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Abstract

An algorithm is given for the first time for constructing simple, absolutely approx-

imating and absolutely stable schemes for the multidimensional parabolic equation.

The stability is investigated by using the method of harmonic analysis.
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Introduction

For multidimensional parabolic type equation the construction of absolutely
stable economical schemes having complete approximation is a problemat-
ical question in the case p > 2. First such type scheme for p = 2, a = 0
have been written by American scientific Peaceman, Douglas and Rachford
in 1955 (see [1,2]). In the present paper it is given the generalization of
these results for the equation (1) if p > 2 and a 6= 0.

We note that the fractional-step schemes not having complete approxi-
mation introduce additional complications relatively to the boundary condi-
tions. This reflects on the exactness of schemes. Here represented schemes
don’t have such deficiency.
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1 Statement of the problem

Let us consider the first initial-boundary problem in the cylinder QT for
the equation

∂u

∂t
= Lu + f, Lu = σ2

p∑

i=1

∂2u

∂x2
i

− au + f,

(x, t) ∈ QT =G× (0 ≤ t ≤ T ), u(x, 0)=u0(x), u(x, t)
∣∣
Γ
=0, (1.1)

x = (x1, x2, . . . , xp) ∈ G, G = G + Γ,

p - dimensional cube, 0 ≤ xi ≤ 1, i = 1, p.

2 Fractional-step schemes for the problem (1.1)

Let us divide integrable domain QT = G × [0, T ] in the elementary cells
by planes xi = khi, k = 0, 1, . . . , N1 and tj = jτ , τ > 0, j = 0, 1, . . . , N0,
ωh = {xi = (i1h1, . . . , iphp) ∈ G} is the cubic net with the step hi, ωτ =
{tj = jτ, j = 0, 1, . . . , N0} is the cete on the segment 0 ≤ t ≤ T with the
step τ = T

N0
.

In difference schemes relative to a right hand f and a solution u we
remain identical notations. Simply the corresponding discrete values are
taken in the base knot (x1i, x2i, . . . , xpi, tj).

The symmetric scheme for the problem (1.1) has the following form

un+k − un+k−2

2τ
= 0, 5 p ∆kk(un+k − un+k−2) +

p∑

i=1

∆ii u
n+k−2

−0, 5 a(un+k − un+k−2) + fn+k−1, (2.1)

(xi, tj) ∈ ωh × ωτ , un−1(xi, 0) = u0(xi),

un+k(xi, tj)
∣∣
Γh

= 0, k = 1, p,

where

∆iiu = σ2uxixi =
σ2

h2
i

[
u(x1, . . . , xi + hi, . . . , xp, tj)

− 2u(x1, . . . , xp, tj) + u(x1, . . . , xi − hi, . . . , xp, tj)
] ≈ σ2 ∂2u

∂x2
i

.

Let us write out the fractional-step scheme which corresponds to the
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symmetric scheme (2.1)

u
n+ k

p − u
n+ k−1

p

1
p τ

= 0, 5 p ∆kk

(
u

n+ k
p − u

n+ k−1
p

)
+

p∑

i=1

∆ii u
n+ k−1

p

− 0, 5 a
(
u

n+ k
p − u

n+ k−1
p

)
+ f

n+ 2k−1
p , k = 1, p. (2.2)

3 Investigation of the scheme (2.2)

Let us introduce the space H of net functions which are defined on the net
ωh and vanished on the Γh, with the inner product

(u, v) =
∑
x∈ωh

u(x) v(x) h1 · · ·hp

=
N1−1∑

i1=1

N2−1∑

i2=1

· · ·
Np−1∑

ip=1

u(i1h1, . . . , iphp) v(i1h1, . . . , iphp) h1 · · ·hp

and norm ‖u‖ =
√

(u, u).

Let us define A = −
p∑

i=1
∆ii. The operator A is selfadjoint and positive

in H. Square of norm in the energetic space HA has the form

‖u‖2
A =

N1∑

i1=1

N2−1∑

i2=1

· · ·
Np−1∑

ip=1

(
ux1(i1h1, . . . , iphp)

)2
h1 · · ·hp + · · ·

+
N1−1∑

i1=1

N2−1∑

i2=1

· · ·
Np−1∑

ip−1=1

Np∑

ip=1

(
uxp(i1h1, . . . , iphp)

)2
h1 · · ·hp

or
‖u‖2

A = ‖ux1‖2
1 + · · ·+ ‖uxp‖2

p.

Consider u = u(t), t ∈ ωτ as an abstract function with the values in the
space H. For the investigation of the scheme (2.2) we assume that f = 0
and exclude the intermediate values u

n+ k
p , k = 1, 2, . . . , p− 1. Initially we

rewrite the scheme (2.2) in the form

(Ak + B1) u
n+ k

p = (Ak −B1 + C1)u
n+ k−1

p , (3.1)

where

Ak = E − 0, 5 τ ∆kk, B1 = 0, 5
τ

p
aE, C1 =

τ

p

p∑

i=1

∆ii, k = 1, p.
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Equivalent to the (3.1) homogeneous scheme has the form

(A1 + B1)(A2 + B1) · · · (Ap + B1) un+1

= (A1 −B1 + C1)(A2 −B1 + C1) · · · (Ap −B1 + C1) un. (3.2)

If we introduce the notations (3.1) in (3.2) and expend to the powers
τ , obtain

un+1 − un

τ
= (∆11 + · · ·+ ∆pp)

un+1 + un

2
− a

un+1 + un

2

− τ2

4
(∆11∆22 + · · ·+ ∆p−1,p−1∆pp)

un+1−un

τ
+o(τ2). (3.3)

Let us write (3.3) in the canonical form

B ut + Ã u = f, tj ∈ ωτ , (3.4)

where

B = E + 0, 5 τ A + 0, 5 aτ E, Ã = A + aE (Ã = −Lh).

From (3.4) follows that

B ≥ 0, 5 τ Ã. (3.5)

This means that the scheme (3.4) is stable in the space HA.
Let us verify the inequality (3.5)

B − 0, 5 τ Ã = E + 0, 5 τ A + 0, 5 τ aE − 0, 5 τ(A + aE) = E > 0

The scheme (2.2) has the exactness o(τ2 + |h|2). This follows immedi-
ately from (3.3).

Theorem. Let us assume that the condition (3.5) holds. Then the
fractional-step scheme (2.2) is stable relative to the right-hand relative to
the solution of the problem (1.1) is valid the following a priori estimate

‖un+1‖A ≤ ‖u0‖A +
n∑

k=0

τ
∥∥B−1fk

∥∥
A

and since B is selfadjoiut positive operator, we have

‖un+1‖B ≤ ‖u0‖B +
n∑

k=0

τ ‖fk‖B−1 .

The proof is similar to the Theorem 4 (see [3], Ch. VI, §2).
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Remark. If we apply the method of harmonic analysis by investigation
of the fractional step scheme (2.2), the equation of dispersion obtains the
following form

(
1 +

p

2
ai +

1
2

a
)
ρ2

i +
( p∑

i=1

ai − p

2
ai − 1 +

1
2

a
)

= 0, i = 1, p,

where

un = ρn · ei(k1x1+···+kpxp), ρn = eω n τ , i =
√−1,

ai = 8
σ2τ

h2
i

sin2 kihi

2

(see [4]). The following condition of stability holds

|ρ| = |ρ1 · · · ρp| ≤ 1,

where

ρi =

√√√√√1 + p
2 ai −

p∑
i=1

ai − a
2

1 + p
2 ai + a

2

, i = 1, p.

Really, if τ
h2

i
→∞ (ai = const = c, i = 1, p), we obtain for any i, that

|ρ| =
√∣∣∣∣

1− 1
2(pc + a)

1 + 1
2(pc + a)

∣∣∣∣
p

≤ 1.
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