BOUNDARY-CONTACT PROBLEMS OF THERMOELASTICITY OF BINARY MIXTURES FOR A MULTILAYER RING AND CIRCLE

I. Tsagareli, D. Toradze
Iv.Javakhishvili Tbilisi State University

(Received: 02.03.09; accepted: 11.07.09)
Abstract

In this work, solutions of boundary-contact problems of statics of thermoelasticity theory, for multilayer ring and circle are constructed explicitly in the form of series.

Key words and phrases: Thermoelastic mixture, boundary-contact problems, multilayer ring and circle.

AMS subject classification: 74E30. 74G10. 74F05

A circle is considered which consists of concentric rings $D_{k}(k=2,3, \ldots, l)$ and of circle D_{1}. Each D_{k} ring is bounded by circumferences S_{k-1} and S_{k} , which have a common center at the origin of coordinates and R_{k-1} and R_{k} are the radii. It is supposed that different rings are filled with different two-component elastic mixture.

1. First, let us consider a problem, when we have not D_{1} circle - D_{1} is empty. Let us find a regular vector $U^{k}(x)=\left(u^{k}(x), u_{3}^{k}(x)\right)$ in the ring D_{k} , which satisfies:
a) the system of equation $([1],[2])$ of statics of the theory of thermoelastic mixture:

$$
\begin{align*}
& a_{1}^{k} \Delta\left(u^{k}\right)^{1}(x)+b_{1}^{k} \operatorname{graddiv}\left(u^{k}\right)^{1}(x)+c^{k} \Delta\left(u^{k}\right)^{2}(x) \\
& +d^{k} \operatorname{graddiv}\left(u^{k}\right)^{2}(x)=\gamma_{1}^{k} \operatorname{grad} u_{3}^{k} \\
& c^{k} \Delta\left(u^{k}\right)^{1}(x)+d^{k} \operatorname{graddiv}\left(u^{k}\right)^{1}(x)+a_{2}^{k} \Delta\left(u^{k}\right)^{2}(x) \tag{1}\\
& +b_{2}^{k} \operatorname{graddiv}\left(u^{k}\right)^{2}(x)=\gamma_{2}^{k} \operatorname{grad} u_{3}^{k}, \\
& \Delta u_{3}^{k}(x)=0 ;
\end{align*}
$$

b) boundary conditions on the circumference $S_{k-1}[3]$:

$$
\begin{align*}
& \left(u_{n}^{k}(z)\right)^{-}-\left(u_{n}^{k-1}(z)\right)^{+}=0 \\
& \left(u_{s}^{k}(z)\right)^{-}=0,\left(u_{s}^{k-1}(z)\right)^{+}=0 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& {\left[R^{k}\left(\partial_{z}, n\right) U^{k}(z)\right]_{n}^{-}-\left[R^{k-1}\left(\partial_{z}, n\right) U^{k-1}(z)\right]_{n}^{+}=0, k=3,4, \ldots, l ; z \in S_{k-1} ;} \\
& \left(u_{3}^{k}(z)\right)^{-}-\left(u_{3}^{k-1}(z)\right)^{+}=f_{3}^{k-1}(z),\left[\frac{d u_{3}^{k}(z)}{d n(z)}\right]^{-}-\left[\frac{d u_{3}^{k-1}(z)}{d n(z)}\right]^{+}=f_{4}^{k-1}(z) \\
& k=2,3, \ldots l \tag{3}
\end{align*}
$$

c) boundary conditions on the circumferences S_{1} and S_{l} :

$$
\begin{gather*}
\left(R^{2}\left(\partial_{z}, n\right) U^{2}(z)\right)_{n}^{-}=f^{1}(z), \quad\left(u_{s}^{2}(z)\right)^{-}=0, z \in S_{1}, \\
\left(R^{l}\left(\partial_{z}, n\right) U^{l}(z)\right)_{n}^{+}=f^{l}(z), \quad\left(u_{s}^{l}(z)\right)^{+}=0, z \in S_{l}, \tag{4}\\
u_{3}^{2}(z)^{-}=f_{3}^{1}, \quad z \in S_{1}, \\
u_{3}^{l}(z)^{+}=f_{3}^{l}, \quad z \in S_{l}, \tag{5}
\end{gather*}
$$

where $u^{k}(x)=\left(\left(u^{k}\right)^{1}(x),\left(u^{k}\right)^{2}(x)\right),\left(u^{k}\right)^{i}(x)=\left(\left(u_{1}^{k}\right)^{i}(x),\left(u_{2}^{k}\right)^{i}(x)\right)$-is the partial displacement vector at the point $x, x \in D_{k}, \quad i=1,2 ; u_{3}^{k}(x)$-is the change of temperature; $R^{k}\left(\partial_{x}, n\right) U^{k}(x)=$
$\left(\left[R^{k}\left(\partial_{x}, n\right) U^{k}(x)\right]^{1},\left[R^{k}\left(\partial_{z}, n\right) U^{k}(x)\right]^{2}\right),\left[R^{k}\left(\partial_{x}, n\right) U^{k}(x)\right]^{i}=$
$\left(\left[R^{k}\left(\partial_{x}, n\right) U^{k}(x)\right]_{1}^{i},\left[R^{k}\left(\partial_{x}, n\right) U^{k}(x)\right]_{2}^{i}\right)$ - is the partial thermostres vector in D_{k}

$$
\begin{equation*}
\left[R^{k}\left(\partial_{x}, n\right) U^{k}(x)\right]_{p}^{i}=\left[P^{k}\left(\partial_{x}, n\right) u^{k}(x)\right]_{p}^{i}-\gamma_{i}^{k} n_{p}(x) u_{3}^{k}(x), \tag{6}
\end{equation*}
$$

$P^{k}\left(\partial_{x}, n\right) u^{k}(x)$-is a stress vector of elastic mixture [2], $f^{j}=\left[\left(f^{j}\right)^{1},\left(f^{j}\right)^{2}\right], \quad j=$ 1,$2 ; \quad i, p=1,2 ; n=\left(n_{1}, n_{2}\right), s=\left(-n_{2}, n_{1}\right) ; a_{1}^{k}, b_{1}^{k}, c^{k}, d^{k}, a_{2}^{k}, b_{2}^{k}, \gamma_{1}^{k}, \gamma_{2}^{k}$-are the known constants $[1,2]$ defining elastic and thermal properties in $D_{k} ; A_{n}$ and $A_{s^{-}}$are normal and tangential components of the vector A, respectively.

As we are solving a problem of statics, we cam solve separately problem $\left[(1)_{3},(3),(5)\right]$. To find the changes of temperature u_{3} and separately the $\operatorname{problem}[(1),(2),(4)]$ - to find $u^{k}(x)$ displacement vector.

First we will solve the problem $\left[(1)_{3},(3),(5)\right]$. Let us suppose that the functions $f_{3}^{j}(z)$ and $f_{4}^{k-1}(z)$ are expanded into Fourier Series $(j=$ $1,2, \ldots, l, \quad k=3,4, \ldots, l)$.

The solution of the equation $(1)_{3}$ in the ring D_{k} can be written as follows
[4]:

$$
\begin{align*}
& u_{3}^{k}(x)=\frac{1}{2} a^{k}\left(\ln \frac{r}{R_{k}}\left(u_{03}^{k}\right)^{-}+\ln \frac{R_{k-1}}{r}\left(u_{03}^{k}\right)^{+}\right)+ \\
& \sum_{m=1}^{\infty} b^{k}\left(\left[\left(\frac{R_{k-1}}{r}\right)^{m}-\left(\frac{r R_{k-1}}{R_{k}^{2}}\right)^{m}\right]\left(u_{m 3}^{k}\right)^{-}+\left[\left(\frac{r}{R_{k}}\right)^{m}-\left(\frac{R_{k-1}^{2}}{r R_{k}}\right)^{m}\right]\left(u_{m 3}^{k}\right)^{+}\right), \\
& k=2,3, \ldots, l, \tag{7}
\end{align*}
$$

where $a^{k}=\frac{1}{\ln R_{k-1}-\ln R_{k}}, \quad b^{k}=\frac{1}{1-\left(\frac{R_{k-1}}{R_{k}}\right)^{2 m}}, \quad\left(u_{m 3}^{k}\right)^{ \pm}$- is the Fourier coefficient of the functions given on the boundary S_{k-1} :

$$
\left(u_{m 3}^{k}\right)^{ \pm}(z)=\frac{1}{\pi} \int_{0}^{2 \pi}\left(u_{3}^{k}\right)^{ \pm}(\theta) \operatorname{cosm}(\theta-\psi) d \theta
$$

$z=\left(R_{k}, \psi\right), \quad y=\left(R_{k}, \theta\right), \quad y \in[0 ; 2 \pi]$. Let us consider unknown $\left(u_{m 3}^{k}\right)^{+}$. If we take into consideration (3) and (5) and put (7) into (3) $)_{2}$ for each m, we obtain an system equations for $\left(u_{m 3}^{k}\right)^{+}$. When $m=0$, we obtain:

$$
\begin{align*}
& \left(a^{2}+a^{3}\right)\left(u_{03}^{2}\right)^{+}-a^{3}\left(u_{03}^{3}\right)^{+}=R_{2} f_{04}^{2}-a^{3} f_{03}^{2}+a^{2} f_{03}^{1}, \quad k=3, \\
& -a^{k-1}\left(u_{03}^{k-2}\right)^{+}+\left(a^{k-1}+a^{k}\right)\left(u_{03}^{k-1}\right)^{+}-a^{k}\left(u_{03}^{k}\right)^{+}= \\
& R_{k-1} f_{04}^{k-1}+a^{k-1} f_{03}^{k-2}-a^{k} f_{03}^{k}, \quad k=4,5, \ldots, l-1, \tag{8}\\
& -a^{l-1}\left(u_{03}^{l-2}\right)^{+}+\left(a^{l-1}+a^{l}\right)\left(u_{03}^{l-1}\right)^{+}= \\
& a^{l} f_{03}^{l}+R_{l-1} f_{04}^{l-1}+a^{l-1} f_{03}^{l-2}-a^{l} f_{03}^{l-1}, \quad k=l
\end{align*}
$$

and when $m=1,2, \ldots$, we have:

$$
\begin{align*}
& \left(s_{m}^{2}+s_{m}^{3}\right)\left(u_{m 3}^{2}\right)^{+}-\sigma_{m}^{3}\left(u_{m 3}^{3}\right)^{+}= \\
& -R_{2} f_{m 4}^{2}+\sigma^{2} f_{m 3}^{1}-s_{m}^{3} f_{m 3}^{2}, \quad k=3, \\
& -\sigma_{m}^{k-1}\left(u_{m 3}^{k-2}\right)^{+}+\left(s_{m}^{k-1}+s_{m}^{k}\right)\left(u_{m 3}^{k-1}\right)^{+}-\sigma_{m}^{k}\left(u_{m 3}^{k}\right)^{+}= \\
& -R_{k-1} f_{m 4}^{k-1}+\sigma_{m}^{k-1} f_{m 3}^{k-2}-s_{m}^{k} f_{m 3}^{k-1}, \quad k=4,5, \ldots, l-1, \tag{9}\\
& -\sigma_{m}^{l-1}\left(u_{m 3}^{l-2}\right)^{+}+\left(s_{m}^{l-1}+s_{m}^{l}\right)\left(u_{m 3}^{l-1}\right)^{+}= \\
& -R_{l-1} f_{m 4}^{l-1}+\sigma_{m}^{l-1} f_{m 3}^{l-2}+\sigma_{m}^{l} f_{m 3}^{l-1}-s_{m}^{l} f_{m 3}^{l-1}, \quad k=l,
\end{align*}
$$

where $s_{m}^{k}=b^{k} m\left[1+\left(\frac{R_{k-1}}{R_{k}}\right)^{2 m}\right] \neq 0, \sigma_{m}^{k}=2 b^{k} m\left(\frac{R_{k-1}}{R_{k}}\right)^{m} \neq 0, k=$ $2,3, \ldots, l$. By direct computation, it is proved that the determinants of the
systems (8) and (9) differ from zero. If we substitute the solutions of the systems (8) and (9) into (7), we obtain solutions of problems [(1) $\left.)_{3},(3),(5)\right]$ for each k. Let us solve the problem [(1),(2),(4)]. Let us introduce the functions in the domain $D_{k}[5]$:

$$
\begin{gather*}
v_{i}^{k}(x)=r\left(u_{n}^{k}\right)^{i}(x)=x_{1}\left(u_{1}^{k}\right)^{i}(x)+x_{2}\left(u_{2}^{k}\right)^{i}(x), \\
v_{i+2}^{k}(x)=r\left(u_{s}^{k}\right)^{i}(x)=-x_{2}\left(u_{1}^{k}\right)^{i}(x)+x_{1}\left(u_{2}^{k}\right)^{i}(x), \tag{10}\\
X_{i}^{k}(x)=r^{2}\left[P^{k}\left(\partial_{x}, n\right) u^{k}(x)\right]_{n}^{i}, \quad X_{i+2}^{k}(x)=r^{2}\left[P^{k}\left(\partial_{x}, n\right) u^{k}(x)\right]_{s}^{i}, \quad i=1,2 . \tag{11}
\end{gather*}
$$

By means of $v_{j}^{k}(j=1,2,3,4)$ the functions X_{i}^{k} rewrite:

$$
\begin{align*}
& X_{1}^{k}(x)=\varepsilon_{1}^{k} r^{2} \theta_{1}^{k}(x)+\varepsilon_{2}^{k} r^{2} \theta_{2}^{k}(x)-\varepsilon_{1}^{k} v_{1}^{k}(x)-\varepsilon_{2}^{k} v_{2}^{k}(x)-2 \varepsilon_{4}^{k} \partial_{\psi} v_{3}^{k}(x)- \\
& 2 \varepsilon_{5}^{k} \partial_{\psi} v_{4}^{k}(x) ; \\
& X_{2}^{k}(x)=\varepsilon_{2}^{k} r^{2} \theta_{1}^{k}(x)+\varepsilon_{3}^{k} r^{2} \theta_{2}^{k}(x)-\varepsilon_{2}^{k}(x) v_{1}^{k}(x)-\varepsilon_{3}^{k}(x) v_{2}^{k}(x)- \\
& 2 \varepsilon_{5}^{k} \partial_{\psi} v_{3}^{k}(x)-2 \varepsilon_{6}^{k} \partial_{\psi} v_{4}^{k}(x) ; \tag{12}
\end{align*}
$$

the conditions (2) :

$$
\begin{align*}
& \left(v_{i}^{k}\right)^{-}(z)-\left(v_{i}^{k-1}\right)^{+}(z)=0, \\
& \left(v_{i+2}^{k}\right)^{-}(z)=0,\left(v_{i+2}^{k-1}\right)^{+}(z)=0, \quad k=3,4, \ldots, l ; \\
& \left(X_{i}^{k}\right)^{-}(z)-\left(X_{i}^{k-1}\right)^{+}(z)=R_{k-1}^{2} \gamma_{i}^{k}\left(u_{3}^{k}\right)^{-}(z)- \tag{13}\\
& R_{k-1}^{2} \gamma_{i}^{k-1}\left(u_{3}^{k-1}\right)^{+}(z) \equiv \Psi_{3}^{k-1^{i}}(z), \quad z \in S_{k-1}, \quad k=3,4, \ldots, l .
\end{align*}
$$

and the conditions (4):

$$
\begin{align*}
& \left(X_{i}^{2}\right)^{-}(z)=R_{1}^{2}\left(f^{1}\right)^{i}(z)+R_{1}^{2} \gamma_{i}^{2}\left(u_{3}^{2}\right)^{-}(z) \equiv \varphi_{i}^{1}(z), \\
& \left(v_{i+2}^{2}\right)^{-}(z)=0, \quad z \in S_{1} ; \\
& \left(X_{i}^{l}\right)^{+}(z)=R_{l}^{2}\left(f^{l}\right)^{i}(z)+R_{l}^{2} \gamma_{i}^{l}\left(u_{3}^{l}\right)^{+}(z) \equiv \varphi_{i}^{l}(z), \tag{14}\\
& \left(v_{i+2}^{l}\right)^{+}(z)=0, \quad z \in S_{l},
\end{align*}
$$

where $\varepsilon_{1}^{k}=a_{1}^{k}+b_{1}^{k}, \quad \varepsilon_{2}^{k}=c^{k}+d^{k}, \quad \varepsilon_{3}^{k}=a_{2}^{k}+b_{2}^{k}, \quad \varepsilon_{4}^{k}=a_{1}^{k}+\lambda_{5}^{k}$, $\varepsilon_{5}^{k}=c^{k}-\lambda_{5}^{k}, \quad \varepsilon_{6}^{k}=a_{2}^{k}+\lambda_{5}^{k}, \quad \theta_{i}^{k}=\frac{1}{r} \partial_{r} v_{i}^{k}+\frac{1}{r^{2}} \partial_{\psi} v_{i+2}^{k}, \quad r^{2}=x_{1}^{2}+x_{2}^{2}$, $x=(r, \psi) . v_{p}^{k}$ values are to be sought. Let us suppose that functions v_{p}^{k} expanded into the Fourier Series

$$
\left(v_{p}^{k}\right)^{ \pm}=\frac{1}{2}\left(v_{0 p}^{k}\right)^{ \pm}+\sum_{m=1}^{\infty}\left(v_{m p}^{k}\right)^{ \pm}, \quad p=1,2,3,4 ; \quad k=1,2, \ldots, l .
$$

We should seek the solution of the problem in each ring D_{k} in the form [6]:

$$
\begin{align*}
& v_{i}^{k}(r, \psi)=a^{k}(r)\left(v_{0 i}^{k}\right)^{-}+b^{k}(r)\left(v_{0 i}^{k}\right)^{+}+h_{i}^{k}(r)\left(\left(u_{03}^{k}\right)^{-}-\left(u_{03}^{k}\right)^{+}\right)+ \\
& \sum_{m=1}^{\infty}\left[K_{m}^{k}(r)\left(v_{m i}^{k}\right)^{-}(\psi)+T_{m}^{k}(r)\left(v_{m i}^{k}\right)^{+}(\psi)\right]+\sum_{m=1}^{\infty}\left[\left(H_{m 1}^{k}\right)^{i}(r)\left(\gamma_{m 1}^{k}\right)^{-}(\psi)+\right. \\
& \left.\left(L_{m 1}^{k}\right)^{i}(r)\left(\gamma_{m 1}^{k}\right)^{+}(\psi)+\left(H_{m 2}^{k}\right)^{i}(r)\left(\gamma_{m 2}^{k}\right)^{-}(\psi)+\left(L_{m 2}^{k}\right)^{i}(r)\left(\gamma_{m 2}^{k}\right)^{+}(\psi)\right], \\
& v_{j}^{k}(r, \psi)=a^{k}(r)\left(v_{0 j}^{k}\right)^{-}+b^{k}(r)\left(v_{0 j}^{k}\right)^{+}+\sum_{m=1}^{\infty}\left[K_{m}^{k}(r)\left(v_{m j}^{k}\right)^{-}(\psi)+\right. \\
& \left.T_{m}^{k}(r)\left(v_{m j}^{k}\right)^{+}(\psi)\right]+\sum_{m=1}^{\infty}\left[\frac { \partial } { \partial \psi } \left[\left(H_{m 1}^{k}\right)^{j}(r)\left(\gamma_{m 1}^{k}\right)^{-}(\psi)+\left(L_{m 1}^{k}\right)^{j}(r) \gamma_{m 1}^{k}{ }^{+}(\psi)+\right.\right. \\
& \left.\left.\left(H_{m 2}^{k}\right)^{j}(r) \gamma_{m 2}^{k}-(\psi)+\left(L_{m 2}^{k}\right)^{j}(r)\left(\gamma_{m 2}^{k}\right)^{+}(\psi)\right]\right], \\
& i=1,2, \quad j=i+2, \quad k=1,2, \ldots, l-1, \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
& a^{k}(r)=\frac{R_{k-1}^{2}-r^{2}}{2\left(R_{k}^{2}-R_{k-1}^{2}\right)}, \quad b^{k}(r)=\frac{r^{2}-R_{k-1}^{2}}{2\left(R_{k}^{2}-R_{k-1}^{2}\right)}, \quad a^{k}\left(R_{k-1}\right)=b^{k}\left(R_{k}\right)=\frac{1}{2}, \\
& a^{k}\left(R_{k}\right)=b^{k}\left(R_{k-1}\right)=0, \quad h_{i}^{k}(r)=-\frac{P_{0}^{k}}{2 d_{1}^{k}\left(\ln R_{k-1}-\ln R_{k}\right)}\left[n_{3}^{k}(r)+2 n_{i}^{k}\right], \\
& n_{1}^{k}=\gamma_{1}^{k}\left(a_{2}^{k}+b_{2}^{k}\right)-\gamma_{2}^{k}\left(c^{k}+d^{k}\right), \quad n_{2}^{k}=\gamma_{2}^{k}\left(a_{1}^{k}+b_{1}^{k}\right)-\gamma_{1}^{k}\left(c^{k}+d^{k}\right), \\
& n_{3}^{k}=\left[R_{k}^{2} l n R_{k}-R_{k-1}^{2} \ln R_{k-1}-\left(R_{k}^{2}-R_{k-1}^{2}\right)\right] \frac{2 n_{1}^{k}}{R_{k}^{2}-R_{k-1}^{2}}, \\
& h_{i}^{k}\left(R_{k-1}\right)=h_{i}^{k}\left(R_{k}\right)=0, \quad\left(\gamma_{m i}^{k}\right)^{-}=\frac{1}{R_{k-1}^{2}}\left[\sigma_{m}^{k}\left(v_{m i}^{k}\right)^{+}-s_{m}^{k}\left(v_{m i}^{k}\right)^{-}+\right. \\
& \left.R_{k-1}\left(t_{m i}^{k}\right)^{-}+\frac{\partial}{\partial \psi}\left(v_{i+2, m}^{k}\right)^{-}\right],\left(\gamma_{m i}^{k}\right)^{+}=\frac{1}{R_{k}^{2}}\left[\sigma_{m}^{k}\left(v_{m i}^{k}\right)^{-}-\sigma_{m}^{k}\left(v_{m i}^{k}\right)^{-}+\right. \\
& \left.s_{m}^{k}\left(v_{m i}^{k}\right)^{+}+R_{k}\left(t_{m i}^{k}\right)^{+}+\frac{\partial}{\partial \psi}\left(v_{i+2, m}^{k}\right)^{+}\right], \\
& \left(t_{m i}^{k}\right)^{-}=-e_{4}^{k} m\left(C_{m}^{k}(\psi)\left[\frac{\partial}{\partial r} P_{m}^{k}(r)\right]_{r=R_{p}}-D_{m}^{k}(\psi)\left[\frac{\partial}{\partial r} Q_{m}^{k}(r)\right]_{r=R_{p}}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(t_{m i}^{k}\right)^{+}=-e_{5}^{k} m\left(C_{m}^{k}(\psi)\left[\frac{\partial}{\partial r} P_{m}^{k}(r)\right]_{r=R_{p}}-D_{m}^{k}(\psi)\left[\frac{\partial}{\partial r} Q_{m}^{k}(r)\right]_{r=R_{p}}\right), \\
& p=k-1, k, \quad e_{4}^{k}=\frac{1}{d_{1}^{k}}\left(a_{2}^{k} \gamma_{1}^{k}-c^{k} \gamma_{2}^{k}\right), e_{5}^{k}=\frac{1}{d_{1}^{k}}\left(a_{1}^{k} \gamma_{2}^{k}-c^{k} \gamma_{1}^{k}\right), \\
& C_{m}^{k}=b^{k}\left[u_{m 3}^{k}{ }^{-}-\left(\frac{R_{k-1}}{R_{k}}\right)^{m} u_{m 3}^{k}{ }^{+}\right], \quad D_{m}^{k}=b^{k}\left[u_{m 3}^{k}{ }^{+}-\left(\frac{R_{k-1}}{R_{k}}\right)^{m}\left(u_{m 3}^{k}\right)^{-}\right], \\
& d_{1}^{k}=a_{1}^{k} a_{2}^{k}-\left(c^{k}\right)^{2}>0 ; \quad \alpha_{m}^{k}=\frac{R_{k}^{2}-R_{k-1}^{2}}{1-\left(\frac{R_{k-1}}{R_{k}}\right)^{2 m}}, \quad P_{m}^{k}(r)= \\
& \frac{1}{4(m-1)}\left[\alpha_{m}^{k}\left(\frac{R_{k-1} r}{R_{k}^{2}}\right)^{m}+\left(R_{k}^{2}-r^{2}-\alpha_{m}^{k}\right)\left(\frac{R_{k-1}}{r}\right)^{m}\right], \quad m=2,3 \ldots, \\
& Q_{m}^{k}(r)=\frac{1}{4(m+1)}\left[\alpha_{m}^{k}\left(\frac{R_{k-1}^{2}}{R_{k} r}\right)^{m}-\left(R_{k-1}^{2}-r^{2}+\alpha_{m}^{k}\right)\left(\frac{r}{R_{k}}\right)^{m}\right], \\
& m=1,2, . ., k=1,2, \ldots, l .
\end{aligned}
$$

Let us put (13) into (15) and at the same time, take into consideration (12) and (14). Lo obtain a system of linear algebraic equations for each m for $\left(v_{m i}^{k}\right)^{+}$. The determinant of this system differs from zero, because the above formulated problem has the unique solution. If we solve this system, then the values $\left(v_{m i}^{k}\right)^{-}$will be determined from the conditions (13). By means of the values $\left(v_{m i}^{k}\right)^{+}$and $\left(v_{m i}^{k}\right)^{-}, i=1,2$, we will find the values of the functions $v_{q}^{k}(q=1,2,3,4)$, from (15) and from (10) finally we will obtain:

$$
\begin{gathered}
\left(u_{1}^{k}\right)^{i}=\frac{1}{r^{2}}\left(x_{1} v_{i}^{k}-x_{2} v_{i+2}^{k}\right) \\
\left(u_{2}^{k}\right)^{i}=\frac{1}{r^{2}}\left(x_{2} v_{i}^{k}+x_{1} v_{i+2}^{k}\right), \quad i=1,2
\end{gathered}
$$

So, by (16) and (7) formulae for each ring D_{k} we will obtain the solution of raised problem - $U^{k}(x)=\left(\left(u_{1}^{k}\right)^{1},\left(u_{2}^{k}\right)^{1},\left(u_{1}^{k}\right)^{2},\left(u_{2}^{k}\right)^{2}, u_{3}^{k}\right)$ vector value. We will conclude from (15) and (7) formulae that:
$\left|\left(v_{m q}^{k}\right)^{ \pm}\right| \leq \frac{1}{m^{4}}, \quad\left|\left(v_{m 3}^{k}\right)^{ \pm}\right| \leq \frac{1}{m^{3}}, \quad m=1,2, \ldots, q=1,2,3,4 ; \quad k=1,2, \ldots l$.
For the absolute and uniform convergency of series (15) and (7) and their first and second order derivatives it is sufficient(including the boundary) to fulfill the inequality : $f^{p}(z) \in C^{4}\left(S_{p}\right), \quad f_{3}^{k}(z) \in C^{3}\left(S_{k}\right), \quad f_{4}^{k}(z) \in$
$C^{2}\left(S_{k}\right)$,
$p=1, l ; \quad k=1,2, \ldots, l$.
2. The problems for compound circle may be solved analogously, i.e. when circle D_{1} is not empty and is filled with elastic mixture.Representation of the harmonic function $u_{3}^{1}(x)$ in the domain D_{1} is known [4]:

$$
u_{3}^{1}(x)=\frac{1}{2}\left(u_{03}^{1}\right)^{+}+\sum_{m=1}^{\infty}\left(\frac{r}{R_{1}}\right)^{m}\left(u_{m 3}^{1}\right)^{+}, x \in D_{1},
$$

where

$$
\left(u_{m 3}^{1}\right)^{+}(z)=\frac{1}{\pi} \int_{0}^{2 \pi}\left(u_{3}^{1}\right)^{+}(\theta) \cos m(\theta-\psi) d \theta, m=0,1, \ldots, z=\left(R_{k}, \psi\right), z \in S_{1},
$$

the functions $v_{j}^{1}(x)$ in the domain D_{1} we can represent as:

$$
\begin{aligned}
& v_{i}^{1}(r, \psi)=\frac{1}{2}\left(\frac{r}{R_{1}}\right)^{2}\left(v_{0 i}^{1}\right)^{+}+\sum_{m=1}^{\infty}\left[\left(\frac{r}{R_{1}}\right)^{m}\left(v_{m i}^{1}\right)^{+}+\right. \\
& \left.Z_{m}(r)\left[H_{m i}^{1}\left(\gamma_{m 1}^{1}\right)^{+}+L_{m i}^{1}\left(\gamma_{m 2}^{1}\right)^{+}-e_{4}^{1} m \delta_{m}^{1}\left(u_{m 3}^{1}\right)^{+}\right]\right], \\
& v_{j}^{1}(r, \psi)=\frac{1}{2}\left(\frac{r}{R_{1}}\right)^{2}\left(v_{0 j}^{1}\right)^{+}+\sum_{m=1}^{\infty}\left[\left(\frac{r}{R_{1}}\right)^{m}\left(v_{m j}^{1}\right)^{+}+\right. \\
& \left.\frac{1}{m} Z_{m}(r)\left[M_{m j}^{1}\left(\gamma_{m 1}^{1}\right)^{+}+N_{m j}^{1} \gamma_{m 2}^{1}+e_{5}^{1} m \delta_{m}^{1}\left(u_{m 3}^{1}\right)^{+}\right]\right],
\end{aligned}
$$

where the values

$$
\begin{aligned}
& Z_{m}(r)=\frac{R_{1}^{2}-r^{2}}{4(m+1) \delta_{m}^{1}}, Z_{m}\left(R_{1}\right)=0, \quad \delta_{m}^{1}=\left(2+e_{1}^{1}\right)\left(2+e_{3}^{1}\right)-e_{2}^{1} e_{6}^{1}, \\
& \gamma_{m i}^{1}=\frac{2(m+1)}{R_{1}^{2}}\left[\left(v_{m i}^{1}\right)^{+}+\frac{1}{m} \frac{\partial}{\partial \psi}\left(v_{m j}^{1}\right)^{+}-e_{i+3}\left(u_{m 3}\right)^{+}\right], \\
& e_{1}^{1}=\frac{1}{d_{1}^{1}}\left(a_{2}^{1} b_{1}^{1}-c^{1} d^{1}\right), \quad e_{2}^{1}=\frac{1}{d_{1}^{1}}\left(a_{2}^{1} d^{1}-c^{1} b_{2}^{1}\right), \quad e_{3}^{1}=\frac{1}{d_{1}^{1}}\left(a_{1}^{1} b_{2}^{1}-c^{1} d^{1}\right), \\
& e_{4}^{1}=\frac{1}{d_{1}^{1}}\left(a_{1}^{1} d^{1}-c^{1} b_{1}^{1}\right), \quad A_{1}^{1} \equiv e_{6}^{1}=\frac{1}{d_{1}^{1}}\left(a_{1}^{1} d^{1}-c^{1} b_{1}^{1}\right) .
\end{aligned}
$$

$H_{m i}^{1}, L_{m i}^{1}, M_{m j}^{1}, N_{m j}^{1}$-are depending on elastic and thermal constants of the mixture and on the radius $R_{1}, j=i+2, i=1,2$.

ACKNOWLEDGEMENT. The designated project has been fulfilled by financial support of Georgian National Science Foundation (Grant No. GNSF/ST 06/3-033). Any idea in this publication is possessed by the author and may not represent the opinion of Georgian National Science Foundation itself.

References

1. Green A.E. and Steel T.R. Constitutive equations for interacting continua. Int.I.Eng.Sci. 4 (1966), no.4, 483-500.
2. Natroshvili D.G.,Jagmaidze A.Y. and Svanadze M.G. Some Problems of Linear Theory of Elastic Mixtures, (Russian), Tbilisi State University Press, Tbilisi, 1986.
3. Toradze D.I., Tsagareli I.I. The solution of the boundary-contact problems of statics of the theory of elastic mixtures for compound circle.Rep.of Enlarged Session of the Seminar of Inst.of Appl.Math. 2003, 18, no.2, pp. 81-84.
4. Poloji G.N.The equation of mathematical physics.Wisshaia shkola, Moscow, 1964.
5. Basheleishvili M.O., Giorgashvili L.G., Zazashvili Sh.P. Effective solution of some boundary-contact problems of statics for composite isotropic bodies. Proceedings of Tbilisi Univ., Tbilisi, 1978, 204, pp.47-64.
6. Tsagareli I.I. Solution of a boundary value problem of static of the thermoelastic mixture for a circular ring. International Scientific and Technical Conference "Architecture and Construction -Topical problems" 15-18 October, 2008, Yerevan- Jermuck.Conference proceedings. 2008, 3, pp.261- 265.
