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Abstract

In this paper a statical nonlinear model for multicomponent mixture is constructed

and general expressions for response functions of the stress tensors of the constituents

for isotropic elastic mixtures are given. For one nonlinear model of two-component

elastic mixture a theorem on existence and uniqueness of local solution to correspond-

ing boundary value problem is obtained. In the case of multicomponent hyperelastic

mixture the Dirichlet boundary value problem is considered and the existence of global

solution in suitable spaces is proved.
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1. Introduction

In continuum mechanics under mixture is assumed coexistence of different
ingredients mutually diffused through each other. Most bodies, astrophys-
ical, geological, biological or otherwise are mixtures in which two or more
constituents coexist. Therefore, investigation of such type materials is im-
portant not only from theoretical, but also from practical point of view. If
in the mixture one of the constituents is preponderant and the other con-
stituents essentially insignificant, the body is usually assumed to be of the
predominant single constituent. However, there are innumerable situations,
where none of the constituents presented in the body can be ignored with
respect to the others. Particularly, plasmas and gaseous mixtures that sur-
round stars, biological tissues and muscles, suspensions, porous rocks and
soil infused with water or oil. Sometimes, the constituents in a mixture un-
dergo chemical reactions, usually resulting in formation of new compounds.
In the present paper we consider mixtures whose constituents do not react
chemically.
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The first works, where were studied the diffusion of one constituent
of the mixture through another, were published in the fifties of XIX cen-
tury. Later, interesting papers were devoted to the investigation of flow
and diffusion of fluids through solid media ([1-4]).

The theoretical investigations of various mathematical models of mix-
tures were stimulated by monograph of C. Truesdell and R. Toupin ([5]).
In this were formulated mechanical principles for constructing the new ma-
thematical models of continuum with complicated internal structure, which
later were generalized by Green, Naghdi, Adkins and others in [6-12].

It must be pointed out, that two-component elastic mixture first was
considered by Green and Steel in [9]. Various mechanisms of interaction of
the components in the mixture were proposed in [11, 12] and were obtained
improvements of the models given in [9]. Later, propagation of waves and
initial-boundary value problems for various models in the theory of mixtures
were studied in [13-19].

In the present paper we consider nonlinear models of elastic mixtures
and study corresponding boundary value problems. More precisely, in
section 2 on the basis of fundamental assumptions we construct statical
nonlinear model for mixtures. In the same section we consider a class of
mixtures, the so called elastic mixtures, introduce the notions of isotropy,
strong isotropy and for these type of mixtures obtain general expressions for
response functions of the stress tensors for the constituents. In the section 3
boundary value problems for nonlinear models of elastic mixtures are stud-
ied. We consider one nonlinear model of two-component elastic mixture and
prove the existence and uniqueness of local solution in corresponding space
for Dirichlet boundary value problem. In order to investigate existence of
global solution the notion of hyperelasticity for mixtures is introduced. For
multicomponent hyperelastic mixture the Dirichlet boundary value prob-
lem is reduced to problem of minimization of energy functional and proved
that in suitable spaces the problem has a solution.

2. Statical nonlinear models of elastic mixtures

The basic assumption of the mixture theory is that the space occupied by a
mixture can be considered as being occupied cojointly by the various con-
stituents of the mixture, each considered as a continuum in its own right.
Thus, at each point in the domain occupied by the mixture, there is a
particle belonging to each of the constituents. This presupposes that each
constituent is sufficiently dense in the mixture and can be homogenized over
the region of the mixture as a continuum. In this section we study static
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equilibrium of multicomponent mixture and, generalizing the basic prin-
ciples in the mechanics of a single continuum ([20]), obtain corresponding
balance equations.

Throughout the paper we refer the motion of the mixture to a Cartesian
frame in three dimensional Euclidean space R3 with orthonormal basis
{e1, e2, e3}. In order to simplify notations we assume that indices j, k, l, m
range over the integers {1, 2, 3}, summation over repeated indices is implied
and partial derivative ∂/∂xj is denoted by ∂j . The scalar product of the
vectors a = (aj), b = (bj) ∈ R3 is denoted by a · b = ajbj , the norm
in R3 with |a| =

√
a · a and the exterior product of a and b is denoted

by a ∧ b = εjklakblej , where εjkl = 1 if {j, k, l} is an even permutation
of {1, 2, 3}, εjkl = −1 if {j, k, l} is an odd permutation of {1, 2, 3}, and
εjkl = 0 otherwise. Let R3×3 be a space of third order square matrices
equipped with the norm ‖F ‖ = (F : F )1/2, where F : G = tr(F T G) is
scalar product of matrices F , G ∈ R3×3, tr(F ) = Fkk, F T denotes the
transposed matrix of F . The cofactor matrix of F is denoted by CofF
and CofF = (detF )F−T , if detF 6= 0. The set of matrices F ∈ R3×3 with
positive determinants detF > 0 is denoted by R3×3

+ , O3
+ is the subset of

R3×3
+ of orthogonal matrices. S3 denotes the set of symmetric matrices and

S3
> is the subset of S3 of all positive definite matrices. The set of second

order tensors is identified with the set of third order square matrices and
for any tensor T = (Tkl) and vector a = (al) we denote by Ta = Tklalek.

Let us consider body with initial configuration Ω ⊂ R3, which consists
of n-component mixture, where Ω is a Lipschitz domain in R3, i.e. open,
bounded, connected set with a Lipschitz-continuous boundary ∂Ω, the set
Ω is located locally on one side of ∂Ω. As the mixture Ω deforms, its
constituents deform with respect to each other. The displacement and de-
formation of i-th constituent is denoted by ui,ϕi : Ω → R3, ϕi = id + ui,
where ϕi is smooth enough, injective on Ω mapping, which satisfies orien-
tation preserving condition det(∇ϕi) > 0, (∇ϕi)kl = ∂lϕ

i
k, i = 1, n. There-

fore, for each constituent we have Ωϕi

= ϕi(Ω) deformed configuration and

Ωϕ1

= Ωϕ2

= ... = Ωϕn

.
Assume, that the components in the mixture are subjected to three

types of forces: external body forces, applied surface forces and internal
body forces, microforces caused by interaction between constituents. The
applied external body forces and surface forces are given by their densities
fϕi

: Ωϕi → R3 and gϕi
: Γϕi

1 → R3, Γϕi

1 ⊂ Γϕi
, i = 1, n. Since the mix-

ture consists of several components, there exist interaction forces, given by
the densities hϕi

: Ωϕi → R3, where hϕi
dxϕi

is the sum of internal body
forces acting on the element dxϕi

, and microforces, with zero resultant
force, but possibly non-zero moment given by the density mϕi

: Ωϕi → R3,
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where mϕi
dxϕi

is the moment of internal forces acting on the element dxϕi
,

i = 1, n.
The mathematical model of static equilibrium of a single continuum is

constructed on the basis of Euler-Cauchy stress principle. In order to obtain
model of multicomponent mixture we assume, that for each constituent the
analog to Euler-Cauchy principle is valid.

Principle I. Let Ω is initial configuration of n-component mixture
and ϕ1, ...,ϕn are deformations of its constituents. Assume, that on each
constituent act external body forces with density fϕi

: Ωϕi → R3, surface
forces with density gϕi

: Γϕi

1 → R3 and interactive internal body forces
with density hϕi

: Ωϕi → R3. There exist stress vector-fields

tϕi
: Ωϕi × S1 → R3, S1 = {v ∈ R3, |v| = 1}, i = 1, ..., n,

which satisfy the following conditions:
a) for any subdomain Dϕi ⊂ Ωϕi

and any point xϕi ∈ Γϕi

1 ∩∂Dϕi
, where

exists unit outer normal νϕi
, the following conditions are valid

tϕi
(xϕi

,νϕi
) = gϕi

(xϕi
), i = 1, ..., n;

b) for any subdomain Dϕi ⊂ Ωϕi
the balance equations for forces hold

∫

Dϕi

fϕi
(xϕi

)dxϕi
+

∫

Dϕi

hϕi
(xϕi

)dxϕi
+

∫

∂Dϕi

tϕi
(xϕi

,νϕi
)dσϕi

= 0, (2.1)

where νϕi
is a unit outer normal to ∂Dϕi

, i = 1, ..., n;
c) for any subdomain Dϕi ⊂ Ωϕi

the balance equations for moments
are valid

∫

Dϕi

xϕi ∧ fϕi
(xϕi

)dxϕi
+

∫

Dϕi

xϕi ∧ hϕi
(xϕi

)dxϕi
+

+
∫

Dϕi

mϕi
(xϕi

)dxϕi
+

∫

∂Dϕi

xϕi ∧ tϕi
(xϕi

,νϕi
)dσϕi

= 0, i = 1, n.
(2.2)

On the basis of the formulated principle we obtain the analog to Cauchy
theorem.

Theorem 2.1. Let the densities of external and internal body forces
fϕi

: Ωϕi → R3, hϕi
: Ωϕi → R3 and densities of the moments of mi-

croforces mϕi
: Ωϕi → R3 are continuous, stress vector-fields tϕi

(xϕi
,ν)

are continuous with respect to the variable ν ∈ S1, for each xϕi ∈ Ωϕi

, and
continuously differentiable with respect to xϕi ∈ Ωϕi

, for each ν ∈ S1. Then
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there exist continuously differentiable tensor-fields T ϕi
: Ωϕi → R3×3 such

that

tϕi
(xϕi

, ν) = T ϕi
(xϕi

)ν, ∀xϕi ∈ Ωϕi

, ν ∈ S1, i = 1, n. (2.3)

and T ϕi
satisfies the following equations:

−divϕi
T ϕi

(xϕi
) = fϕi

(xϕi
) + hϕi

(xϕi
), ∀xϕi ∈ Ωϕi

, (2.4)

T ϕi
(xϕi

)−
[
T ϕi

(xϕi
)
]T

= Mϕi
(xϕi

), ∀xϕi ∈ Ωϕi

, (2.5)

T ϕi
(xϕi

)νϕi
= gϕi

(xϕi
), ∀xϕi ∈ Γϕi

1 , (2.6)

where divϕi
T ϕi

= (∂ϕi

l Tϕi

kl ), Mϕi
(xϕi

) = (εjklm
ϕi

j ), νϕi
is a unit outer

normal to Γϕi

1 (i = 1, n).
Proof. Since the set Ωϕi

is open, for any point yϕi ∈ Ωϕi
, there exists

tetrahedron Q with vertex in yϕi
, which is located in Ωϕi

, its faces, passing
through yϕi

are parallel to the coordinate planes and the normal of the

fourth face G is ν =
3∑

k=1

νkek. Gk denotes the face orthogonal to ek. From

the balance equation (2.1), letting Dϕi
= Q, we have

∫

Q

(
fϕi

k (xϕi
) + hϕi

k (xϕi
)
)

dxϕi
+

∫

G

tϕ
i

k (xϕi
, ν)dσϕi

+

+
3∑

l=1

∫

Gl

tϕ
i

k (xϕi
,−sign(νl)el)dσϕi

= 0,

where k = 1, 2, 3, sign(z) = 1, for z ≥ 0; sign(z) = 0, for z = 0; sign(z) =
−1, for z < 0.

From the latter equality, applying mean-value theorem for integrals and
taking into account meas(Gk) = |νk|meas(G) (k = 1, 2, 3) we obtain:

∣∣∣∣∣t
ϕi

k (zk, ν) +
3∑

l=1

tϕ
i

k (zkl,−sign(νl)el) |νl|
∣∣∣∣∣ meas(G) ≤

≤ sup
z∈Q

∣∣∣fϕi

k (z) + hϕi

k (z)
∣∣∣ meas(Q), (2.7)

where zk ∈ G, zkl ∈ Gl, k, l = 1, 2, 3, meas(G) denotes the area of G,
meas(Q) is the volume of Q.
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Let us tend the vertices of the face G to yϕi
. Since fϕi

k , hϕi

k are bounded
and components of the stress-vectors tϕ

i

k (xϕi
, ν) are continuous with respect

to the first argument, then from the inequality (2.7) we have

tϕi
(yϕi

, ν) = −
3∑

l=1

tϕi
(yϕi

,−sign(νl)el)sign(νl)νl. (2.8)

If in the latter equality we tend ν to sign(νk)ek (k = 1, 2, 3) and take into
account continuity of tϕi

(xϕi
, ν) with respect to the second argument we

infer that

tϕi
(yϕi

, sign(νk)ek) = −tϕi
(yϕi

,−sign(νk)ek), k = 1, 2, 3,

and, due to (2.8),

tϕi
(yϕi

,ν) =
3∑

l=1

νlt
ϕi

(yϕi
, el), ∀yϕi ∈ Ωϕi

, ν ∈ S1.

Thus, there exist tensor-fields T ϕi
, T ϕi

(yϕi
) =

{
Tϕi

kl (yϕi
)
}
, i = 1, .., n,

where the functions Tϕi

kl : Ωϕi → R, Tϕi

kl (yϕi
) = tϕ

i

k (yϕi
, el), k, l = 1, 2, 3,

are such that

tϕi
(yϕi

,ν) =
3∑

k,l=1

νlT
ϕi

kl (yϕi
)ek = T ϕi

(yϕi
)ν, ∀yϕi ∈ Ωϕi

, ν ∈ S1.

Note that we prove equality (2.3) in the domain Ωϕi
, but since tϕi

is

continuous on Ωϕi × S1, it is valid for all xϕi ∈ Ωϕi

and ν ∈ S1. More-
over, continuously differentiability of tϕi

(yϕi
, ν) with respect to yϕi

insures

continuously differentiability of T ϕi
: Ωϕi → R3×3.

Applying Green’s formula, the last term in the balance equation (2.1)
can be written in the following form

∫

∂Dϕi

tϕi
(xϕi

,νϕi
)dσϕi

=
∫

∂Dϕi

T ϕi
(xϕi

)νϕi
dσϕi

=
∫

Dϕi

divϕi
T ϕi

(xϕi
)dxϕi

,

whence T ϕi
satisfies the equation (2.4) (i = 1, n).

In order to establish (2.5), let us transform surface integral in the ba-
lance equation (2.2),

∫

∂Dϕi

xϕi ∧ tϕi
(xϕi

,νϕi
)dσϕi

=
∫

Dϕi

εjkl∂
ϕi

m

{
xϕi

k Tϕi

lm(xϕi
)
}

ejdxϕi
=
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=
∫

Dϕi

εjklδkmTϕi

lm(xϕi
)ejdxϕi

+
∫

Dϕi

εjklx
ϕi

k ∂ϕi

m Tϕi

lm(xϕi
)ejdxϕi

=

=
∫

Dϕi

εjklT
ϕi

lk (xϕi
)ejdxϕi −

∫

Dϕi

εjklx
ϕi

k (fϕi

l + hϕi

l )(xϕi
)ejdxϕi

,

where δkm is Kronecker’s symbol. Therefore, from the balance equation for
moments (2.2) we obtain

∫

Dϕi

εjklT
ϕi

lk (xϕi
)dxϕi

= −
∫

Dϕi

mϕi

j (xϕi
)dxϕi

, j = 1, 2, 3, i = 1, n,

hence,

εjk1l1T
ϕi

l1k1
(xϕi

) + εjl1k1T
ϕi

k1l1
(xϕi

) = −mϕi

j (xϕi
), j = 1, 2, 3, i = 1, n,

where k1, l1 6= j, k1, l1 = 1, 2, 3, and summation over repeated indices is
not implied. From the latter equality it follows, that

Tϕi

k1l1
(xϕi

)− Tϕi

l1k1
(xϕi

) = εjk1l1m
ϕi

j (xϕi
), ∀xϕi ∈ Ωϕi , i = 1, ..., n,

and the equality (2.5) is proved. The equation (2.6) directly follows from
the point a) of the Principle I and definition of the tensor T ϕi

(xϕi
). 2

So, we obtain the equations (2.4)-(2.6) for static equilibrium of mul-
ticomponent mixture from an Eulerian point of view. In order to express
these equations with respect to the initial configuration let us consider Piola
transform of the tensors T ϕi

, Mϕi
and vectors fϕi

, hϕi
, gϕi

. Consequently,
we get the tensors T i(x), M i(x),

T i(x) = (det∇ϕi(x))T ϕi
(xϕi

)[∇ϕi(x)]−T ,

M i(x) = (det∇ϕi(x))Mϕi
(xϕi

)[∇ϕi(x)]−T ,
xϕi

= ϕi(x),

which we call the first Piola-Kirchhoff stress tensor and the first moment
tensor for i-th constituent respectively. Also, let us introduce the following
tensors

Σi(x) = [∇ϕi(x)]−1T i(x), θi(x) = [∇ϕi(x)]−1M i(x), xϕi
= ϕi(x),

and call them the second Piola-Kirchhoff stress tensor and the second mo-
ment tensor of i-th constituent with respect to the initial configuration.

The vector-fields corresponding to the densities of the body forces fϕi
,

hϕi
: Ωϕi → R3 transform into f i, hi : Ω → R3, where

f i(x) = (det∇ϕi(x))fϕi
(xϕi

), hi(x) = (det∇ϕi(x))hϕi
(xϕi

),
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xϕi
= ϕi(x), and density of the surface forces gϕi

: Γϕi

1 → R3 transform
into gi : Γi

1 = [ϕi]−1(Γϕi

1 ) → R3,

gi(x) = (det∇ϕi(x))
∣∣∣[∇ϕi(x)]−T ν

∣∣∣ gϕi
(xϕi

), xϕi
= ϕi(x) ∈ Γϕi

1 ,

where ν denotes the unit outer normal of Γi
1 at point x (i = 1, n). Note,

that the correspondence between fϕi
, hϕi

, gϕi
and f i, hi, gi is such that

f idx = fϕi
dxϕi

, hidx = hϕi
dxϕi

, gidσ = gϕi
dσϕi

(i = 1, n).
Applying properties of Piola transform, we can obtain equations for

static equilibrium of the mixture with respect to the initial configuration.
Theorem 2.2. The equations of static equilibrium for multicomponent

elastic mixture with respect to the initial configuration are of the following
form:

−divT i(x) = f i(x) + hi(x), ∀x ∈ Ω, (2.9)

T i(x)[∇ϕi(x)]T −∇ϕi(x)[T i(x)]T = M i(x)[∇ϕi(x)]T , ∀x ∈ Ω, (2.10)

T i(x)ν = gi(x), ∀x ∈ Γi
1, i = 1, ..., n, (2.11)

where ν is a unit outer normal to Γi
1. The system of equations (2.9), (2.11)

is formally equivalent to the following variational equations:
∫

Ω

T i : ∇ξidx =
∫

Ω

f i ·ξidx+
∫

Ω

hi ·ξidx+
∫

Γi
1

gi ·ξidσ, i = 1, ..., n, (2.12)

for sufficiently smooth vector-fields ξi : Ω → R3, which vanish on Γi
0 =

Γ\Γi
1 (i = 1, n).
Proof. As well-known Piola transform satisfies

divT i(x) = (det∇ϕi(x))divϕi
T ϕi

(xϕi
), ∀xϕi

= ϕi(x), x ∈ Ω,

and from the equations (2.4), (2.5) and definition of T i, M i, f i, hi we
obtain (2.9), (2.10). Taking into account definition of gi and the property
of Piola transform T ϕi

νϕi
dσϕi

= T iνdσ, from (2.6) we get (2.11).
The equivalence stated in the theorem follows from Green’s formula
∫

Ω

divT i · ξidx =
∫

Γi
1

T iν · ξidσ −
∫

Ω

T i : ∇ξidx, i = 1, ..., n. (2.13)

Indeed, scalarly multiplying the both sides of the i-th equation (2.9) by
ξi (i = 1, n), which is equal to zero on Γi

0, from Green’s formula (2.13)
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we obtain (2.12). Conversely, if ξi = 0 on Γ, then from the variational
equations (2.12), applying (2.13), we have

−
∫

Ω

divT i · ξidx =
∫

Ω

f i · ξidx +
∫

Ω

hi · ξidx, i = 1, ..., n,

whence (2.9) is proved. Furthermore, from the equations (2.9) and Green’s
formula we infer that

∫

Γi
1

T iν · ξidσ =
∫

Γi
1

gi · ξidσ, ξi 6= 0 on Γi
1, i = 1, ..., n,

and, consequently, the equality (2.11) is proved. 2

Thus, we have constructed general mathematical model of n-component
mixture in static equilibrium without any assumption on physical proper-
ties of the continuum. In order to determine the stress-strain state of the
mixture it is necessary to know the constitutive equations for the stress ten-
sors T ϕi

, moment tensors Mϕi
and for the interaction forces hϕi

between
the components, which characterize the physical properties of the material.

Further we consider the so-called elastic mixtures, the stress tensors
of which depend on gradients of deformations. More precisely, there exist
response functions for the stress tensors of the constituents with respect to
the deformed configurations, such that

T ϕi
(xϕi

) = T̃
i
d

(
x,∇ϕ1(x), ...,∇ϕn(x)

)
, xϕi

= ϕi(x), i = 1, n.

T̃
i
d defines the mappings T̃

i
, Σ̃

i
: Ω×R3×3

+ → R3×3,

T̃
i
(x,F 1, ...,F n) = (detF i)T̃

i
d(x,F 1, ...,F n)F−T

i ,

Σ̃
i
(x,F 1, ...,F n) = (detF i)F−1

i T̃
i
d(x,F 1, ...,F n)F−T

i ,
∀x ∈ Ω,

F i ∈ R3×3
+ , i = 1, n, which satisfy

T i(x) = T̃
i
(x,∇ϕ1(x), ...,∇ϕn(x)),

Σi(x) = Σ̃
i
(x,∇ϕ1(x), ...,∇ϕn(x)).

∀x ∈ Ω, i = 1, n,

T̃
i
, Σ̃

i
are called the response functions of the first and second Piola-

Kirchhoff stress tensors of i-th constituent respectively.
Therefore, stress tensors of the components of elastic mixture are uni-

quely determined by the mappings T̃
i
d and, if they do not depend on x ∈ Ω,

then the mixture is called homogeneous.
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It must be pointed out that quantities, which characterize physical pro-
cesses are independent of the frame of reference. Now we formulate the
frame-independence principle for mixtures, but before note that rotation
of the deformed configuration and orthogonal transformation of the coor-
dinates are equivalent procedures.

Principle II. Let the deformed configuration Ωψi

be obtained from
the configuration Ωϕi

by rotation, which is given by the matrix Q, i.e.
ψi = Qϕi, i = 1, ..., n, Q ∈ O3

+. This rotation transforms the stress
vectors of the mixture in the first configuration to corresponding stress
vectors in the second configuration:

tψi
(xψi

, Qν) = Qtϕi
(xϕi

,ν), xψi
= ψi(x), xϕi

= ϕi(x), (2.14)

where x ∈ Ω, ν ∈ S1, tψi
: Ωψi × S1 → R3, tϕi

: Ωϕi × S1 → R3 are stress
vectors in the deformed configurations Ωψi

, Ωϕi

respectively (i = 1, n).
In the following theorem we formulate the necessary and sufficient con-

ditions, when (2.14) is fulfilled.
Theorem 2.3. An elastic mixture satisfies the Principle II if the re-

sponse functions T̃
i
d : Ω×

[
R3×3

+

]n → R3×3 of the stress tensors satisfy the

following conditions for all F 1, ...,F n ∈ R3×3
+ , Q ∈ O3

+,

T̃
i
d(x,QF 1, ...,QF n) = QT̃

i
d(x,F 1, ...,F n)QT , i = 1, n.

Proof. From the condition (2.14) of the Principle II, we obtain

tψi
(xψi

, Qν) = T ψi
(xψi

)Qν = Qtϕi
(xϕi

, ν) = QT ϕi
(xϕi

)ν,

for all Q ∈ O3
+, where ν ∈ S1, T ϕi

, T ψi
are stress tensors of i-th con-

stituent with respect to the deformed configurations Ωϕi

, Ωψi

respectively.
Therefore,

T ψi
(xψi

) = QT ϕi
(xϕi

)QT , ∀Q ∈ O3
+, i = 1, ..., n.

Since ψi(x) = Qϕi(x), then ∇ψi(x) = Q∇ϕi(x), i = 1, n, and taking into
account definition of the response function of the stress tensor we deduce,
that the mixture satisfies the Principle II if and only if

T̃
i
d

(
x,∇ψ1(x), ...,∇ψn(x)

)
= T̃

i
d

(
x,Q∇ϕ1(x), ...,Q∇ϕn(x)

)
=

= QT̃
i
d

(
x,∇ϕ1(x), ...,∇ϕn(x)

)
QT , ∀Q ∈ O3

+, i = 1, ..., n.
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Note that for any matrix F i ∈ R3×3
+ , there exists deformation ϕi, such that

∇ϕi = F i, whence the equivalence stated in the theorem is proved. 2

From the latter theorem it follows that condition (2.14) of the Principle
II can be expressed in terms of the response functions of the first and
second Piola-Kirchhoff stress tensors. More precisely, the condition (2.14)
is equivalent to

T̃
i
(x,QF 1, ..., QF n) = QT̃

i
(x,F 1, ...,F n), ∀F 1, ..., F n ∈ R3×3

+ , Q ∈ O3
+,

i = 1, ..., n, or

Σ̃
i
(x,QF 1, ...,QF n) = Σ̃

i
(x,F 1, ...,F n), ∀F 1, ...,F n ∈ R3×3

+ , Q ∈ O3
+.

Now let us introduce the subclass of elastic mixtures, which are called
isotropic elastic mixtures. Let ϕ be a rotation of the initial configuration
Ω around the point x ∈ Ω, which is given by the matrix QT , i.e.

ϕ(y) = x + QT xy, y ∈ Ω,

xy is a vector with the origin in x and the end in y. Note, that the
deformed configurations ϕi(Ω) can be considered with respect to new initial
configuration ϕ(Ω). Then, instead of the deformation ϕi we have

ϕ̃i = ϕi ◦ϕ−1 : z ∈ ϕ(Ω) → ϕi(x + Qxz), i = 1, ..., n,

which are deformations too. In point xϕ̃i
stress tensor is equal to

T ϕ̃i
(xϕ̃i

) = T̃
i
d

(
x,∇ϕ̃1(x), ...,∇ϕ̃n(x)

)
= T̃

i
d

(
x,∇ϕ1(x)Q, ...,∇ϕn(x)Q

)
.

Under the isotropy of the material usually mean that the reactions in all
directions are the same, i.e. T ϕ̃i

(xϕ̃i
) = T ϕi

(xϕi
), i = 1, ..., n. Thus, an

elastic mixture is called isotropic in point x of the initial configuration Ω if
the response functions of the stress tensors satisfy the following identities
for all F 1, ...,F n ∈ R3×3

+ , Q ∈ O3
+,

T̃
i
d(x,F 1Q, ...,F nQ) = T̃

i
d(x,F 1, ...,F n), i = 1, ..., n.

An elastic mixture is called isotropic if it is isotropic in all points of the
initial configuration. Note that the condition of isotropy can be expressed in
terms of the first and second Piola-Kirchhoff stress tensors. Particularly, an
elastic mixture is isotropic in point x ∈ Ω if one of the following conditions
holds:

T̃
i
(x,F 1Q, ..., F nQ) = T̃

i
(x,F 1, ..., F n)Q, ∀F i ∈ R3×3

+ , Q ∈ O3
+, i = 1, n,
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Σ̃
i
(x,F 1Q, ...,F nQ) = QT Σ̃

i
(x,F 1, ...,F n)Q, ∀F i∈R3×3

+ ,Q∈O3
+, i=1, n.

It must be pointed out that the response functions of the stress tensors
of isotropic mixture depend only on special products of gradients of the
deformations. More precisely, the following theorem is valid.

Theorem 2.4. An elastic mixture is isotropic in point x ∈ Ω if and
only if there exist mappings

T̂
i
d(x, .) : F → R3×3, F =

{
{F ip} |F ip = F iF

T
p , F i, F p ∈ R3×3

+ , i, p = 1, n
}
,

such that

T̃
i
d(x,F 1, ...,F n) = T̂

i
d(x,F 1F

T
1 , ...,F 1F

T
n , ..., F nF T

1 , ..., F nF T
n ),

for all F 1, ...,F n ∈ R3×3
+ , i = 1, ..., n.

Proof. In order to prove the existence of the mapping T̂
i
d it suffices

to show that T̃
i
d depends only on F iF

T
j , i, j = 1, n. Let {F 1, ...,F n},

{G1, ...,Gn} be such that F iF
T
j = GiG

T
j , i, j = 1, n. Hence F T

j G−T
j =

F−1
i Gi, i, j = 1, n.

Since F iF
T
i = GiG

T
i , then (F−1

i Gi)(F−1
i Gi)T = I and, therefore, the

matrix F−1
i Gi is orthogonal for all i = 1, n. Furthermore, F T

1 G−T
1 =

F−1
1 G1 = F−1

2 G2 = ... = F−1
n Gn, whence, for all i = 1, n, we obtain:

T̃
i
d(x,F 1, ..., F n)= T̃

i
d(x,F 1(F−1

1 G1), ...,F n(F−1
n Gn))= T̃

i
d(x,G1, ...,Gn).

Now assume that there exist mappings T̂
i
d with the properties stated in the

theorem, then

T̃
i
d(x,F 1Q, ...,F nQ) = T̂

i
d(x, F 1QQT F T

1 ,F 1QQT F T
2 , ...,F nQQT F T

n ) =

= T̂
i
d(x,F 1F

T
1 ,F 1F

T
2 , ...,F nF T

n ) = T̃
i
d(x,F 1, ...,F n). 2

Note that if the response functions of the stress tensors of the con-
stituents satisfy more strict conditions

T̃
i
d(x,F 1Q1, ..., F nQn) = T̃

i
d(x,F 1, ...,F n), ∀F i ∈ R3×3

+ , Qi ∈ O3
+,

i = 1, n, then the mixture is called strongly isotropic and the following
theorem is true.

Theorem 2.5. An elastic mixture is strongly isotropic in x ∈ Ω if there
exist mappings T

i
d(x, .) :

[
S3

>

]n → R3×3 such that

T̃
i
d(x,F 1, ..., F n) = T

i
d(x,F 1F

T
1 , ...,F nF T

n ), ∀F i ∈ R3×3
+ , i = 1, n.
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Proof. Let F i, Gi ∈ R3×3
+ be such that F iF

T
i = GiG

T
i (i = 1, n).

Then (F−1
i Gi)(F−1

i Gi)T = I, and, consequently, F−1
i Gi is orthogonal

matrix. Since det(F−1
i Gi) > 0, from the definition of strong isotropy, for

all i = 1, n, we obtain

T̃
i
d(x,F 1, ..., F n)= T̃

i
d(x,F 1(F−1

1 G1), ...,F n(F−1
n Gn))= T̃

i
d(x,G1, ...,Gn).

Also, if T̃
i
d(x,F 1, ...,F n) = T

i
d(x,F 1F

T
1 , F 2F

T
2 , ...,F nF T

n ), then

T̃
i
d(F 1Q1, ...,F nQn) = T

i
d

(
x,F 1Q1Q

T
1 F T

1 , ...,F nQnQT
nF T

n

)
=

= T
i
d(x,F 1F

T
1 , F 2F

T
2 , ...,F nF T

n ) = T̃
i
d(x,F 1, ...,F n). 2

3. Boundary value problems for nonlinear elastic mix-
tures

In the present section we use notations of the section 2 and also apply some
known properties of the Sobolev spaces. Denote by W p,q(D), p, q ≥ 1, the
usual Sobolev space of order p with respect to Lq(D), where D ⊂ R3 is
a Lipschitz domain. In the case of q = 2 the space W p,q(D) is denoted
by Hp(D) (H0(D) = L2(D)) and let Hp

0 (D) be the closure of the set
C∞

0 (D) of infinitely differentiable functions with compact support in D in
the space Hp(D). For the spaces of vector-functions we use the following
notations Hp(D) = [Hp(D)]3, Wp,q(D) = [W p,q(D)]3, Hp

0(D) = [Hp
0 (D)]3,

Lp(D) = [Lp(D)]3, p, q ≥ 1. Also Lq
3×3(D) denotes the set of tensor-valued

functions F : D → R3×3 such that each element Fkl belongs to Lq(D) and

‖F ‖Lq(D) = (
3∑

k,l=1
‖Fkl‖q

Lq(D))
1/q.

Let us consider two-component homogeneous isotropic elastic mixture
with the initial configuration Ω ⊂ R3, the boundary Γ of which is clamped.
According to the Theorem 2.2 the stress-strain state of the mixture in static
equilibrium is determined from the solution of the following boundary value
problem

−div
(
∇ϕ1(x)Σ1(x)

)
= f1(x) + h1(x),

−div
(
∇ϕ2(x)Σ2(x)

)
= f2(x) + h2(x),

x ∈ Ω, (3.1)

u1(x) = u2(x) = 0, x ∈ Γ, (3.2)
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written in terms of the second Piola-Kirchhoff stress tensors, where we
assume that the densities of the external body forces f1,f2 with respect
to the initial configuration do not depend on the deformations ϕ1, ϕ2 of
the constituents.

Since we consider the homogeneous isotropic elastic mixture, its Piola-
Kirchhoff stress tensors depend only on gradients ∇ϕ1, ∇ϕ2 of the defor-
mations of the constituents:

Σ1(x) = Σ̃
1
(∇ϕ1(x),∇ϕ2(x)), Σ2(x) = Σ̃

2
(∇ϕ1(x),∇ϕ2(x)), x ∈ Ω,

where Σ̃
1
, Σ̃

2
satisfy conditions caused by frame-independence principle

and isotropy of the mixture

Σ̃
α
(QF 1,QF 2) = Σ̃

α
(F 1,F 2),

Σ̃
α
(F 1Q,F 2Q) = QT Σ̃

α
(F 1, F 2)Q.

∀F α ∈ R3×3
+ , Q ∈ O3

+, α = 1, 2,

Let us introduce a denotation Eα ≡ 1
2

(
[∇ϕα]T ∇ϕα − I

)
, α = 1, 2, and

assume, that the second Piola-Kirchhoff stress tensors Σ̃
1
, Σ̃

2
are of the

following form:

Σ̃
1
(∇ϕ1,∇ϕ2) =

{
λ1trE

1 + λ3trE
2
}

I + 2µ1E
1 + 2µ3E

2 + λ5θ̃,

Σ̃
2
(∇ϕ1,∇ϕ2) =

{
λ4trE

1 + λ2trE
2
}

I + 2µ3E
1 + 2µ2E

2 − λ5θ̃,

where θ̃ =
[
∇ϕ1

]T ∇ϕ1 +
[
∇ϕ2

]T ∇ϕ2 − 2
[
∇ϕ2

]T ∇ϕ1. The interaction
force between the constituents of the mixture is given by

−h1 = h2 = π =
α2ρ2

ρ
grad(trE1) +

α2ρ1

ρ
grad(trE1), ρ = ρ1 + ρ2,

where grad denotes the gradient of the function, the parameters λs(s =
1, 5), µk(k = 1, 3), α2 characterize mechanical properties of the mixture,
ρ1, ρ2 are densities of the constituents.

Let u =
(
u1, u2

)T
, f =

(
f1,f2

)T
and

Au =


 −div

{
∇ϕ1(x)Σ1(x)

}
+ π

−div
{
∇ϕ2(x)Σ2(x)

}
− π


 .

For the Dirichlet boundary value problem (3.1), (3.2) formulated for
nonlinear model of elastic mixture the following existence and uniqueness
theorem is valid.
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Theorem 3.1. Let Ω ⊂ R3 be a bounded domain with boundary Γ = ∂Ω
of class Cs, s ≥ 3. If the following conditions are fulfilled:

µ1 > 0, µ2
3 < µ1µ2, λ5 ≤ 0, λ3 − λ4 = α2, λ1 +

2µ1

3
− α2ρ2

ρ
> 0,

(
λ3 +

2µ3

3
− ρ1α2

ρ

)2

<

(
λ1 +

2µ1

3
− ρ2α2

ρ

) (
λ2 +

2µ2

3
+

ρ1α2

ρ

)
,

then there exists a neighbourhood W s of 0 in [Hs−2(Ω)]2 and neighbourhood
U s of 0 in the space

V (Ω) = {u|u ∈ [Hs(Ω)]2,u|Γ = 0}

such that, for each f ∈ W s, the boundary value problem (3.1), (3.2)

Au = f , (3.3)

has a unique solution u ∈ U s.
Proof. As well-known, the Sobolev space Hs(Ω) is a Banach algebra

if s ≥ 2. Therefore, the nonlinear operator A maps [Hs(Ω)]2 to the space
[Hs−2(Ω)]2 and is differentiable in Fréchet sense, since is a polynomial of
the third degree with respect to the partial derivatives of u1 and u2.

Note that u = 0 is a solution to the problem (3.3), for f = 0 and,
hence, to prove the theorem it suffices to show that the operator A is
locally invertible in the neighbourhood of 0. Let A′(0) be derivative of A
in 0. Then

A′(0)u = f , f ∈ [Hs−2(Ω)]2, (3.4)

is the Dirichlet problem for the linear model of two-component elastic mix-
ture

−∂σα
lj

∂xl
(u1, u2)− (−1)απj(u1, u2) = f

α
j (x), x ∈ Ω,

u1(x) = u2(x) = 0, x ∈ Γ,

where α = 1, 2,

σ1
lj = (λ1e

1
kk + λ3e

2
mm)δlj + 2µ1e

1
lj + 2µ3e

2
lj − λ5θlj ,

σ2
lj = (λ4e

1
kk + λ2e

2
mm)δlj + 2µ3e

1
lj + 2µ2e

2
lj + λ5θlj ,

πj =
α2ρ2

ρ

∂e1
kk

∂xj
+

α2ρ1

ρ

∂e2
mm

∂xj
, eα

kl =
1
2

(
∂uα

k

∂xl
+

∂uα
l

∂xk

)
,

θlj =
∂u1

j

∂xl
− ∂u1

l

∂xj
+

∂u2
l

∂xj
− ∂u2

j

∂xl
, j, k, l,m = 1, 3.
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This problem, under the conditions of theorem, has a unique solution

u ∈
[
H1

0 ∩H2(Ω)
]2

, for f ∈
[
L2(Ω)

]2
, and if f ∈

[
Hs−2(Ω)

]2
, then

u ∈
[
H1

0 ∩Hs(Ω)
]2

.

So, the linear continuous operator A′(0) : V (Ω) →
[
Hs−2(Ω)

]2
is a

bijective mapping. Due to open mapping theorem ([21]) linear continuous
bijective mapping from one Banach space to another is an isomorphism
and, therefore, A is locally invertible. 2

Let us prove now that ϕα = id + uα : Ω → R3, α = 1, 2, where

u =
(
u1, u2

)T
is a solution to the nonlinear Dirichlet problem (3.1), (3.2),

are deformations, i.e. det∇ϕα > 0, α = 1, 2, and are injective mappings.
Theorem 3.2. If all the conditions of Theorem 3.1 are fulfilled, then

there exists εs > 0 such that for each f ∈ W s, ‖f‖[Hs−2(Ω)]2 < εs, the cor-
responding ϕα = id + uα, u = (uα) ∈ U s satisfy the following conditions:

det∇ϕ1(x) > 0, det∇ϕ2(x) > 0, ∀x ∈ Ω,

ϕα : Ω → R3 is an injective mapping, ϕα(Ω) = Ω, ϕα(Ω) = Ω, α = 1, 2.
Proof. According to the proof of the Theorem 3.1 the mapping W s →

U s is continuous and since the space [Hs(Ω)]2, s ≥ 3, is continuously

embedded in
[
C1(Ω)

]2
, there exists εs > 0 such that for any f ∈ W s,

‖f‖[Hs−2(Ω)]2 < εs, we have sup
x∈Ω

(
‖∇u1(x)‖+ ‖∇u2(x)‖

)
< 1, and, con-

sequently, det∇ϕ1(x) > 0, det∇ϕ2(x) > 0, for all x ∈ Ω. Note that
ϕα(x) = id(x), x ∈ Γ = ∂Ω, then from the latter inequalities it fol-
lows ([20]), that ϕα(Ω) = Ω, ϕα(Ω) = Ω and ϕα is an injective mapping
(α = 1, 2). 2

So, the homogeneous Dirichlet boundary value problem for nonlinear
model (3.1) of elastic mixture locally in the neighbourhood of 0 in the space
[Hs(Ω)]2, s ≥ 3, has a unique solution, when the density f of the applied

body forces belongs to neighbourhood of 0 in the space
[
Hs−2(Ω)

]2
.

Further we investigate the existence of the global solution to the Dirich-
let problem for nonlinear model of multicomponent elastic mixture, but
before let us introduce a new class of the so-called hyperelastic mixtures.

An elastic mixture is called hyperelastic, if there exist tensor-fields H i :
Ω → R3×3 and the function W̃ : Ω×

[
R3×3

+

]n → R, such that divH i(x) =

hi(x), for all x ∈ Ω, i = 1, n, W̃ (x,F 1, ...,F n) is differentiable with respect
to F i for all x ∈ Ω and

T̃
i
(x,F 1, ...,F n) + H i(x) =

∂W̃

∂F i
(x,F 1, ...,F n), ∀F i ∈ R3×3

+ , i = 1, n,
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or

T̃ i
jk(x,F 1, ...,F n)+H i

jk(x) =
∂W̃

∂(F i)jk
(x,F 1, ...,F n), ∀F i ∈ R3×3

+ , i = 1, n.

Consequently, the Dirichlet problem for hyperelastic mixtures can be writ-
ten as follows:

−div
∂W̃

∂F i

(
x,∇ϕ1(x), ...,∇ϕn(x)

)
= f i(x), x ∈ Ω, i = 1, n,

u1(x) = ... = un(x) = 0, x ∈ Γ = ∂Ω.

(3.5)

We say, that the external body forces acting on the mixture are con-

servative, if
∫

Ω

n∑

i=1

f i(x)ξi(x)dx =
∫

Ω

n∑

i=1

f̃
i (

x,ϕ1(x), ...,ϕn(x)
)

ξi(x)dx is

Gâteaux derivative of the functional F (ψ1, ...,ψn),

F ′(ψ1, ...,ψn)(ξ1, ..., ξn) =
∫

Ω

n∑

i=1

f̃
i (

x,ψ1(x), ...,ψn(x)
)

ξi(x)dx,

where ξi,ψi : Ω → R3, i = 1, n, are sufficiently smooth vector-fields.
For hyperelastic mixtures the following equivalence theorem is valid.
Theorem 3.3. If the mixture is hyperelastic and applied body forces are

conservative, then the system (3.5) is formally equivalent to the equation
I ′(ϕ1, ...,ϕn)(ξ1, ..., ξn) = 0, for any sufficiently smooth mappings ξi : Ω →
R3, i = 1, n, which vanish on the boundary Γ, where

I(ψ1, ...,ψn) =
∫

Ω

W̃
(
x,∇ψ1(x), ...,∇ψn(x)

)
dx− F (ψ1, ...,ψn),

for any smooth enough mappings ψi : Ω → R3, i = 1, n.
Proof. Since the applied body force densities f1, ...,fn are conser-

vative, it suffices to find Gâteaux derivative of the first addend (which we
denote by Ĩ(ψ1, ...,ψn)) of the functional I(ψ1, ...,ψn). For any sufficiently
smooth vector-fields ξi : Ω → R3 (i = 1, n), we have

Ĩ(ψ1 + ξ1, ...,ψn + ξn)− Ĩ(ψ1, ...,ψn) =
∫

Ω

[
W̃

(
x,∇ψ1(x)+∇ξ1(x), ...,

∇ψn(x) +∇ξn(x))−W̃
(
x,∇ψ1(x), ...,∇ψn(x)

)]
dx =

∫

Ω

n∑

i=1

∂W̃

∂F i
(x,

∇ψ1(x), ...,∇ψn(x)
)

: ∇ξi(x)dx +
∫

Ω

o
(
x,∇ξ1(x), ...,∇ξn(x)

)
dx.
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From the latter equality it follows:

Ĩ ′(ψ1, ...,ψn)(ξ1, ..., ξn) =
∫

Ω

n∑

i=1

∂W̃

∂F i

(
x,∇ψ1(x), ...,∇ψn(x)

)
: ∇ξi(x)dx,

if in the space of mappings (ψ1, ...,ψn) : Ω →
[
R3

]n
is introduced the

norm ‖.‖∗, such that the linear form

(ξ1, ..., ξn) →
∫

Ω

n∑

i=1

∂W̃

∂F i

(
x,∇ψ1(x), ...,∇ψn(x)

)
: ∇ξi(x)dx

is continuous and
∫

Ω

o
(
x,∇ξ1(x), ...,∇ξn(x)

)
dx = o

(
‖(ξ1, ..., ξn)‖∗

)
.

Thus,

I ′(ϕ1, ...,ϕn)(ξ1, ..., ξn) =
∫

Ω

n∑

i=1

(
T̃

i
(
x,∇ϕ1(x), ...,∇ϕn(x)

)
+

+H i(x)
)

: ∇ξi(x)dx−
∫

Ω

n∑

i=1

f̃
i (

x,ϕ1(x), ...,ϕn(x)
)

ξi(x)dx,

for any sufficiently smooth vector-fields ξi : Ω → R3 (i = 1, n) and applying
Theorem 2.2 we obtain the assertion. 2

Note, that the point of local extremum is a stationary point too and,
consequently, from Theorem 3.3, we deduce that sufficiently smooth map-
ping, which is a solution to the following minimization problem

I(ϕ1, ...,ϕn) = inf
(ψ1,...,ψn)∈Φ

I(ψ1, ...,ψn),

Φ =
{
(ψ1, ...,ψn) | ψi : Ω → R3, ψi = id on Γ, i = 1, ..., n

}
,

is a solution to Dirichlet boundary value problem (3.5).
So, the boundary value problem (3.5) for nonlinear model of hyperelas-

tic mixture we have reduced to minimization of the functional I. In the
case of a single continuum the method of investigation for such type prob-
lems was proposed by J. Ball ([22]). On the basis of the results obtained
in [22] we generalize the methodology of J. Ball for multicomponent hyper-
elastic mixtures and obtain the existence of the solution of corresponding
minimization problem, but before we formulate auxiliary theorem, which
follows from Lemma 6.1 and Theorem 6.2 of [22].
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Theorem 3.4. Let Ω ⊂ R3 be a bounded Lipschitz domain. If ψi ∈
W1,p(Ω), Cof∇ψi ∈ Lq

3×3(Ω), then det∇ψi ∈ Ls(Ω), where p ≥ 2, s−1 =
p−1 + q−1 ≤ 1, i = 1, n, and the mapping

(
ψ1, ..., ψn,Cof∇ψ1, ...,Cof∇ψn

)
→ (det∇ψ1, ...,det∇ψn)

is continuous. Moreover, if
(
ϕ1

t , ...,ϕ
n
t

)
→

(
ϕ1, ..., ϕn

)
(
Cof∇ϕ1

t , ...,Cof∇ϕn
t

)
→ (G1, ...,Gn)

(
det∇ϕ1

t , ...,det∇ϕn
t

)
→ (δ1, ..., δn)

weakly in
[
W1,p(Ω)

]n
, p ≥ 2,

weakly in
[
Lq

3×3(Ω)
]n

, s ≥ 1,

weakly in [Lr(Ω)]n , r ≥ 1,

as t →∞, then Gi = Cof∇ϕi, δi = det∇ϕi, i = 1, n.

We now establish a result on the existence of global solution to nonlinear
problem (3.5).

Theorem 3.5. Let Ω ⊂ R3 be a bounded Lipschitz domain and function
W̃ : Ω×

[
R3×3

+

]n → R satisfies the following conditions:
a) for almost all x ∈ Ω, there exists the convex function W (x, .) :[

R3×3
]n ×

[
R3×3

]n × (0, +∞)n → R such that for all F 1, ..., F n ∈ R3×3
+ ,

W̃ (x,F 1, ...,F n) = W (x,F 1, ...,F n,CofF 1, ...,CofF n, det F 1, ..., detF n).

The function W (.,F 1, ...,F n, G1, ...,Gn, δ1, ..., δn) : Ω → R is measurable
for any F i, Gi ∈ R3×3, δi ∈ (0, +∞), i = 1, n;

b) for almost all x ∈ Ω,

W̃ (x,F 1, ...,F n) → +∞, if detF i → 0+, for some i = 1, n;

c) W̃ is coercive, i.e. there exist constants α > 0, β ∈ R, p ≥ 2,
q ≥ p/(p− 1), r > 1 such that for almost all x ∈ Ω and for all F 1, ...,F n ∈
R3×3

+ the following inequality is valid

W̃ (x,F 1, ...,F n) ≥ α
n∑

i=1

(‖F i‖p + ‖CofF i‖q + (detF i)r) + β.

The set of admissible deformations denote by

D=
{
Ψ=(ψ1, ...,ψn)∈

[
W1,p(Ω)

]n|Cof∇ψi∈ [
Lq

3×3(Ω)
]n

, det∇ψi∈ [Lr(Ω)]n,

ψ1 = ... = ψn = id a. e. on Γ, det∇ψi ∈ (0, +∞) a. e. in Ω
}

.
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Assume that the vector-functions f i : Ω → R3 (i = 1, n) are such that the

linear form L : Ψ ∈ [
W1,p(Ω)

]n → L(Ψ) =
∫
Ω

n∑
i=1

f iψidx is continuous.

If inf
Ψ∈D

I(Ψ) < +∞, I(Ψ) =
∫
Ω

W̃ (x,∇ψ1(x), ...,∇ψn(x))dx − L(Ψ), then

there exists Φ = (ϕ1, ...,ϕn) ∈ D, which minimizes the functional I on the
set of admissible deformations I(Φ) = inf

Ψ∈D
I(Ψ).

Proof. First let us prove that the function W̃ (x,∇ψ1(x), ...,∇ψn(x))
is integrable in Ω for any (ψ1, ...,ψn) ∈ D. Indeed, from the point a) of
the theorem it follows that the function W (x, .) :

[
R3×3

]n ×
[
R3×3

]n ×
(0, +∞)n → R is continuous, since it is convex and is defined on the
open set of the finite dimensional space. For any (F 1, ..., F n,G1, ...,Gn, δ1,
..., δn) ∈ [

R3×3
]n × [

R3×3
]n × (0, +∞)n the function W (.,F 1, .., F n, G1,

..,Gn, δ1, .., δn) : Ω → R is measurable and
[
R3×3

]n×
[
R3×3

]n× (0,+∞)n

is Borel set, hence the function W : Ω×
[
R3×3

]n×
[
R3×3

]n×(0,+∞)n → R

is Carathéodory function and, consequently, the function W (x,∇ψ1(x),
...,∇ψn(x), Cof∇ψ1(x),...,Cof∇ψn(x), det∇ψ1(x),...,det∇ψn(x)) is
measurable for any (ψ1,...,ψn) ∈ D. From the coerciveness inequality
we infer that W̃ is bounded below, whence I(ψ1, ..., ψn) exists for all
(ψ1, ..., ψn) ∈ D.

Since the function W̃ is coercive and form L is continuous, we have:

I(Ψ) ≥ α
n∑

i=1

∫

Ω

(
‖∇ψi‖p + ‖Cof∇ψi‖q + (det∇ψi)r

)
dx+

+βmeas(Ω)− cL ‖Ψ‖[W1,p(Ω)]n , ∀Ψ ∈ D.

Therefore, from the condition ψ1 = ... = ψn = id on Γ, it follows, that
there exist α1 > 0 and c1 ∈ R such that for any Ψ ∈ D,

I(Ψ)≥ α1

n∑

i=1

(
‖ψi‖p

W1,p(Ω)+‖Cof∇ψi‖q
Lq

3×3(Ω)
+(det∇ψi)r

Lr(Ω)

)
+c1. (3.6)

In order to prove the theorem, let us consider the sequence {Φt} ⊂ D,
which minimizes the functional I, i.e. lim

t→∞ I(Φt) = inf
Ψ∈D

I(Ψ).

According to the condition of the theorem inf
Ψ∈D

I(Ψ) < +∞ from (3.6)

we have, that
(
ϕ1

t , ...,ϕ
n
t ,Cof∇ϕ1

t , ...,Cof∇ϕn
t ,det∇ϕ1

t , ...,det∇ϕn
t

)
is a

bounded sequence in the reflexive Banach space
[
W1,p(Ω)

]n×[
Lq

3×3(Ω)
]n×

[Lr(Ω)]n . Consequently, there exists the subsequence (ϕ1
t1 ,..., ϕn

t1 ,Cof∇ϕ1
t1 ,

...,Cof∇ϕn
t1 , det∇ϕ1

t1 , ..., det∇ϕn
t1), which weakly converges to (ϕ1,..., ϕn,

60



+ Investigation of Nonlinear Models ... AMI Vol.7 No.2, 2002

G1, ..., Gn, δ1, ..., δn) in the space
[
W1,p(Ω)

]n × [
Lq

3×3(Ω)
]n × [Lr(Ω)]n,

and, due to Theorem 3.4, Gi = Cof∇ϕi, δi = det∇ϕi, i = 1, n. Thus,
there exists the sequence {Φt1}, such that for t1 →∞,
(
ϕ1

t1 , ...,ϕ
n
t1

)
→

(
ϕ1, ...,ϕn

)
(
Cof∇ϕ1

t1 , ...,Cof∇ϕn
t1

)
→ (G1, ...,Gn)

(
det∇ϕ1

t1 , ...,det∇ϕn
t1

)
→ (δ1, ..., δn)

weakly in
[
W1,p(Ω)

]n
,

weakly in
[
Lq

3×3(Ω)
]n

,

weakly in [Lr(Ω)]n .

(3.7)

Let us prove that
(
ϕ1, ..., ϕn

)
∈ D. It suffices to show that det∇ϕi ∈

(0, +∞) almost everywhere in Ω and ϕi = id almost everywhere on Γ
(i = 1, n). The second assertion directly follows from the compactness of
the trace operator tr : W 1,p(Ω) → Lp(Γ) and, hence, we have to prove the
validity of the first one.

Applying Mazur’s theorem ([23]), from the third condition (3.7) we
obtain, that there exists a sequence of linear combinations of (det∇ϕ1

t1 ,...,
det∇ϕn

t1), which strongly converges in the space [Lr(Ω)]n, i.e. there exists

j(t1) ≥ t1, t1 ≤ s ≤ j(t1), λt1
s ≥ 0,

j(t1)∑

s=t1

λt1
s = 1,

dt1 =
j(t1)∑

s=t1

λt1
s

(
det∇ϕ1

s, ..., det∇ϕn
s

)
→

(
det∇ϕ1, ...,det∇ϕn

)

strongly in [Lr(Ω)]n , as t1 →∞.

Consequently, there exists subsequence {dt2} of {dt1}, such that

j(t2)∑

s=t2

λt2
s det∇ϕi

s → det∇ϕi a. e. in Ω, t2 →∞, i = 1, n.

Since det∇ϕi
s is almost everywhere positive, then det∇ϕi ∈ [0, +∞) al-

most everywhere in Ω.
Suppose, that det∇ϕi0 = 0 on the subset Ai0 of the domain Ω with

positive measure meas(Ai0) > 0, 1 ≤ i0 ≤ n. Then, from the third condition
(3.7) and det∇ϕi0

t1 ∈ (0,+∞) a. e. in Ai0 , we infer, that
∫

Ai0

∣∣∣det∇ϕi0
t1(x)

∣∣∣ dx =
∫

Ai0

det∇ϕi0
t1(x)dx →

∫

Ai0

det∇ϕi(x)dx = 0,

whence det∇ϕi0
t1 → 0 strongly in L1(Ai0), as t1 →∞. Hence, there exists

the subsequence {Φt3} of {Φt1} such that

det∇ϕi0
t3 → 0 for almost all x ∈ Ai0 , as t3 →∞.
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As we have pointed out above wt3(x) = W̃
(
x,∇ϕ1

t3(x), ...,∇ϕn
t3(x)

)
is

measurable function and wt3 ≥ β for all t3, hence, according to Fatou’s
lemma ∫

Ai0

lim
t3→∞

inf wt3(x)dx ≤ lim
t3→∞

inf
∫

Ai0

wt3(x)dx.

Taking into account the point b) of the theorem we obtain

lim
t3→∞

inf wt3(x) = lim
det F i0

→0+
W̃ (x,F 1, ...,F n) = +∞

for almost all x ∈ Ai0 , and, therefore,

lim
t3→∞

∫

Ai0

wt3(x)dx = lim
t3→∞

∫

Ai0

W̃
(
x,∇ϕ1

t3(x), ...,∇ϕn
t3(x)

)
dx = +∞.

The latter equality is in contradiction with the conditions of the theorem,
since

∫

Ai0

wt3(x)dx ≤ I(Φt3)− βmeas(Ω\Ai0) + cL ‖Φt3‖[W1,p(Ω)]n ,

lim
t3→∞

I(Φt3) = inf
Ψ∈D

I(Ψ) < +∞ and weakly converging sequence {Φt3} is

bounded. Thus, meas(Ai0) = 0 for all i0 = 1, ..., n, and, consequently,
Φ =

(
ϕ1, ..., ϕn

)
∈ D.

In order to prove that Φ minimizes the functional I let us show the
validity of the following inequality:
∫

Ω

W̃
(
x,∇ϕ1(x), ...,∇ϕn(x)

)
dx≤ lim

t1→∞
inf

∫

Ω

W̃ (x,∇ϕ1
t1(x), ...,∇ϕn

t1(x))dx.

Hence, we have to prove that for each subsequence {Φt4} of {Φt1}, for which

the sequence

{
∫
Ω

W̃
(
x,∇ϕ1

t4(x), ...,∇ϕn
t4(x)

)
dx

}
converges, the following

inequality holds
∫

Ω

W̃
(
x,∇ϕ1(x), ...,∇ϕn(x)

)
dx ≤ lim

t4→∞

∫

Ω

W̃
(
x,∇ϕ1

t4(x), ...,∇ϕn
t4(x)

)
dx.

From (3.7), applying Mazur’s theorem, it follows that for each t4, there
exist natural numbers j(t4) ≥ t4 and real numbers µt4

s , t4 ≤ s ≤ j(t4) such
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that µt4
s ≥ 0,

j(t4)∑

s=t4

µt4
s = 1,

Dt4 =
j(t4)∑

s=t4

µt4
s (∇Φs,Cof∇Φs, Det∇Φs) →

→
(
∇ϕ1, ...,∇ϕn,Cof∇ϕ1, ...,Cof∇ϕn, det∇ϕ1, ...,det∇ϕn

)
,

strongly in [Lp(Ω)]n × [
Lq

3×3(Ω)
]n × [Lr(Ω)]n , as t4 →∞,

where ∇Φs = (∇ϕ1
s, ...,∇ϕn

s ), Cof∇Φs = (Cof∇ϕ1
s, ...,Cof∇ϕn

s ),
Det∇Φs = (det∇ϕ1

s, ...,det∇ϕn
s ).

Therefore, there exists the subsequence {Dt5} of {Dt4} such that

j(t5)∑

s=t5

µt5
s (∇Φs(x),Cof∇Φs(x), Det∇Φs(x)) →

(
∇ϕ1(x), ...,∇ϕn(x),

Cof∇ϕ1(x), ...,Cof∇ϕn(x), det∇ϕ1(x), ...,det∇ϕn(x)
)

,

for almost all x ∈ Ω, as t5 →∞.

Since the function W (x, .) is continuous on
[
R3×3

]n×
[
R3×3

]n×(0, +∞)n

and det∇ϕi(x) ∈ (0,+∞) for almost all x ∈ Ω (i = 1, n), we have:

W̃ (x,∇Φ(x)) = lim
t5→∞

W


x,

j(t5)∑

s=t5

µt5
s (∇Φs(x),Cof∇Φs(x),Det∇Φs(x))




for almost all x ∈ Ω. From the latter equality, applying Fatou’s lemma and
taking into account convexity of W (x, .), we obtain:

∫

Ω

W̃ (x,∇Φ(x)) dx ≤ lim
t5→∞

inf
∫

Ω

W


x,

j(t5)∑

s=t5

µt5
s (∇Φs(x),Cof∇Φs(x),

Det∇Φs(x))) dx ≤ lim
t5→∞

inf
j(t5)∑

s=t5

µt5
s

∫

Ω

W̃
(
x,∇ϕ1

s(x), ...,∇ϕn
s (x)

)
dx =

= lim
t4→∞

∫

Ω

W̃
(
x,∇ϕ1

t4(x), ...,∇ϕn
t4(x)

)
dx.

Due to weak convergence of the sequence {Φt1}, we have that L(Φ) =
lim

t1→∞
L(ϕ1

t1 , ...,ϕ
n
t1) and, consequently,

I
(
ϕ1, ...,ϕn

)
≤ lim

t1→∞
inf I

(
ϕ1

t1 , ...,ϕ
n
t1

)
= inf

Ψ∈D
I(Ψ).
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Since Φ =
(
ϕ1, ...,ϕn

)
∈ D, from the latter inequality we deduce, that Φ

minimizes the functional I. 2
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