
NUMERICAL SOLUTION OF SOME PLANE BOUNDARY VALUE
PROBLEMS OF THE THEORY OF BINARY MIXTURES BY THE

BOUNDARY ELEMENT METHOD

N. Zirakashvili, R. Janjgava

I.Vekua Institute of Applied Mathematics
Tbilisi State University

(Received: 01.02.09; accepted: 07.07.09)

Abstract

The paper deals with the application of the method of boundary elements to the

numerical solution of plane boundary problems in the case of the linear theory of elastic

mixtures. First the Kelvin problem is solved analytically when concentrated force is

applied to a point in an infinite domain filled with a binary mixture of two isotropic

elastic materials. By integrating the solution of this problem we obtain a solution

of the problem when constant forces are distributed over an interval segment. The

obtained singular solutions are used for applying one of the boundary element methods

called the fictitious load method to the solution of various boundary value problems

for both finite and infinite domains.
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introduction

In the present paper we consider the Green-Naghdi-Steel model of the lin-
ear theory of a mixture of two isotropic elastic materials [1], [2]. The Kelvin
problem [3] is solved in the case of plane deformation when concentrated
force is applied to a point in an infinite domain filled with a binary mix-
ture. By integrating the solution of this problem we obtain a solution of
the problem for the infinite domain when constant forces are distributed
over an interval segment. The obtained singular solutions are used for the
application of the boundary element method to the numerical solution of
various boundary value problems for both finite and infinite domains.
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1 Basic relations of the linear theory of elastic
mixtures

In the Cartesian system Ox1x2x3, the three-dimensional equations of static
equilibrium of a body consisting of a mixture of two isotropic elastic mate-
rials have the form [4]

∂iσ
′
ij − πj + ρ1f

′
j = 0,

∂iσ
′′
ij + πj + ρ2f

′′
j = 0, i, j = 1, 2, 3,

(1)

while the relations of elasticity are written as follows

σ′ij = (−α2 + λ1ε
′
kk + λ3ε

′′
kk) δij + 2µ1ε

′
ij + 2µ3ε

′′
ij − 2λ5hij ,

σ′′ij = (α2 + λ4ε
′
kk + λ2ε

′′
kk) δij + 2µ3ε

′
ij + 2µ2ε

′′
ij + 2λ5hij ,

(2)

where σ′ij , σ
′′
ij are the partial stress tensor components, πj ≡ ∂jπ and

π =
α2ρ2
ρ

ε′kk +
α2ρ1
ρ

ε′′kk, ρ = ρ1 + ρ2,

ρ1 > 0, ρ2 > 0 are the densities of the mixture components; f ′j , f
′′
j are the

components of the mass force vectors; α2, λ1, λ2, λ3, λ4, λ5, µ1, µ2, µ3
are elasticity constants; α2 = λ3 − λ4; ϵ

′
ij = ϵ′ji, ϵ

′′
ij = ϵ′′ji are the partial

deformation tensor components

ε′ij =
1

2

(
∂iu

′
j + ∂ju

′
i

)
, ε′′ij =

1

2

(
∂iu

′′
j + ∂ju

′′
i

)
, (3)

hij = −hji are the rotation tensor components

hij =
1

2

(
∂iu

′
j − ∂ju

′
i + ∂ju

′′
i − ∂iu

′′
j

)
, (4)

u′ = (u′1, u
′
2, u

′
3), u

′′ = (u′′1, u
′′
2, u

′′
3) are the partial displacement vectors;

∂j =
∂

∂xj
.

The Latin indexes take values 1, 2, 3. Summation is assumed to be
performed over the repeated indexes.

For the sake of simplicity we introduce the following notation (column-
matrices)

P ′
ij := σ′ij − δij (π − α2) , P ′′

ij := σ′′ij + δij (π − α2) , (5)
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σij :=
(
P ′
ij , P

′′
ij

)T
, uj :=

(
u′j , u

′′
j

)T
, eij :=

(
ε′ij , ε

′′
ij

)T
,

~ij := (hij , hji)
T .

(6)

Using notation (5), (6), we rewrite relations (1) − (4) as follows

∂iσij + φj = 0, (7)

σij = Λekkδij + 2Meij − 2λ5~ij , (8)

where φj = (ρ1f
′
j , ρ2f

′′j )T ,

Λ :=


λ1 −

α2ρ2
ρ

λ3 −
α2ρ1
ρ

λ4 +
α2ρ2
ρ

λ2 +
α2ρ1
ρ

 , M :=

(
µ1 µ3
µ3 µ2

)
;

Θij =
1

2
(∂iuj + ∂jui) , ~ij =

1

2
S (∂iuj − ∂jui) , S =

(
1 −1
−1 1

)
. (9)

With (9) taken into account, relation (8) can also be written as follows

σij = Λ∂kukδij + (M − λ5S) ∂iuj + (M + λ5S) ∂jui. (10)

By substituting (10) into (7) we obtain equations in terms of displace-
ment vector components

A∆uj +B∂j (∂kuk) + φj = 0, (11)

where
A :=M − λ5S, B :=M + λ5S + Λ, ∆ := ∂k∂k.

Let us consider the case of plane deformation for a cylindrical body
when ux ≡ u1, uy ≡ u2 and φx ≡ φ1, φy ≡ φ2 do not depend on x3, and
u3 = 0. φ3 = 0. Then σxx ≡ σ11, σyy ≡ σ22, σxy ≡ σ12, σyx ≡ σ21 do not
depend on x3 and, moreover, σ13 = σ23 = σ31 = σ32 = 0. We have

σxx,x + σyx,y + φx = 0,

σxy,x + σyy,y + φy = 0,



σxx = Λθ + 2Mux,x, σyy = Λθ + 2Muy,y,

σxy = Auy,x + (B − Λ)ux,y, σyx = Aux,y + (B − Λ)uy,x,

θ = ux,x + uy,y, (·),x :=
∂ (·)
∂x

, (·),y :=
∂ (·)
∂y

,

x1 = x, x2 = y.

(12)
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Relation (11) can now be written in the form
A∆2ux +Bθ,x + φx = 0,

A∆2uy +Bθ,y + φy = 0,
(13)

where ∆2 (·) = (·),xx + (·),yy .
On the Oxy-plane we introduce the complex variable z = x+ iy. Then

system (13) can be written in the complex form

4A (ux + iuy),zz + 2Bθ,z + φ+ = 0, (14)

where z̄ = x − iy, (·),z =
1

2
[(·),x − i(·),y ] , (·),z̄ =

1

2
[(·),x + i(·),y ] ,

φ+ = φx + iφy.
A general solution of system (14) is represented by the following analog

of the Kolosov-Muskhelishvili formula [5]:

2(ux + iuy) = A∗φ(z)− zφ′(z)− ψ(z), (15)

where φ(z) = (φ1(z), φ2(z))
T , ψ(z) = (ψ1(z), ψ2(z))

T are column-matrices
consisting of arbitrary analytic functions of the complex variable in the con-
sidered domain, A∗ = I + 2B−1A, where I is the 2× 2 unit matrix.

For complex combinations of the stress tensor components, by formulas
(12) and (15) we obtain the expressions

σyy − σxx + i (σxy + σyx) = 2M [zΦ′ (z) + Ψ (z)] ,

σxx + σyy + i (σxy − σyx) = 2
[
(A− λ5SA

∗)Φ (z) +MΦ(z)
]
,

(16)

where

Φ (z) =
(
φ′
1 (z) , φ′

2 (z)
)T
, Ψ(z) =

(
ψ′
1 (z) , ψ′

2 (z)
)T
.

2 The Kelvin problem for a binary mixture in the
case of plane deformation

It is assumed that we have an infinite domain with a circular hole of radius
R and center at the origin. We consider the case of plane deformation for a
binary mixture. Let stresses damp at infinity and stresses of constant value
and direction (z = reiθ) [6] be applied to the circular contour:

σrx =
1

2πR
Fx, σry =

1

2πR
Fy, Fx = (F ′

x, F
′′
x )

T , Fy = (F ′
y, F

′′
y )

T .
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where F ′
x, F

′
y, F

′′
x , F

′′
y are constant values. On the circular hole contour (r

= R) the formula

σrr − iσrϑ = − 1

2πR
(Fx − iFy) e

iϑ

is valid for the polar components of the stress tensor. Using the introduced
analytic functions the latter boundary condition can be rewritten as follows:

MΦ(z) + (A− λ5SA
∗)Φ (z)−M [zΦ′ (z) + Ψ (z)] e2iϑ =

= − 1
2πR (Fx − iFy) e

iϑ on r = R.

(17)

Since there are no stresses at infinity, the expansions of the functions
Φ(z ) and Ψ(z ) into power series do not contain free terms

Φ (z) =

∞∑
n=1

an
rn
e−inϑ, Ψ(z) =

∞∑
n=1

bn
rn
e−inϑ, (18)

where an = (a′n, a
′′
n), bn = (b′n, b

′′
n)

T are the values we want to define.
Substituting expansions (18) into the boundary conditions (17) and

taking into account the condition of displacement uniqueness

A∗a1 + b1 = 0,

we obtain the coefficient values:

a1 = − 1

2π
(I +A∗)−1A−1 (Fx + iFy) , b1 = −A∗a1, b3 = 2R2a1.

All other coefficients are equal to zero. Therefore

Φ (z) =
a1
z
, Ψ(z) =

b1
z

+
b3
z3
.

Substituting the obtained values of Φ(z ) and Ψ(z ) into formulas (15) and
(16), we obtain the values for the displacement vector and stress tensor
components. Let now R→ 0, and σrx, σxy increase infinitely, but the prin-
cipal vector remain invariable. Then

Φ (z) =
a1
z
, Ψ(z) =

b1
z

= −A
∗

z
a1.

In that case, by virtue of formula (15) we obtain

ux + iuy = − 1

4π
A∗ (I +A∗)−1A−1 (Fx + iFy) ln zz+

+
1

4π
(I +A∗)A−1 (Fx − iFy)

z

z
.

(19)
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Separating the real and the imaginary parts of formula (19), we have

ux = (A∗G− xG,x)Fx + (−yG,x)Fy −
1

4π
(I +A∗)−1A−1Fx,

uy = (−xG,y)Fx + (A∗G− yG,y)Fy −
1

4π
(I +A∗)−1A−1Fy,

(20)

where the following notation has been introduced:

G (x, y) = − 1

2π
(I +A∗)−1A−1 ln

(
x2 + y2

)1/2 . (21)

Discarding in formula (20) the constant values corresponding to a rigid
displacement, we obtain

ux = (A∗G− xG,x)Fx + (−yG,x)Fy,

uy = (−xG,y)Fx + (A∗G− yG,y)Fy.
(22)

Substitution of formulas (22) into formulas (12) gives the expressions
for stresses

σxx = [(Λ + 2M) (A∗ − I)G,x − 2MxG,xx]Fx+

+ [Λ (A∗ − I)G,y − 2MyG,xx]Fy;

σyy = [Λ (A∗ − I)G,x − 2MxG,yy]Fx+

+ [(Λ + 2M) (A∗ − I)G,y − 2MyG,yy]Fy;

σxy = [A0G,y − 2MxG,xy]Fx + [B0G,x − 2MyG,xy]Fy;

σyx = [B0G,y − 2MxG,xy]Fx + [A0G,x − 2MyG,xy]Fy.

(23)

Here we employ the notation

A0 := (M + λ5S)A
∗ −M + λ5S = (B − Λ)A∗ −A,

B0 := (M − λ5S)A
∗ −M − λ5S = AA∗ −B + Λ.
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From formula (21) we derive

G,x = − 1

2π
(I + A∗)−1A−1 x

x2 + y2
, G,y = − 1

2π
(I + A∗)−1A−1 y

x2 + y2
,

G,xy = − 1

2π
(I + A∗)−1A−1 2xy

(x2 + y2)2
,

G,xx = −G,yy = − 1

2π
(I + A∗)−1A−1 x2 − y2

(x2 + y2)2
,

On the basis of the solution of the Kelvin problem we obtain a solution
of the problem for an infinite domain when constant forces tx = Px =
(P ′

x, P
′′
x )

T and ty = Py = (P ′
y, P

′′
y )

T are applied to the interval | x |≤ a, y =
0. Let us divide the interval into segments of length dξ. Then the total
force applied to an element centered at the point x=ξ, y=0 is equal to
Fα(ξ) = Pαdξ, where the subscript α is lither x or y. The solution of the
considered problem is obtained if in formulas (22), (23) we introduce the
value Fα(ξ), replace x by the expression x −ξ and integrate the solution of
(22) and (23) from –a to +a. For displacements we obtain

ux = (A∗F + yF,y)Px + (−yF,x)Py,

uy = (−yF,x)Px + (A∗F − yF,y)Py.
(24)

Let us introduce the notation

S0 = (I +A∗)−1A−1, S1 = (Λ + 2M)A∗ − Λ, S2 = 2M − Λ (A∗ − I) ,

S3 =
1

2
(A0 +B0) + 2M, S4 = (Λ + 2M) (A∗ − I) , S5 =

1

2
(A0 +B0) ,

S6 =M (I +A∗) , S7 = B0 + 2M, S8 = A0 + 2M, S9 =M (A∗ − I) .

Then stresses are expressed by the formulas

σxx = (S1F,x + 2MyF,xy)Px + [Λ (A∗ − I)F,y + 2MyF,yy]Py,

σyy = (−S2F,x − 2MyF,xy)Px + (S4F,y − 2MyF,yy)Py,

σxy = (S8F,y + 2MyF,yy)Px + (B0F,x − 2MyF,xy)Py,

σyx = (S7F,y + 2MyF,yy)Px + (A0F,x − 2MyF,xy)Py,

(25)
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where the function F(x,y) (2× 2 matrix) has the form

F (x, y) =
∫ a
−aG (x− ξ, y) dξ = − 1

2πS0

[
y
(
arctan y

x−a − arctan y
x+a

)
−

− (x− a) ln
√

(x− a)2 + y2 + (x+ a) ln
√

(x+ a)2 + y2
]
+ C,

where C = (C1, C2)
T , C1, and C2 are the constants corresponding to rigid

displacement (further they are discarded). For the derivatives F(x,y) we
have

F,x = 1
2πS0

[
ln

√
(x− a)2 + y2 − ln

√
(x+ a)2 + y2

]
,

F,y = − 1

2π
S0

[
arctan

y

x− a
− arctan

y

x+ a

]
,

F,xy =
1

2π
S0

[
y

(x− a)2 + y2
− y

(x+ a)2 + y2

]
,

F,xx = −F,yy =
1

2π
S0

[
x− a

(x− a)2 + y2
− x+ a

(x+ a)2 + y2

]
.

(26)

As seen from formulas (24), displacements ux and uy are unbounded at
infinity. From formulas (25) it follows that stresses are defined everywhere
except for the segment ends (x = ±a, y = 0). Their values on the axis
y = 0 can be obtained if in formulas (25) and (26) y is assumed to be equal
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to zero

σxx= − 1

4π
S1S0Px ln

(
x+ a

x− a

)2

−

− 1
2πΛ (A∗ − I)S0Py lim

y→±0

(
arctan y

x−a − arctan y
x+a

)
,

σyy =
1

4π
S2S0Px ln

(
x+ a

x− a

)2

−

− 1
2πS4S0Py lim

y→±0

(
arctan y

x−a − arctan y
x+a

)
,

σxy = − 1

2π
S8S0Px lim

y→±0

(
arctan

y

x− a
− arctan

y

x+ a

)
−

− 1
4πB0S0Py ln

(
x+a
x−a

)2
,

σyx = − 1

2π
S7S0Px lim

y→±0

(
arctan

y

x− a
− arctan

y

x+ a

)
−

− 1
4πA0S0Py ln

(
x+a
x−a

)2
.

(27)

For the limits contained in formulas (27) the following formula is valid:

lim
y→0

(
arctan

y

x− a
− arctan

y

x+ a

)
=


0, |x| > a, y = 0+ an y = 0−,
+π, |x| < a, y = 0+,
−π |x| < a, y = 0−.

Taking the latter formula into account, we consider three different cases:

1) |x| > a, y = 0±,

σxx (x, 0) = − 1

4π
S1S0Px ln

(
x+ a

x− a

)2

,

σyy (x, 0) =
1
4πS2S0Px ln

(
x+a
x−a

)2
,

σxy (x, 0) = − 1

4π
B0S0Py ln

(
x+ a

x− a

)2

,

σyx (x, 0) = − 1
4πA0S0Py ln

(
x+a
x−a

)2
.
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2) |x| < a, y = 0+,

σxx (x, 0+) = − 1

4π
S1S0Px ln

(
x+ a

x− a

)2

− 1

2
Λ (A∗ − I)S0Py,

σyy (x, 0+) =
1

4π
S2S0Px ln

(
x+ a

x− a

)2

− 1

2
S4S0Py,

σxy (x, 0+) = −1

2
S8S0Px −

1

4π
B0S0Py ln

(
x+ a

x− a

)2

,

σyx (x, 0+) = −1

2
S7S0Px −

1

4π
A0S0Py ln

(
x+ a

x− a

)2

.

(28)

3) |x| < a, y = 0−,

σxx (x, 0−) = − 1

4π
S1S0Px ln

(
x+ a

x− a

)2

+
1

2
Λ (A∗ − I)S0Py,

σyy (x, 0−) =
1

4π
S2S0Px ln

(
x+ a

x− a

)2

+
1

2
S4S0Py,

σxy (x, 0−) =
1

2
S8S0Px −

1

4π
B0S0Py ln

(
x+ a

x− a

)2

,

σyx (x, 0−) =
1

2
S7S0Px −

1

4π
A0S0Py ln

(
x+ a

x− a

)2

.

(29)

As seen from formulas (28) and (29), when being transferred from one side
of the segment to the other side, stresses undergo discontinuity

σxx (x, 0−)− σxx (x, 0+) = (A∗ − I)S0Py,

σyy (x, 0−)− σyy (x, 0+) = S1S0Py,

σxy (x, 0−)− σxy (x, 0+) = S2S0Px,

σyx (x, 0−)− σyx (x, 0+) = S7S0Px.
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3 Coordinate transformation and the influence co-
efficients

Let the local coordinate system x, y be obtained from the system x, y as
a result of its transfer onto (cx, cy) and counterclockwise rotation by the
angle β .

Using the coordinate transformation formulas [6], displacements and
stresses produced by the action of loads Px, Py on the segment |x| ≤ a, y =
0 can be written in terms of the local coordinate system. Displacements
have the form

ux =
(
A∗F 1 + yF 3

)
Px +

(
−yF 2

)
Py,

uy =
(
−yF 2

)
Px +

(
A∗F1 − yF 3

)
Py,

Stresses are expressed by the formulas

σxx =
[
S1F 2 + 2MyF 4

]
Px +

[
(S2 − 2M)F 3 − 2MyF 5

]
Py,

σyy =
[
−S2F 2 − 2MyF 4

]
Px +

[
S4F 3 + 2MyF 5

]
Py,

σxy =
[
S8F 3 − 2MyF 5

]
Px +

[
B0F 2 − 2MyF 4

]
Py,

σyx =
[
S7F 3 − 2MyF 5

]
Px +

[
A0F 2 − 2MyF 4

]
Py.
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where

F1 (x, y) = F (x, y) = − 1

2π
S0

[
y

(
arctan

y

x− a
− arctan

y

x+ a

)
−

− (x− a) ln

√
(x− a)2 + y2 + (x+ a) ln

√
(x+ a)2 + y2

]
,

F 2 (x, y) = F,x (x, y) =
1

2π
S0

[
ln

√
(x− a)2 + y2 − ln

√
(x+ a)2 + y2

]
,

F 3 (x, y) = F,y (x, y) = − 1

2π
S0

[
y

(x− a)2 + y2
− y

(x+ a)2 + y2

]
,

F 4 (x, y) = F,xy (x, y) =
1

2π
S0

[
arctan

y

x− a
− arctan

y

x+ a

]
,

F 5 (x, y) = F,xx (x, y) = −F,yy (x, y) =
1

2π
S0

[
arctan

y

x− a
−

− arctan y
x+a

]
.

Using the coordinate transformation formulas [6], the results obtained above
can be written in terms of a global coordinate system. Displacements have
the form:

ux =
[
A∗ cosβF 1 + y

(
sinβF 2 + cosβF 3

)]
Px+

+
[
−A∗ sinβF 1 − y

(
cosβF 2 − sinβF 3

)]
Py,

uy =
[
A∗ sinβF 1 − y

(
cosβF 2 − sinβF 3

)]
Px+

+
[
A∗ cosβF 1 − y

(
sinβF 2 + cosβF 3

)]
Py.

(30)

Stresses are written as follows:
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σxx =
[
S1 cos

2 βF 2 − S2 sin
2 βF 2 − S3 sin 2βF 3 + 2My

(
cos 2βF 4+

+sin 2βF 5

)]
Px +

[
(2M − S2) cos

2 βF 3 + S4 sin
2 βF 3

−S5 sin 2βF 2 + 2My
(
sin 2βF 4 − cos 2βF 5

)]
Py,

σyy =
[
S1 sin

2 βF 2 − S2 cos
2 βF 2 + S3 sin 2βF 3 − 2My

(
cos 2βF 4+

+sin 2βF 5

)]
Px +

[
(2M − S2) sin

2 βF 3 + S4 cos
2 βF 3+

+S5 sin 2βF 2 − 2My
(
sin 2βF 4 − cos 2βF 5

)]
Py,

σyx =
[
S6 sin 2βF 2 + S7 cos

2 βF 3 − S8 sin
2 βF 3 + 2My

(
sin 2βF 4

− cos 2βF 5

)]
Px +

[(
A0 cos

2 β −B0 sin
2 β

)
F 2 −MS9 sin 2βF 3

−2My
(
cos 2βF 4 + sin 2βF 5

)]
Py,

σxy =
[
S6 sin 2βF 2 + S8 cos

2 βF 3 − S7 sin
2 βF 3 + 2My

(
sin 2βF 4

− cos 2βF 5

)]
Px +

[(
B0 cos

2 β −A0 sin
2 β

)
F 2 − S9 sin 2βF 3

−2My
(
cos 2βF 4 + sin 2βF 5

)]
Py.

(31)

The obtained solutions form the basis for applying one of the boundary
element methods called the fictitious load method to the solution of various
plane boundary value problems of the binary mixture theory in the case of
both finite and infinite domains. To solve these problems the boundary of a
given domain is divided sequentially into N segments. If the length of each
of these segments is sufficiently small, then we obtain good approximation
of the contour. To each boundary element we put into correspondence the
concentrated force continuously distributed over this element. For example,

to the j-th element there correspond the tangential stress P j
s = (P j

s
′
, P j

s
′′
)T

and the normal stress P j
n = P j

n
′
, P j

n
′′
)T continuously distributed over this

element. In addition to the fictitious stresses P j
s and P j

n, on the j-th element

we also consider the true tangential and normal stresses σjs = (σjs
′
, σjs

′′
)T

and σjn = (σjn
′
, σjn

′′
)T , which are produced by the action of stresses applied

to all elements of the boundary.

Using formulas (30), (31) and the coordinate transformation formulas
[4], displacements and stresses at the midpoint of the i-th element can be
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expressed as a function of fictitious loads P j
s and P j

n on all N elements of
the boundary (i, j = 1,. . .,N). Thus we obtain the equalities

σis ≡ σirα =

N1∑
j=1

(
Aij

ssP
j
s +Aij

snP
j
n

)
, σin ≡ σiα =

N1∑
j=1

(
Aij

nsP
j
s +Aij

nnP
j
n

)
,

uis ≡ uiα =
∑N1

j=1

(
Bij

ssP
j
s +Bij

snP
j
n

)
, uin ≡ uir =

∑N1
j=1

(
Bij

nsP
j
s +Bij

nnP
j
n

)
,

i = 1, 2, . . . , N,

where Aij
ss, . . . , B

ij
nn are the boundary influence coefficients. For example,

the coefficient Aij
ns gives the normal stress σni at the center of the i -th

segment produced by the action of the unit tangential load on the j -th
segment.

Thus the problem is reduced to finding the fictitious loads P j
s and P j

n

using the above boundary conditions, i.e. to the solution of a system of lin-
ear algebraic equations, where P j

s and P j
n are the unknowns. Having solved

this system and using formulas (30), (31) and the coordinate transforma-
tion formulas at an arbitrary point of the considered domain we obtain the
values of the displacement vector and stress tensor components.

As an illustration, in the next section we give examples of the numerical
realization of some boundary value problems for a binary mixture and also
present the corresponding diagrams.

5. Examples

Below, using the boundary element method (BEM), we give solutions
of two static boundary value problems for an elastic body consisting of a
binary mixture. The first of them is an external problem for an infinite
domain with a circular hole when the contour is stress-free and unilateral
shearing stresses is applied at infinity. The second problem concerns a cir-
cular semi-ring when stresses are given at two opposite semi-circles and the
symmetry and antisymmetry conditions are given on two opposite interval
segments [7].

Problem 1 We consider a boundary value problem, in the domain

Ω = {r1 < r <∞, 0 < α < 2π} with the following boundary conditions::

when r = r1: σrr = (0, 0)T , σrα = (0, 0)T ,

when r → ∞: σxx = p = (p′, p′′)T , σyy = σxy = σyx = (0, 0)T .
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Figure 1: Tangential stresses on the hole boundary

Since the problem has two symmetry axes, the numerical solution can
be found by dividing a quarter of the circular boundary into 50 elements;
in this case λ1 = 0, 1; λ2 = 0, 2; λ3 = 0, 3; λ4 = 0, 4; λ5 = 0, 5; µ1 = 0, 6;
µ2 = 0, 7; µ3 = 0, 8; ρ1 = 0, 15; ρ2 = 0, 25; p′/E′ = 10−3; p′′/E′′ = 15.10−4,
r1 = 1.75, 0 < α < 2π.

An analytic solution for stresses acting along the circular hole boundary
has the form [8]

when r = r1: σαα =
{
I−

[
I +M(A− λ5SA

∗)−1
]
cos 2α

}
p,

σαr = −
{[

I−M(A− λ5SA
∗)−1

]
sin 2α

}
p,

where the angle α is counted from the x-axis. These functions are shown
in Fig.1 together with numerical results.

The comparison of the results obtained by the boundary element method
with the exact solution values shows a high degree of their coincidence (see
Fig.1). We can therefore conclude that the application of the BEM has
proved to be correct for solving the boundary value problems considered in
this paper.

Problem 2 Now let us consider the boundary value problem considered

in the domain Ω = {r1 < r < r2, 0 < α < π} with the following boundary
conditions:
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Figure 2: a) Tangential, b), c) shearing and d) normal stresses in the ring
(1 < r < 4) for α = π/3

a) when r = r1: σrr =
(
p′ cos α

2 , p
′′ cos α

2

)T
, σrα = (0, 0)T ,

b) when r = r2: σrr = (0, 0)T , σrα = (0, 0)T ,

c) when α = 0: v = (0, 0)T , σrα = (0, 0)T ,

d) when α = π.: u = (0, 0)T , σαα = (0, 0)T .

The formulated problem is solved by the method of boundary ele-
ments. At the characteristic points of the considered domain we have
obtained the stress values for the following data: λ1 = 0.1; λ2 = 0, 2;
λ3 = 0.3; λ4 = 0.4; λ5 = 0.5; µ1 = 0.6; µ2 = 0.7; µ3 = 0.8; ρ1 = 0.15;
ρ2 = 0.25; p′/E′ = 10−3; p′′/E′′ = 10−3; r1 = 1; r2 = 4. The semi-
circles r = r1 and r = r2 are divided into 180 equal arcs, while the linear
parts of the boundary are divided into 40 equal segments. The diagrams
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for the stresses σαα/p = (σ′αα/p
′, σ′′αα/p

′′)T , σαr/p = (σ′αr/p
′, σ′′αr/p

′′)T ,
σrα/p = (σ′rα/p

′, σ′′rα/p
′′)T , σrr/p = (σ′rr/p

′, σ′′rr/p
′′)T are shown in Fig.2

for r1 < r < r2, α = π/3.

By solving the problems corresponding to Fig. 2 we obtain the picture
of distribution of internal stresses throughout the body. In particular, using
the BEM we have calculated the distribution of stresses σαα, σrα, σα,r, σrr

along the radius r when α =
π

3
.
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