∣∣γk−1 − γk−1

∣∣ +
∣∣γk+1 − γk+1

∣∣) (‖Auk+1‖+ ‖Auk−1‖)
+ |ak| (‖Azk‖+ ‖Azk+1‖) + 2

(∥∥fk − fk

∥∥)
. (3.10)

Obviously for |ak| we have the estimate:

|ak| =

∣∣∣∣∣∣∣
1

γk+1 − γk−1

γk+1∫

γk−1

ψ (s) ds

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

1∫

0

ψ
(
γk−1 +

(
γk+1 − γk−1

)
ξ
)
dξ

∣∣∣∣∣∣
≤ c. (3.11)
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According to Lemma 3.1, for γk − γk, the following estimate is valid

|γk − γk| =
(√

γk +
√

γk

) ∣∣∣√γk −
√

γk

∣∣∣
≤ c

∣∣∣
∥∥∥A1/2uk

∥∥∥−
∥∥∥A1/2uk

∥∥∥
∣∣∣

≤ c
∥∥∥A1/2zk

∥∥∥ ≤ c ‖Azk‖ . (3.12)

If we insert these estimates in (3.10) and take into account that ‖Auk‖
is uniformly bounded, we obtain

‖gk‖ ≤ c
(‖Azk+1‖+ ‖Azk‖+

∥∥fk − fk

∥∥)

≤ c
(∥∥∥B1/2zk+1

∥∥∥ +
∥∥∥B1/2zk

∥∥∥ +
∥∥fk − fk

∥∥
)

. (3.13)

Taking this inequality into account, from (3.7) we obtain
∥∥∥B1/2zk+1

∥∥∥ ≤
√

2
(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥
)

+τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥ + cτ

k+1∑

i=1

∥∥∥B1/2zi

∥∥∥ + cτ

k∑

i=1

∥∥fi − f i

∥∥ . (3.14)

From here we have
∥∥∥B1/2zk+1

∥∥∥ ≤ c0

(√
2

(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥
)

+ τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥

+cτ
k∑

i=1

∥∥∥B1/2zi

∥∥∥ + cτ
k∑

i=1

∥∥fi − f i

∥∥
)

,

where c0 = 1
1−cτ , 1− cτ > 0.

Let us introduce the following notations:

δk = c

(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥ + τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥ + τ
k∑

i=1

∥∥fi − f i

∥∥
)

,

εk =
∥∥∥B1/2zk

∥∥∥ .

Then inequality (3.14) can be rewritten as

εk+1 ≤ cτ
k∑

i=1

εi + δk.

From here by the induction we can obtain (discrete analog of Gronwell’s
lemma):

εk+1 ≤ cτ (1 + cτ)k−1 ε1+(1 + cτ)k−1 δk = (1 + cτ)k−1 (δk + cτε1) . (3.15)
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If we take into consideration that (1 + cτ)k ≤ ectk , from (3.15) we obtain

∥∥∥B1/2zk+1

∥∥∥ ≤ cectk

(∥∥∥B1/2z0

∥∥∥ +
∥∥∥∥
∆z0

τ

∥∥∥∥ + τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥ .

+ τ

k∑

i=1

∥∥fi − f i

∥∥ + τ
∥∥∥B1/2z1

∥∥∥
)

. (3.16)

If we take into account that
∥∥∥B1/2z1

∥∥∥ ≤
∥∥∥B1/2z0

∥∥∥ + τ

∥∥∥∥B1/2 ∆z0

τ

∥∥∥∥ ,

from (3.16) we obtain (3.1).
Let us show the estimate (3.2). From (3.6), according to (3.5), we obtain

∥∥∥∥
∆zk

τ

∥∥∥∥ ≤
∥∥∥B1/2z0

∥∥∥ +
√

2
∥∥∥∥
∆z0

τ

∥∥∥∥ +
τ

2

k∑

i=1

‖gi‖ .

Hence, taking into account (3.13), we obtain

∥∥∥∥
∆zk

τ

∥∥∥∥ ≤
∥∥∥B1/2z0

∥∥∥ +
√

2
∥∥∥∥
∆z0

τ

∥∥∥∥ + cτ
k+1∑

i=1

∥∥∥B1/2zi

∥∥∥ + cτ
k∑

i=1

∥∥fi − fi

∥∥ .

From here an account of (3.1) we get (3.2).

4 Error estimate of the approximate solution on
the smooth class of solutions

In this section, using the results of the previous sections, we prove the
theorem regarding the error estimate of the approximate solution. It can
be said that this theorem represents an almost trivial result of the theorem
proved in the previous section. Before directly stating the theorem on
the convergence of the scheme (1.3), we would like to make one remark
regarding the well–posedness of the problem (1.1),(1.2). In fact we mean
from the beginning that the initial continuous problem is well–posed and
the solution is sufficiently smooth. Obviously we need the smoothness of
the solution in order to find the convergence order. If we demand the
minimal smoothness, which is necessary for well–posedness of the problem,
the convergence will be guaranteed, but we will not be able to find the
order. If we increase the smoothness order by one unit, the convergence
order will be equal to one (in this case, as well as in the previous case it is
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sufficient to take u1 = ϕ0 + τϕ1). If we increase the smoothness order by
two units, and define the starting vector u1 by the following formula

u1 = ϕ0 + τϕ1 +
τ2

2
ϕ2, (4.1)

where

ϕ2 = f0 −
(

Bϕ0 + ψ

(∥∥∥A1/2ϕ0

∥∥∥
2
)

Aϕ0

)
, ϕ0 ∈ D(B),

the convergence order will be equal to two. Further increase of the solution
smoothness does not make sense, as the approximation order of the scheme
(1.3) is not more than two (obviously the convergence order generally can
not exceed the approximation order).

Let us state the theorem on the convergence of the semi-discrete scheme
(1.3).

Theorem 4.1 Let the problem (1.1),(1.2) be well-posed. Besides, the
following conditions are fulfilled: (a) ϕ0 ∈ D (B) , ϕ1, ϕ2 ∈ D

(
B1/2

)
; (b)

Solution u (t) of problem (1.1), (1.2) is continuously differentiable to third
degree including and u′′′ (t) satisfies the Lipschitz condition; (c) u′ (t) ∈
D (B) for every t from [0, T ] and function Bu′ (t) satisfy the Lipschitz
condition.

Then for the scheme (1.3),(4.1) the following estimates are true:

max
1≤k≤n−1

∥∥∥B1/2z̃k

∥∥∥ ≤ cτ2, (4.2)

max
1≤k≤n−1

∥∥∥∥
∆z̃k

τ

∥∥∥∥ ≤ cτ2. (4.3)

where: z̃k = u (tk) − uk is an error of the approximate solution, ∆z̃k =
z̃k+1 − z̃k.

Proof. Let us write down the equation (1.1) at point t = tk in the
following form:

∆2u (tk−1)
τ2

+ B
u (tk+1) + u (tk−1)

2

+ ψ

(∥∥∥A1/2u (tk)
∥∥∥

2
)

Au (tk+1) + Au (tk−1)
2

= f (tk) + rτ (tk) , (4.4)
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where

rτ (tk) = r0,τ (tk) + r1,τ (tk) + r2,τ (tk) , (4.5)

r0,τ (tk) =
∆2u (tk−1)

τ2
− u′′ (tk) ,

r1,τ (tk) =
1
2
B

(
∆2u (tk−1)

)
,

r2,τ (tk) =
1
2
ψ

(∥∥∥A1/2u (tk)
∥∥∥

2
)

A
(
∆2u (tk−1)

)
.

From (4.4) and (1.3) according to Theorem 3.1 we obtain

∥∥∥B1/2z̃k+1

∥∥∥ ≤ c

(∥∥∥B1/2z̃0

∥∥∥ +
∥∥∥∥
∆z̃0

τ

∥∥∥∥ + τ

∥∥∥∥B1/2 ∆z̃0

τ

∥∥∥∥

+ τ

k∑

i=1

‖rτ (tk)‖
)

. (4.6)

According to how smooth the function u (t), is the following formulas
are true:

∆2u (tk−1)
τ2

− u′′ (tk) =
1
τ2

tk+1∫

tk

t∫

tk

s∫

tk

(
u′′′ (ξ)− u′′′ (tk)

)
dξdsdt

+
1
τ2

tk∫

tk−1

t∫

tk−1

s∫

tk−1

(
u′′′ (tk)− u′′′ (ξ)

)
dξdsdt, (4.7)

∆2u (tk−1) =

tk+1∫

tk

(
u′ (t)− u′ (tk)

)
dt

+

tk∫

tk−1

(
u′ (tk)− u′ (t)

)
dt, (4.8)

u (t1) = u0 + τu′ (0) +

τ∫

0

(
u′ (t)− u′ (0)

)
dt, (4.9)

u (t1) = u0 + τu′ (0) +
τ2

2
u′′ (0) +

τ∫

0

t∫

0

s∫

0

u′′′ (ξ) dξdsdt. (4.10)

According to conditions (a) and (c) of Theorem 4.1, from (4.9) there
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follows:
∥∥∥B1/2 (∆z̃0)

∥∥∥ =
∥∥∥B1/2 (z̃1 − z̃0)

∥∥∥ =
∥∥∥B1/2z̃1

∥∥∥ =
∥∥∥B1/2 (u (t1)− u1)

∥∥∥

=

∥∥∥∥∥∥
−τ2

2
B1/2ϕ2 +

τ∫

0

B1/2
(
u′ (t)− u′ (0)

)
dt

∥∥∥∥∥∥
≤ cτ2. (4.11)

According to conditions (b) of Theorem 4.1, from (4.10) there follows

∥∥∥∥
∆z̃0

τ

∥∥∥∥ =
1
τ
‖u (t1)− u1‖ =

1
τ

τ∫

0

t∫

0

s∫

0

∥∥u′′′ (ξ)
∥∥ dξdsdt ≤ cτ2. (4.12)

According to condition (b) of Theorem 4.1, from (4.7) we have

‖r0,τ (tk)‖ =
∥∥∥∥
∆2u (tk−1)

τ2
− u′′ (tk)

∥∥∥∥ ≤ cτ2. (4.13)

According to condition (c) of Theorem 4.1, from (4.8) we get

‖rj,τ (tk)‖ ≤ cτ2, j = 1, 2. (4.14)

From (4.5), on account of inequalities (4.13) and (4.14), there follows

‖rτ (tk)‖ ≤ cτ2. (4.15)

From (4.6), on account of inequalities (4.11), (4.12) and (4.15), there
follows (4.2).

According to (3.2), is obtained analogously (4.3). ut
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