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Abstract

The aim of our study is do derive a relation of Knopoff-De Hoop type for displace-

ment vector fields within context of thermoelastic dipolar bodies with voids. Then, as

a consequence, an explicit expression of the body loadings equivalent to the disloca-

tion, is obtained.
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1. Introduction

The theory of thermo-microstretch elastic solids was first elaborated by
Eringen, [4]. In short, this is a theory of elasticity with microstructure that
include intrinsic rotations and microstructural expansion and contractions.

This theory can be useful in the applications which deal with porous
materials, such as geological materials, solid packed granular materials and
many others.

On the other hand, materials which operate at elevated temperatures
will invariably be subjected to heat flow at some time during normal use.
Such heat flow will involve a non-linear temperature distribution which will
inevitable give rise to thermal stresses. For these reasons, the development,
design and selection of materials for high temperature applications requires
a great deal of care. The role of the pertinent material properties and
other variables which can affect the magnitude of thermal stress must be
considered.

The present paper must be considered as a first step to a better under-
standing of microstretch and thermal stress in the study of above enumer-
ated materials.
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The reciprocity and representation relations that appear in our study
constitute a powerful theoretical tools in the assessment of the theory of
seismic-sources mechanism, in the studies connected with seismic wave
propagation.

Also, we think that this paper is a good help to understanding the
application of microstretch mechanism to earthquake problems.

2. Basic equations

For convenience, the notations and terminology chosen are almost identical
to those of our studies [6], [7]. Our paper is concerned with an anisotropic
and homogeneous material.

Let the body occupy, at time t = 0, a properly regular region B of
the three-dimensional Euclidian space, bounded by the piece-wise smooth
surface ∂B and we denote the closure of B by B̄. We refer the motion of
the body to a fix system of rectangular Cartesian axes Oxi, i = 1, 2, 3 and
adopt the Cartesian tensor notation. Points in B are denoted by xj and
t∈[0,∞) is temporal variable. Throughout this work the Einstein summa-
tion convention over repeated indices is used. The subscript j after comma
indicates partial differentiation with respect to the spatial argument xj . All
Latin subscripts are understood to range over the integers (1, 2, 3), while
the Greek indices have the range (1, 2). A superposed dot denotes the
derivatives with respect to the t− time variable. Also, the spatial argu-
ment and the time argument of a function will be omitted when there is no
likelihood of confusion.

For clarity and simplification in presentation, the regularity hypotheses
on the considered functions will be omitted.

On these grounds, the field equations in the dynamic theory of ther-
moelasticity of dipolar bodies with voids are, (see, [6], [7]):

- the equations of motion

(τij + ηij),j + %F1 = %üi,

µijk,i + ηjk + %Gjk = Ikrϕ̈jr; (1)

- the balance of the equilibrated forces

λi,i − s+ %L = %kσ̈; (2)

- the energy equation.

%T0η̇ = qi,i + %r; (3)
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- the constitutive equations

τij = Cijmnεmn +Gmnijγmn + Fmnrijχmnr

+aijσ + dijkσ,k − αijθ,
ηij = Gijmnεmn +Bijmnγmn +Dijmnrχmnr

+bijσ + eijkσ,k − βijθ,
µijk = Fijkmnεmn+Dmnijkγmn+Aijkmnrχmnr

+eijkσ+fijkmσ,m−ωijkθ,
hi = dmniεmn + emniγmn + fmnriχmnr

+diσ − aiθ + Pijσ,j , (4)
s = −aijεij − bijγij − eijkχijk − ξσ − diθ,i +mθ,

S = S0 + αijεij + βijγij + ωijkχijk +mσ + aiσ,i + αθ,

qi = kijθ,j ,

-the kinetic relations

εij =
1
2

(ui,j + uj,i) , γij = uj,i − ϕij

χijk = ϕjk,i, θ = T − T0, σ = ϕ− ϕ0 (5)

In the above equations we have used the following notations:

% - the constant reference mass density, S− the specific entropy, T0 - the
constant absolute temperature of the body in its reference state, Iij - the
components of microinertia, k - the equilibrated inertia, ui - the compo-
nents of displacement vector, ϕij - the components of dipolar displacement
tensor, ϕ - the volume distribution function which in the reference state is
ϕ0, σ - the change in volume fraction measured from the reference state,
εij , γij , χijk - the kinematic characteristic of the strain, τij , ηij , µijk - the
components of the stress tensors, λi - the components of the equilibrated
stress vector, qi - the components of the heat conduction vector, Fi - the
components of the body forces, Gij - the components of the dipolar body
forces, L - the extrinsic equilibrated body force.
Finally, the tensors Cijmn, Bijmn, ..., kij represent the characteristic func-
tions of the material and they obey the symmetry relations:

Cijmn = Cmnij = Cjimn, Bijmn = Bmnij ,

Aijkmnr = Amnrijk, Fijkmn = Fijknm, Gijmn = Gijnm, (6)
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aij = aji, dijk = djik, Pij = Pji, kij = kji.

The entropy inequality implies

kijθ,iθ,j ≥ 0 (7)

To the system of field equations (1)-(5) we adjoin the following initial con-
ditions

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), x ∈ B̄
ϕjk(x, 0) = ϕ0

jk(x), ϕ̇jk(x, 0) = ϕ1
jk(x), x ∈ B̄ (8)

θ(x, 0) = θ0(x), σ(x, 0) = σ0(x), σ̇(x, 0) = σ1(x), x ∈ B̄
and the following prescribed boundary conditions

ui = ūi on ∂B1 × [0, t0), (τij + ηij)nj = t̄i on ∂B
c
1 × [0, t0),

ϕjk = ϕ̄jk on ∂B2 × [0, t0), µijknk = µ̄jknk on ∂B
c
2 × [0, t0),

σ = σ̄ on ∂B3 × [0, t0), λini = h̄ on ∂Bc
3 × [0, t0), (9)

θ = θ̄ on ∂B4 × [0, t0), qini = q̄ on ∂Bc
4 × [0, t0),

where ∂B1, ∂B2, ∂B3 and ∂B4 with respective complements ∂Bc
1, ∂B

c
2, ∂B

c
3

and ∂Bc
4 are subsets of ∂B such that

∂B1 ∪ ∂Bc
1 = ∂B2 ∪ ∂Bc

2∂B3 ∪ ∂Bc
3 = ∂B4 ∪ ∂Bc

4 = ∂B,

∂B1 ∩ ∂Bc
1 = ∂B2 ∩ ∂Bc

2∂B3 ∩ ∂Bc
3 = ∂B4 ∩ ∂Bc

4 = ∅,
ni are the components of the unit outward normal to ∂B, t0 is some instant
that may be infinite.

Finally, The quantities u0
i , u

1
i , ϕ

0
jk, ϕ

1
jk, θ

0, σ0, σ1, ūi, t̄i, ϕ̄jk, µ̄jk, σ̄,

θ̄, h̄ and q̄ are prescribed functions in their domains.

By a solution of the mixed initial boundary value problem of the ther-
moelasticity theory of dipolar bodies with voids in the cylinder Ω0 =
B × [0, t0) we mean an ordered array (ui, ϕjk, σ, θ( which satisfies the
equations (1), (2) and (3) for all (x, t) ∈ Ω0, the boundary conditions (9)
and the initial conditions (8).

3. Main results

Let u and v be functions defined on B̄ × [0,∞) and continuous on [0,∞)
with respect to t for each x ∈ B̄. We denote by u ∗ v the convolution of u
and v, that is

(u ∗ v)(x, t) =
∫ t

0
u(x, t− τ)v(x, τ)dτ.
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Let us introduce the notations

g(t) = t, h(t) = 1,

fi = %g ∗ Fi + %
[
tu1
i (x) + u0

i (x)
]
,

gjk = %g ∗Gjk + Ikr
[
tϕ1

jr(x) + ϕ0
jr(x)

]
, (10)

l = %g ∗ L+ %k
[
tσ1(x) + σ0(x)

]
,

w = %h ∗ τ + %T0S0.

Following the same procedure used by Iesan in [9], it is easy to prove the
following result, that enables us to give an alternative formulation of the
initial boundary value problem in which the initial data are incorporated
into the field of equations.

Theorem 1. The functions ui, ϕjk, σ, θ, τij , ηij , µijk and qi sat-
isfy the equations (1), (2), (3) and the initial conditions (8) if and only if
they satisfy the following system of equations

g ∗ (τji + ηji),j + fi = %ui

g ∗ (µijk,i + ηjk) + gjk = Ikrϕjr (11)
g ∗ (λi,i − s) + l = %kσ

g ∗ qi,i + w = %kT0S

In our following estimations, we will use the formulation (12) of the
mixed problem. We wish to find the behavior of the considered medium
when embedded in B there is a discontinuity surface Σ for the displace-
ments, dipolar displacements, the stretch and the temperature. The sides
of Σ are denoted by Σ− and Σ+.

Let vi be the components of the unit normal vector of Σ−directed from
− to + side. Then on Σ we have the conditions

u+
i − u−i = Ui,

(
τ+
ji + η+

ji

)
vj =

(
τ−ji + η−ji

)
vj

ϕ+
jk − ϕ−jk = Φjk, µ

+
ijkvk = µ−ijkvk (12)

σ+ − σ− = Ψ, λ+
j vj = λ−j vj

θ+ − θ− = ∅, q+
j vj = q−j vj

where f+ and f− are the limits of the function f(x) as x approaches a
point on the side + or − of the surface Σ, respectively, and Ui, Φij , Ψ and
∅ are prescribed functions. In this way we can consider the equations (12)
in the domain B \ Σ.
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Let us consider two different systems of loadings for the body

G(α) =
{
F

(α)
i , G

(α)
jk , L

(α), r(α), ū
(α)
i , ϕ̄

(α)
ij , σ̄

(α)
i ,

θ̄
(α)
i , t̄

(α)
i , µ̄

(α)
jk , h̄

(α), q̄(α), Ui, Φij , Ψ, ∅
}
,

α = 1, 2

and two corresponding solutions

S(α) =
{
u

(α)
i , ϕ

(α)
jk , σ

(α), θ(α), ε
(α)
ij , γ

(α)
ij ,

τ
(α)
ij , η

(α)
ij , chi

(α)
ijk , λ

(α)
i , s(α), q

(α)
i

}
,

α = 1, 2

For the sake of simplicity, we now introduce the notations

ti = (τij + ηij)nj , Ti =
(
τ+
ij + η+

ij

)
vj

µjk = µijknj , Mjk = µ+
ijkvi (13)

λ = λini, Λ = λ+
i vi

q = qini, Q = q+
i vi

In the following theorem, we prove a reciprocity relation of Betti type.

Theorem 2. If a dipolar thermoelastic body with voids is subjected
to two system of loadings G(α) then between the corresponding solutions
S(α) there is the following reciprocity relation

∫

B

(
f

(1)
i ∗ u(2)

i + g
(1)
jk ∗ ϕ(2)

jk + l(1) ∗ σ(2)

− 1
T0
g ∗ w(1) ∗ θ(2)

)
dV

+
∫

∂B
g ∗

(
t
(1)
i ∗ u(2)

i + µ
(1)
jk ∗ ϕ(2)

jk

+λ(1) ∗ σ(2) − 1
T0
h ∗ q(1) ∗ θ(2)

)
dA

−
∫

∂B

(
T

(1)
i ∗ U (2)

i +M
(1)
jk ∗ Φ(2)

jk + Λ(1) ∗Ψ(2)

− 1
T0
h ∗Q(1) ∗Θ(2)

)
dA

=
∫

B

(
f

(2)
i ∗ u(1)

i + g
(2)
jk ∗ ϕ(1)

jk + l(2) ∗ σ(1)

− 1
T0
g ∗ w(2) ∗ θ(1)

)
dV
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+
∫

∂B
g ∗

(
t
(2)
i ∗ u(1)

i + µ
(2)
jk ∗ ϕ(1)

jk

+λ(2) ∗ σ(1) − 1
T0
h ∗ q(2) ∗ θ(1)

)
dA

−
∫

∂B
g ∗

(
T

(2)
i ∗ U (1)

i +M
(2)
jk ∗ Φ(1)

jk

+Λ(2) ∗Ψ(1) − 1
T0
h ∗Q(2) ∗Θ(1)

)
dA.

Proof. In view of symmetry relations (6) and with the aid of the con-
stitutive relations (4), by direct calculations it is easy to obtain

τ
(1)
ij ∗ ε(2)

ij + η
(1)
ij ∗ γ(2)

ijk + µ
(1)
ijk ∗ χ(2)

ij

+λ(1)
i ∗ σ(2)

,i + s(1) ∗ σ(2) − %θ(1) ∗ S(2) (14)

= τ
(2)
ij ∗ ε(1)

ij + η
(2)
ij ∗ γ(1)

ijk + µ
(2)
ijk ∗ χ(1)

ij

+λ(2)
i ∗ σ(1)

,i + s(2) ∗ σ(1) − %θ(2) ∗ S(1)

Let us introduce the notation

Iαβ =
∫

B
g ∗

[
τ

(α)
ij ∗ ε(β)

ij + η
(α)
ij ∗ γ(β)

ij + µ
(α)
ijk ∗ χ(β)

ijk (15)

+λ(α)
i ∗ σ(β)

,i + s(α) ∗ σ(β) − %θ(α) ∗ S(β)
]
dV

Based on the identity (16) and the notation (17), it is easy to see that

Iαβ = Iβα

With the aid of the equations of motion and the equation (12), we can write

g ∗
[
τ

(α)
ij ∗ ε(β)

ij + η
(α)
ij ∗ γ(β)

ijk + µ
(α)
ijk ∗ χ(β)

ij

+λ(α)
i ∗ σ(β)

,i + s(α) ∗ σ(β) − %θ(α) ∗ S(β)
]

= g ∗
[(
τ

(α)
ji + η

(α)
ji

)
∗ u(β)

j + µ
(α)
ijk ∗ ϕ(β)

ijk

+λ(α)
i ∗ σ(β) − 1

T0
h ∗ q(α)

i ∗ θ(β)
]

,i
(16)

+f (α)
i ∗ u(β)

i + g
(α)
jk ∗ ϕ(β)

jk + l(α) ∗ σ(β) − 1
T0
g ∗ w(α) ∗ θ(β)

−
[
%u

(α)
i ∗ u(β)

i + Ikrϕ
(α)
jr ∗ ϕ(β)

jk + %kσ(α) ∗ σ(β)
]

+
1
T0
g ∗ h ∗ kijθ(α)

,i ∗ θ(β)
,i .
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By integrating in (19) and using the divergence theorem, we are led to

Iαβ =
∫

B

(
f

(α)
i ∗ u(β)

i + g
(α)
jk ∗ ϕ(β)

jk + l(α) ∗ σ(β)

− 1
T0
g ∗ w(α) ∗ θ(β)

)
dV

+
∫

∂B
g ∗

(
t
(α)
i ∗ u(β)

i + µ
(α)
jk ∗ ϕ(β)

jk

+λ(α) ∗ σ(β) − 1
T0
h ∗ q(α) ∗ θ(β)

)
dA (17)

−
∫

Σ
g ∗

(
T

(α)
i ∗ U (β)

i +M
(α)
jk ∗Ψ(β)

jk

+Λ(α) ∗ ∅(β) − 1
T0
h ∗Q(α) ∗Θ(β)

)
dA.

Finally, introducing (20) into (17), we arrive at the desired result (15).
It is easy to see that at the absence of the discontinuities we obtain the
generalization, in the context of the thermoelasticity of dipolar bodies with
voids, of the previous results established in the classical thermoelastody-
namics.

Based on the relation (15), we now calculate the thermomechanical
body loadings equivalent to a given dislocation. To this aim, we assume
that u(2)

i , ϕ(2)
jk , σ(2) and θ(2), as functions of (t, x), where x = (xi), are of

class C∞(B× [0,∞)). Of course, if the functions u(2)
i , ϕ(2)

jk , σ(2) and θ(2) are
given, then by means of the equations (12), we can determine the functions
F

(2)
i , G(2)

jk , L(2) and r(2). We restrict our considerations to the case when

U
(2)
i = Φ(2)

jk = Ψ(2) = Θ(2) and S(2) correspond to the faulted medium.
Then, in the case of identical boundary conditions, we obtain

∫

B
%
(
F

(1)
i ∗ u(2)

i +G
(1)
jk ∗ ϕ(2)

jk

+L(1) ∗ σ(2) − 1
T0
h ∗ r(1) ∗ θ(2)

)
dV

=
∫

B
%
(
F

(2)
i ∗ u(1)

i +G
(2)
jk ∗ ϕ(1)

jk

+L(2) ∗ σ(1) − 1
T0
h ∗ r(2) ∗ θ(1)

)
dV (18)

−
∫

Σ
g ∗

(
T

(2)
i ∗ U (1)

i +M
(2)
jk ∗ Φ(1)

jk

+Λ(2) ∗Ψ(1) − 1
T0
h ∗Q(2) ∗Θ(1)

)
dA.
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In view of (14), we have

T
(2)
i = [(Cijmn +Gijmn) εij + (Gmnij +Bijmn) γij

+ (Fmnrij +Dijmnr)χij + (aij + bij)σij
+ (dijk + eijk)σ,k − (αij + βij) θ] vj ,

T
(2)
jk = [Fijkmnεmn +Dmnijkγmn +Aijkmnrχmnr

+eijkσ + fmijkσm − ωijkθ] vi,
Λ(2) = [dmniεmn + emniγmn + fmnriχmnr + diσ − aiθ + Pijσ,j ] vi,

Θ(2) = kijθ,ivj .

Taking into account the definition of the Dirac translated measure, δ, we
can prove the relation of the following type

ψi(ξ, t) =
∫

B
ψi(x, t)δ(x− ξ)dV,

ψi,j(ξ, t) =
∫

B
ψi(x, t)δ,j(x− ξ)dV (19)

and then the relation (19) can be rewritten as follows
∫

B
%
[(
F

(1)
i + Fi

)
∗ u(2)

i +
(
G

(1)
jk + Gjk

)
∗ ϕ(2)

jk

+
(
L(1) + L

)
∗ σ(2) − 1

T0
∗
(
r(1) +R

)
∗ θ(2)

]
dV (20)

∫

B
%

(
F

(2)
i ∗ u(1)

i +G(2)
jk ∗ ϕ(1)

jk +L(2) ∗ σ(1)− 1
T0
h ∗ r(2) ∗ θ(1)

)
dV.

In the above relations we have used the notations

Fk = −1
%

∫

Σ

[
(Cjirk + 2Gjirk +Bjirk)U

(1)
i

+ (Fjimrk +Drkjim) Φ(1)
im + (drji + erji) Ψ(1)

i

]
δ,r(x− ξ)vjdAξ

Glk = −1
%

∫

Σ

{
[(Glkji +Bjilk) δ(x− ξ)− (Frjilk +Drlkji) δ,r(x− ξ)]U (1)

i

+ [Dmjilkδ(x− ξ)−Arjimlkδ,r(x− ξ)] Φ(1)
im

+ [ejlkδ(x− ξ)− frjlkδ,r(x− ξ)] Ψ(1)
}
vjdAξ

L = −1
%

∫

Σ

{
[(aji + bji) δ(x− ξ)− (drji + erji) δ,r(x− ξ)]U (1)

i

+ [cjimδ(x− ξ)− frjimδ,r(x− ξ)] Φ(1)
im

+ [djδ(x− ξ)− Prjδ,r(x− ξ)] Ψ(1)
}
vjdAξ
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R =
1
%

∫

Σ
T0

[
(αji + βji) U̇

(1)
i + ωjimΦ̇(1)

im + ajΨ̇(1)
]
δ(x− ξ)−

−kjrΘ(1)δ,r(x− ξ)
}
vjdAξ.

Taking into account the relation (23) we deduce that the effect of the
discontinuities across the surface Σ can be represented by extra external
body loads and heat supply.

Although these are supposed to act in an unfaulted medium and cannot
in any sense represent real forces acting in the real medium, they may nev-
ertheless provide, as pointed in the papers [1] and [3], a useful theoretical
tool, because if two dislocations have the same equivalent force, they also
emit the same radiation.
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