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Abstract

On the basis of generalizing Cauchy’s integral formulae the boundary value prob-

lems with discontinuous matrix coefficients for general elliptic systems of first order on

the plane are solved. The necessary and sufficient conditions for the solvability and the

index formulae of these problems in the weighted classes are established. Sufficiently

wide classes of special (degenerate in point) differential equations are also studied.
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1 Introduction

The first order linear system of partial differential equations

∂u

∂x
= A(x, y)

∂u

∂y
+ B(x, y) u(x, y) + F (x, y), (1)

where u = u(u1, u2, . . . , un) is 2n-desired vector, A,B are given real 2n×2n-
matrices, depending on two variables x, y, F is given real 2n-vector, is said
to be elliptic in domain D, if

det(A− λI) 6= 0, (2)

for all real λ and for all points (x, y) ∈ D; I is a unit matrix. In other words
the system is elliptic in some plane domain D if and only if the matrix A
has no real characteristic numbers in D.

As it is well-known, when n = 1 in case of sufficient smoothness of the
coefficients of (1), after corresponding changing of variables we can reduce
the system to one complex equation

∂zw + A1w + B1w = F

(
∂z =

1
2

( ∂

∂x
+ i

∂

∂y

))
. (3)
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At present this equation is called Carleman-Vekua equation.

Remark. Some important generalizations in other directions see below
in Section 3.

The complete theory of functions, satisfying this equation, the theory of
generalized analytic functions was constructed by I. Vekua [13] Later on B.
Bojarski has shown, that the methods of the theory of generalized analytic
functions admit far-going generalizations on case of elliptic system of first
order in complex form which has the following form

∂zw −Q(z)∂zw + Aw + Bw = 0,
(
∂z =

1
2
(∂x− i ∂y)

)
, (4)

where Q(z), A(z), B(z) are given square matrices of order n, Q(z) is a
matrix of special quasi-diagonal form [1], Q(z) ∈ W 1

p (C), p > 2, |qii| ≤
q0 < 1, Q(z) ≡ 0 outside of some circle, A,B are bounded measurable
matrices. (The notation A ∈ K, where A is a matrix and K is some class
of functions, means that every element Aαβ of A belongs to K).

The regular solutions of the equation (4) are called the generalized
analytic vectors. In case A = B = 0 such solutions are called the Q-
holomorphic vectors.

In the works of B. Bojarski by the full analogy with the theory of
generalized analytic functions are given the formulae of general represen-
tations. On this basis the boundary value problems of linear conjugation
and Riemann-Hilbert boundary value problem with Hölder-continuous co-
efficients are considered. These results of B. Bojarski and some further
development of the theory of generalized analytic vectors are presented in
the monograph [2].

The present paper first of all deals with discontinuous problems of the
theory of analytic vectors. By analogy with the case of analytic functions
[3,4] under these problems we mean the problems, where desired vectors
in considered domains have angular boundary values and conditions con-
tinuous are to be fulfilled only almost everywhere on Γ. In addition given
coefficients of the boundary conditions are to be piecewise continuous ma-
trices. In the second part of our paper sufficiently wide classes of special
(degenerate at point) differential equations are studied.

2 The solvability of the Problem (V )

Differential boundary value problem is such boundary value problem for
which the boundary condition contains the boundary values of derivatives of
the desired functions. In the theory of differential boundary value problems
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for holomorphic functions an integral representation formula constructed by
I. Vekua (1942) [12] plays important role.

Let D be a finite domain bounded by a simple smooth curve Γ, 0 ∈ D,
let Φ(z) be holomorphic in D. Suppose the derivative of order m (m ≥ 1)
of Φ(z) has boundary values on Γ satisfying Hölder-condition. Then Φ(z)
can be represented by the formula

Φ(z) =
∫

Γ
µ(t)

(
1− z

t

)m−1
ln

(
1− z

t

)
ds +

∫

Γ
µ(t)ds + ic, (5)

where µ(t) is a real-valued function, µ(t) ∈ H(Γ) and c is a real constant;
µ(t) and c are uniquely determined by Φ(z).

This representation gave I. Vekua the possibility to study the differential
boundary value problem for holomorphic functions in Hölder-classes.

We introduce the suitable classes of generalized analytic vectors and
for the elements of these classes the analog of I. Vekua representations,
which allow us the investigation of discontinuous differential boundary value
problems in these classes.

Denote by Ep(D, Q), p ≥ 1, Q(z) ∈ W 1
p0

(C), p0 > 2, the class of Q-
holomorphic vectors in D satisfying the conditions

∫

δkr

|wk(z)|p |dz| ≤ c, k = 1, 2, . . . , n, (6)

where c is a constant, δkΓ is the image of the circumference |ζ| = r, r < 1,
under quasi-conformal mapping

ζ = ωk(sk(z)) (7)

of unit circle |ζ| < 1 onto D, ωk is a schlicht analytic function in the domain
sk(D), sk(z) is a fundamental homeomorphism of the Beltrami equation

∂zS − qkk(z) ∂zS = 0, k = 1, 2, . . . , n, (8)

qkk are the main diagonal elements of the matrix Q.
By Em,p(D,Q) denote the class of Q-holomorphic vectors satisfying the

inequalities ∫

δkr

∣∣∣∣
∂mwk(z)

∂zm

∣∣∣∣
p

|dz| ≤ c, k = 1, 2, . . . , n, (9)

where c is a constant and δkr denotes the same.
By Em,p(D,Q, ρ) denote the class of the vectors w(z) belonging to the

class Em,λ(D, Q) for some λ > 1 such that the boundary values of the
vector ∂mw/∂zm belong to the class Lp(Γ, ρ).
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If w(z) is a Q-holomorphic vector from Em,p(D, Q, ρ), Q(z)∈Wm
p0

(C),
p0 > 2. Then the analogous formula of (5) holds.

w(z) =
∫

Γ

[
I − ζ−1(t)

]m−1 ln
[
I − ζ(z) ζ−1(t)

][
I + Q(t)t′ 2

]
µ(t) ds

+
∫

Γ
M(t) µ(t)ds + iC, (10)

where C = Im w(0), M(t) = diag [M1(t), . . . , Mn(t)] is a definite real
continuous diagonal matrix depending only on Q and Γ; the real vector
µ(t) ∈ Lp(Γ, ρ) is defined uniquely by the vector w(z). By ln[I−ζ(z) ζ−1(t)]
we mean the branch on the plane, cut along the curve lt (lt connects the
point t on Γ with the point z = ∞ and lies outside of D) which is zero-
matrix at the point z = 0.

Em,p(D, Q, A,B, ρ) is the subclass of the class Em,λ(D,Q, A, B) for
some λ > 1 containing vectors whose angular boundary values ∂mw/∂zm

belong to Lp(Γ, ρ).
The following formula holds [13]:

w(z) = Φ(z) +
∫

D

[
Γ1(z, t)Φ(t) + Γ2(z)Φ(t)

]
dt +

N∑

k=1

ckWk(z), (11)

where Φ(z) is a Q-holomorphic vector, ck are real constants, {Wk(z)} (k =
1, . . . , N) is a complete system of linearly independent solutions of the
Fredholm equation

Kw ≡ w(z)− 1
π

∫

D
V (t, z)

[
A(t) w(t) + B(t) w(t)

]
dσt. (12)

Wk(z) turn out to be continuous vectors in the whole plane vanishing at
infinity; the kernels Γ1(z, t) and Γ2(z, t) satisfy the system of integral equa-
tions

Γ1(z, t) +
1
π

V (t, z) A(t)+
1
π

∫

D
V (τ, z)

[
A(τ) Γ1(τ, t)+B(τ)Γ2(τ, t)

]
dστ

= −1
2

N∑

k=1

{
vk(z), vk(t)

}
,

(13)

Γ2(z, t) +
1
π

V (t, z) A(t)+
1
π

∫

D
V (τ, z)

[
A(τ) Γ2(τ, t)+B(τ)Γ1(τ, t)

]
dστ

= −1
2

N∑

k=1

{
vk(z), vk(t)

}
,

6
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where vk(z) ∈ Lp(D) (k = 1, . . . , N) form a system of linearly independent
solutions of the Fredholm integral equation

v(z) +
A′(z)

π

∫

D
V ′(z, t) v(t) dσt +

B′(z)
π

∫

D
V ′(z, t) v(t) dσt = 0. (14)

In (13) the curly bracket {v, w} means a diagonal product of the vectors
v and w, the matrix V (t, z) is generalized Cauchy kernel for the equation
(4) in case A(z) ≡ B(z) ≡ 0. Φ(z) in (11) has to satisfy the following
conditions

Re
∫

D
Φ(z) vk(z) dσz = 0, k = 1, . . . , N. (15)

Note that generally speaking, the Liouville theorem in not true for so-
lutions of the equation (4). This explains the appearence of the constants
ck in the representation formula (11) and the conditions (15).

From (11) we have
w(z) = Φ(z) + h(z), (16)

where Φ(z) ∈ Em,p(D, Q, ρ) and h(z) ∈ Hm(D), Wk(z) ∈ Hm(D).
In the section we consider differential boundary value problem of linear

conjugation type for generalized analytic vectors, i.e. the boundary condi-
tion contains the boundary values of desired vector and its derivatives on
both sides of jump line.

Let Γ be a smooth simple curve. Denote by D+(D−) the finite (infinite)
domain which is bounded by Γ. Suppose 0 ∈ D+. Consider the pair of
equations

∂w

∂z
−Q+(z)

∂

∂z
+ A+(z) w(z) + B+(z)w(z) = 0 in D+ (17)

and
∂w

∂z
−Q−(z)

∂

∂z
+ A−(z) w(z) + B−(z) w(z) = 0 in D−, (18)

where Q+ ∈ W l
p(C), Q− ∈ Wm

p (C), A+, B+ ∈ H l−1(D+), A−, B− ∈
Hm−1(D), A− = B− = 0 in certain neighborhood of z = ∞. By E±

l,m,p(Γ, Q±,
A±, B±, ρ) we denote the class of solutions of equations (17) and (18) re-
spectively, belonging to the class El,p(D+, Q+, A+, B+, ρ) [Em,p(D−, Q−, A−,
B−, ρ)] in the domain D+ [D−]. The classes
E±

l,m,p(Γ, Q±, 0, 0, ρ) will be denoted by E±
l,m,p(Γ, Q±, ρ).

Problem (V). Find a vector w(z) of the class E±
l,m,p(Γ, Q±, A±, B±)

satisfying the boundary condition

l∑

k=0

[
ak(t)

(
∂kw

∂tk

)+

+ bk(t)
(

∂kw

∂tk

) + ]

7
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+
m∑

k=o

[
ck(t)

(
∂kw

∂tk

)−
+ dk(t)

(
∂kw

∂tk

) − ]
= f(t), (19)

almost everywhere on Γ, where ak(t), bk(t), ck(t), dk(t) are given piecewise
continuous square matrices of order k, and f(t) is given vector of the class
Lp(Γ, ρ).

Boundary condition can also contain integral term, which we omit for
the sake of simplicity.

First we consider this problem in case A± = B± = 0, i.e. in the
class E±

l,m,p(Γ, Q±, ρ). For vectors of this class the following representation
formula

w(t) =





1
2πi

∫

Γ
S+(z, τ, l) dζ+(τ) µ(τ), z ∈ D+

− 1
2πi

∫

Γ
S−(z, τ, m) dζ−(τ)µ(τ), z ∈ D−

(20)

holds, the kernels S+(z, t, l) and S−(z, t, m) are represented by the matrices
ζ+ [ζ−] respectively. They are fundamental matrices for Q+(z) [Q−(z)], µ(t)
is the solution of the equation

Nµ = (Ḋ)l
(
ζ l
+(t)Φ+(t)

)− ζm
− Ḋm Φ−(t) in Lp(Γ, ρ), (21)

where

Ḋ f(z) = α(z) fz(z) + β(z) fz(z),

α(z) = −ζz(z)
[
ζz(z) ζz(z)− [ζz(z) ζz(z)

]−1
, (22)

β(z) = −ζz(z)
[
ζz(z) ζz(z)− [ζz(z) ζz(z)

]−1
.

Substituting the representation (20) into the boundary condition for
desired vector µ(t) we obtain the following system of singular integral equa-
tions

Kµ = K1µ + K2µ = 2f(t), (23)

where

Ksµ = As(t) µ(t) +
Bs(t)

πi

∫

Γ

µ(τ)dτ

τ − t
+

∫

Γ
ks(t, τ) µ(τ) dτ (24)

(s = 1, 2),

8
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and

A1(t) = al(t)
( ∂

∂t
ζ+(t)

)l
ζ−l
+ (t)− cm(t)

( ∂

∂t
ζ−(t)

)m
ζ−m
− (t),

A2(t) = bl(t)
( ∂

∂t
ζ+(t)

)l
ζ−l
+ (t)− dm(t)

( ∂

∂t
ζ−(t)

)m
ζ−m
− (t),

B1(t) = al(t)
( ∂

∂t
ζ+(t)

)l
ζ−l
+ (t) + cm(t)

( ∂

∂t
ζ−(t)

)m
ζ−m
− (t),

B2(t) = bl(t)
( ∂

∂t
ζ+(t)

)l
ζ−l
+ (t) + dm(t)

( ∂

∂t
ζ−(t)

)m
ζ−m
− (t),

(25)

ks(τ, t) are certain matrices with weak singularities.
In general case the problem (19) is to be considered in the class E±

l,m,p(Γ,
Q±, A±, B±, ρ), and we use the integral formula

w±(z) = Φ±(z) +
∫

Γ

[
Γ1
±(z, τ)Φ±(τ) + Γ2

±(z, τ) Φ(τ)
]
dστ

+
N±∑

k=1

ck
±W k

±(z), z ∈ D±, (26)

where the resolvents Γ1, Γ2 and the vector Wk(z) are as introduced above.
ck± (k = 1, . . . , N±) unknown real constants, Φ±(z) are unknown vectors of
the class E±

l,m,p(Γ, Q±, ρ), satisfying additional conditions

Im
∫

Γ
Φ±(t) dQ±tΨj

±(t) = 0, j = 1, . . . , N±, (27)

where {Ψj
±} form a complete system of linearly independent solutions of

conjugate equations, they are continuous in whole plane and vanish at
infinity.

The formula (16) allows us to reduce the problem (19) to the case of
Q-holomorphic vectors. Note that the vectors W k±(z), k = 1, . . . , N± have
continuous derivatives up to the required order because of smoothness of
the coefficients of the equations (17) and (18).

Finally we obtain the following result

Theorem. On the inequality

inf
t∈Γ

∣∣ detΩ(t)
∣∣ > 0 (28)

holds, then the problem (19) is Noetherian in the class
E±

l,m,p(Γ, Q±, A±, B±, ρ) if and only if

1 + νk

p
6= µjk, (29)

9
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where µjk = 1/2π arg λjk, 0 ≤ arg λjk < 2π, k = 1, . . . , r, j = 1, . . . , n, λjk

are the roots of the equation

det
[
Ω−1(tk + 0) Ω(tk − 0)− λI

]
= 0 (30)

and Ω(t) is the block-matrix

Ω(t) =
(

cm(t)
dl(t)

bm(t)
al(t)

)
. (31)

Using I. Vekua representations we obtain necessary and sufficient solv-
ability conditions and index formulae for Problem (V) in case when the
plane is cut along several regular arcs for analytic functions so-called cut
plane in various functional classes. These problems are important in appli-
cations. We have considered the general differential boundary value prob-
lems for analytic vectors as well as boundary value problems with shift
complex conjugation on a cut plane [8-11].

3 Degenerate Elliptic Systems

As was mentioned above I. Vekua’s scientific interest was concentrated on
construction of the theory of generalized analytic functions and its applica-
tions in geometry and in the theory of elastic shells. I. Vekua systematically
indicated the necessity of investigation of irregular equations. Let now con-
sider the following equation

∂w

∂z
+

a(z)
f(z)

w +
b(z)
g(z)

w = 0, (32)

in some domain G of z-plane; a, b ∈ Lp(G), p > 2; f and g are analytic
functions on G, they may have zeros of arbitrary order and essential sin-
gularities. I. Vekua called these functions as analytic regularizators of the
coefficients of the equation (32).

One of the fundamental results (and important tool of investigation of
this equation) of the theory of generalized analytic functions is the general
representation of solution by the analytic functions. Precisely for any w(z)
there exists a function Φ(z) analytic in G, such that

w(z) = Φ(z) exp{Ω(z)}, (33)

where

Ω(z) =
π

f(z)

∫∫

G

a(ζ)
ζ − z

dG(ζ) +
π

g(z)

∫∫

G

b(ζ)
ζ − z

ω(ζ)
ω(ζ)

dG(ζ). (34)

10
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For regular coefficients the converse of this relation is given in I. Vekua’s
famous monograph [13], by the given analytic function Φ(z) the solution
w(z) is constructed. For general case this important result was also gener-
alized by himself.

In regular case this relation completely reveals the properties of gener-
alized analytic functions however even if one of the functions f and g has
essentially singular point then nothing containing is known on behavior of
the solution of the equation (32) in the neighborhood of this point. It is
unknown how to use the relation in this case too.

Incomparably more is known in case when f and g have zeros but do
not have essential singularities. This type of equations are called Carleman-
Vekua equations with polar singularities.

Consider typical and important in applications the following Carleman-
Vekua equation with polar singularities

|z|ν ∂w

∂z
+ a(z) w + b(z) w = 0, (35)

where the real number ν > 0, a, b ∈ Lp(G), p > 2 and G contains some
neighborhood of z = 0 except this point (perforated neighborhood of z = 0).
For these equations (differing form the regular case ν = 0) it case take place
very unexpected phenomenas.

It is very meaningful I. Vekua’s emotional attitude to their problematic,
which he expressed as follows. “Some simple examples show the complicate
character of these problems” [14].

To make it clear let’s consider the following examples:

|z|ν ∂

∂z
+ ε(cosϕ + i sinϕ)w = 0, (36)

where ν > 1, ε = ±1.
It is easy to show that the solutions of this equation in the neighborhood

of z = 0 have essentially different behavior for ε = 1 and ε = −1. It
follows that the problem of construction of general theory of such singular
equations is very different and indeterminable however the validity of the
following proposition about the structure of solutions of these equations
under general assumptions for given ν, a, b is proved: every solution w(z)
of the equation (35) satisfying the equation

w(z) = O(Ψ(z)), z → 0 (37)

for some analytic in domain G function Ψ(z) is identically zero; every func-
tion Ψ(z) satisfying condition

Ψ(z) = O(w(z)), z → 0 (38)

11
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in domain G is identically zero for some solution w(z).
From above the following conclusion holds: the structure of solutions

of Carleman-Vekua equations with polar singularities is principally nonan-
alytic.

We have obtained correct statement and complete analysis of boundary
value problems for sufficiently wide class of equations of such type. They are
first order singular equations. The equations of higher order undoubtly are
of much theoretical and practical interest. In this connection let’s consider
the following system

m∑

k=0

zνk Ak
∂kw

∂z k
= 0, (39)

where m, ν are given natural numbers, Ak (0 ≤ k ≤ m) are given complex
square n×n-matrices. Under the solution of this system we mean a vector-
function w = (w1, . . . , wn) of the class Cm(G) satisfying the system (39)
in every point of G. Note, that G is as above perforated neighborhood of
z = 0. Assume that

det A0 6= 0, detAm 6= 0, Ak ·Aj = Aj ·Ak, 0 ≤ j, k ≤ m. (40)

Construct all possible polynomials of the form

τmζm + τm−1ζ
m−1 + · · ·+ τ1ζ + τ0 = 0, (41)

where the coefficients τk is some eigen-value of the matrix Ak, (0 ≤ k ≤ m).
Denote by ∆ the set of all complex roots of these polynomials and introduce
a number δ0 = min

ζ∈∆
|ζ|, obviously δ0 > 0.

Along with the solution w(z) of the system (39) construct its charac-
teristic function

Tw(ρ) = max
0≤ϕ≤2π

n∑

k=1

m−1∑

p=0

∣∣∣∣
∂p

∂z p (ρ eiϕ)
∣∣∣∣, ρ > 0. (42)

The following theorem holds:

Theorem. Let ν ≥ 2 and Ψ(z) be some analytic function in G. Let
the solution w(z) of the system satisfy the condition

Tw(z) = O

(
|Ψ(z)| exp

{
δ

|z|δ
})

, z → 0. (43)

where δ is some number and σ < ν − 1.
Then the solution w(z) is identically zero vector-function. Moreover

when the equation (43) is fulfilled then w(z) is also trivial if

σ = ν − 1, δ < δ0 cosπβ, β = max
{

ν,
ν − 3
2ν − 2

}
. (44)

12



+ Elliptic System on the Plane AMIM Vol.12 No.1, 2007

Note that in particular, where ν = 2 for this system we succeeded to state
correct boundary value problem to make its complete analysis. These re-
sults are particularly published in [5–7].
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