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Abstract

In this paper we construct the martingale measures which minimize
the relative entropy and reverse relative entropy with respect to a refer-
ence measure P in trinomial scheme. We also find the martingale measure
which minimizes ϕ-divergence distance defined by convex function ϕ and
includes relative entropy and reverse relative entropy as special cases of
ϕ-divergence.
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In this paper we investigate the problem of finding the optimal mar-
tingale measures for the trinomial scheme. In section 1 we consider the
problem of finding the minimal relative entropy martingale measure. In
section 2 we studied the same problem for reverse relative entropy and in
section 3 we investigate the general problem of finding the optimal mar-
tingale measure in the sense of minimal ϕ-divergence distance including as
special cases the problems which are studied in the sections 1 and 2. All
results are obtained by using the optimization method under constraints
based on Lagrange multipliers.

Let us consider a real valued process S = (Sn,Fn), n = 1, 2, ..., N,
on the filtered probability space (Ω,F , (Fn)n≥0, P ), such that

Sn = Sn−1(1 + ρn), (1)

where S0 > 0 is deterministic, (ρn)n≥1 is the sequence of independent
identically distributed random variables that take only three values a, b, c
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with the probabilities p, q and r respectively, p + q + r = 1. We assume
that a < b < c and −1 < a < 0 < c.

Such scheme is known as trinomial scheme.
Here the reference measure P is defined by p, q, and l on Ω = {a, b, c}N .

The measure Q is a martingale measure for S if Q is equivalent to P and
S = (Sn,Fn), n = 0, 1, ..., N, is a martingale with respect to this measure.
The martingale condition

EQ[∆Sn | Fn−1] = 0

implies that
ap̃ + bq̃ + cr̃ = 0 (2)

and the class of martingale measures M(P ) for S, which preserves i.i.d.
of (ρn) , n = 1, ..., N, is defined by p̃, q̃, r̃ and satisfies the equation (2),
p̃ = Q(ρ1 = a), q̃ = Q(ρ1 = b), r̃ = Q(ρ1 = c).

It is easy to see, that density dQ
dP = ZN (ρ1, ρ2, ..., ρN ), Q ∈ M(P ) has

the following form (I(∆) is the indicator of ∆):

ZN = ZN (ρ1, ρ2, ..., ρN ) =
N∏

k=1

(
p̃

p
I(ρk = a)+

q̃

q
I(ρk = b) +

r̃

r
I(ρk = c) =

N∏

k=1

ξk,

(3)

where
ξk =

p̃

p
I(ρk = a) +

q̃

q
I(ρk = b) +

r̃

r
I(ρk = c). (4)

Note, that ξk, k = 1, 2, ..., N, is the sequence of independent identically
distributed random variables that take only three values p̃

p , q̃
q , r̃

r with the
probabilities p, q and r respectively and Eξk = 1, EZN = 1.

1. The relative entropy I(Q,P ) of the probability measure Q with
respect to the probability measure P is defined as (see for example [1], [3])

I(Q,P ) =





EP [dQ
dP lndQ

dP ], ifQ << P

+∞, otherwise.

It is well known, that I(Q,P ) = 0 if and only if Q = P .
The minimal entropy martingale measure is the measure Q∗, for which

I(Q∗, P ) = min
Q∈M(P )

I(Q,P ).

29
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The concept of relative entropy is also known as Kullback-Liebler infor-
mation number.

In our case, using the independence of ξk and the equality Eξk = 1, we
have (we use E for EP )

I(Q,P ) = EZN lnZN = E[
N∏

k=1

ξkln
N∏

k=1

ξk] = E[
N∏

k=1

ξk(lnξ1 + lnξ2 + ... + lnξN )] =

E[(
N∏

k=1

ξk)lnξ1] + E[(
N∏

k=1

ξk)lnξ2] + ... + E[(
N∏

k=1

ξk)lnξN ] = E[(
N∏

k 6=1

ξk)ξ1lnξ1]+

E[(
N∏

k 6=2

ξk)ξ2lnξ2] + ... + E[(
N∏

k 6=N

ξk)ξN lnξN ] = E[
N∏

k 6=1

ξk]E[ξ1lnξ1]+

E[
N∏

k 6=2

ξk]E[ξ2lnξ2] + ... + E[
N∏

k 6=N

ξk]E[ξN lnξN ] = [
N∏

k 6=1

Eξk]E[ξ1lnξ1]+

[
N∏

k 6=2

Eξk]E[ξ2lnξ2] + ... + [
N∏

k 6=N

Eξk]E[ξN lnξN ] = E[ξ1lnξ1] + E[ξ2lnξ2]+

E[ξN lnξN ] = NE[ξ1lnξ1].

Note, that

E[ξ1lnξ1] = p
p̃

p
ln

p̃

p
+ q

q̃

q
ln

q̃

q
+ r

r̃

r
ln

r̃

r
=

p̃ln
p̃

p
+ q̃ln

q̃

q
+ r̃ · ln r̃

r

and
EZN lnZN = N

(
p̃ln

p̃

p
+ q̃ln

q̃

q
+ r̃ · ln r̃

r

)
. (5)

Denote

f(p̃, q̃, r̃) = p̃ln
p̃

p
+ q̃ln

q̃

q
+ r̃ · ln r̃

r
,

φ(p̃, q̃, r̃) = ap̃ + bq̃ + cr̃,

and

ψ(p̃, q̃, r̃) = p̃ + q̃ + r̃ − 1.

The problem of finding the minimal entropy martingale measure Q∗,
I(Q∗, P ) = minQ∈M(P ) I(Q,P ) is reduced to the minimization problem of
f(p̃, q̃, r̃) under conditions
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φ(p̃, q̃, r̃) = ap̃ + bq̃ + cr̃ = 0,

ψ(p̃, q̃, r̃) = p̃ + q̃ + r̃ − 1 = 0.

Lagrangian has the following form

Φ(p̃, q̃, r̃) = p̃ln
p̃

p
+ q̃ln

q̃

q
+ r̃ · ln r̃

r
+

λ(ap̃ + bq̃ + cr̃) + µ(p̃ + q̃ + r̃ − 1).

From the optimality conditions

∂Φ(p̃, q̃, r̃)
∂p̃

= 0,
∂Φ(p̃, q̃, r̃)

∂q̃
= 0,

∂Φ(p̃, q̃, r̃)
∂r̃

= 0,

we obtain

ln
p̃

p
+ 1 + λa + µ = 0, (6)

ln
q̃

q
+ 1 + λb + µ = 0, (7)

ln
r̃

r
+ 1 + λc + µ = 0, (8)

and we also have

ap̃ + bq̃ + cr̃ = 0, (9)

p̃ + q̃ + r̃ − 1 = 0. (10)

From (6),(7), and (8) we have

p̃ = pe−(λa+µ+1), (11)

q̃ = qe−(λb+µ+1), (12)

r̃ = re−(λc+µ+1), (13)

and if we insert these equations in (9), we get

ape−λa + bqe−λb + cre−λc = 0. (14)

Consider the function g(x) = ape−ax + bqe−bx + cre−cx. Then g′(x) < 0 for
all x. Further, limx→+∞g(x) = −∞ since a < 0, and limx→−∞g(x) = +∞
because of c > 0. So, it follows, that there exists a unique λ, which satisfies
(14).
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From (10), using (11)-(13), we can determine µ,

µ = ln(pe−λa + qe−λb + re−λc)− 1, (15)

where λ is the solution of equation (14), and then we can determine p̃, q̃
and r̃ from (11)-(13).

It is easy to check that the Hessian matrix (see [5], p.148) is positively
defined for our Lagrangian and therefore, (p̃, q̃, r̃) is a point for which it
takes minimum.

Now we can find the density for minimal entropy martingale measure
QE ,

Z∗N =
dQE

dP
=

N∏

k=1

ξ∗k.

From (4) using (11)-(13) we obtain

ξ∗k = e−(λa+µ+1)I(ρk = a) + e−(λb+µ+1)I(ρk = b) + e−(λc+µ+1)I(ρk = c) =

e−(µ+1)[e−λaI(ρk = a) + e−λbI(ρk = b) + e−λcI(ρk = c) =

e−(µ+1)e−λ[aI(ρk=a)+bI(ρk=b)+cI(ρk=c)] = ce−λρk ,

where c = e−(µ+1).
Since ρk = ∆Sk

Sk−1
, we have the following representation for ξ∗k

ξ∗k = c · exp{−λ
∆Sk

Sk−1
}.

Density Z∗N has the following form:

Z∗N = c · exp{−λ
N∑

k=1

∆Sk

Sk−1
}.

We can write the minimal entropy martingale measure also in the dif-
ferent form.

From (6) and (7) we get

λ =
ln p̃

p − ln q̃
q

b− a

and from (6) and (8) we have

µ =
c · ln p̃

p − a · ln r̃
r

a− c
− 1.
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After the substitution λ and µ in (6) we obtain

(
p̃

p

)b−c (
q̃

q

)c−a (
r̃

r

)a−b

= 1.

From (9) and (10)

q̃ =
(a− c)p̃ + c

c− b
, r̃ =

(b− a)p̃− b

c− b
(16)

and finally for determination of p̃ we have the following equation

(
p̃

p

)b−c (
(a− c)p̃ + c

q(c− b)

)c−a (
(b− a)p̃− b

r(c− b)

)a−b

= 1. (17)

Denote

f(x) = (b− c)ln
x

p
+ (c− a)ln

(a− c)x + c

q(c− b)
+ (a− b)ln

(b− a)x− b

r(c− b)
.

On the interval
(

b
b−a , c

c−b

)
of determination of f(x) the derivative f ′(x) <

0, since b−a > 0 and a−c < 0. Note, that limx↓ b
b−a

= +∞, limx↑ c
c−b

= −∞.

Therefore, the equation (17) for the determination of p̃ has a unique
solution.

Thus we proved the following
Theorem 1. The minimal entropy martingale measure Q∗ for trino-

mial scheme (1) is unique.
I. Q∗ is determined by p̃∗, q̃∗ and r̃∗, which have the form

p̃∗ = pe−(λa+µ+1),

q̃∗ = qe−(λb+µ+1),

r̃∗ = re−(λc+µ+1),

where λ is a unique solution of

ape−λa + bqe−λb + cre−λc = 0

and

µ = ln[pe−λa + qe−λb + re−λc]− 1.

The density Z∗N = dQ∗
dP has the following representation
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Z∗N = c · exp{−λ
N∑

k=1

∆Sk

Sk−1
},

where

c = e−(µ+1).

II. Q∗ is determined by p̃∗, q̃∗ and r̃∗, where p̃∗ is a unique solution of
the equation

(
p̃

p

)b−c (
(a− c)p̃ + c

q(c− b)

)c−a (
(b− a)p̃− b

r(c− b)

)a−b

= 1

and

q̃ =
(a− c)p̃ + c

c− b
, r̃ =

(b− a)p̃− b

c− b
.

Remark. The result of part I of Theorem 1 for the case N = 1 can be
found in [1] and corresponds to general result of M.Fritelli for real adapted
stochastic process X with discrete time ([1], see also [3],[4]). M.Fritelli has
established, that

dQ∗

dP
= c · exp{

N∑

k=1

Hk∆Xk},

where H is a predictable process and c is normalizing constant. In our
situation, as it is obvious from Theorem 1

c = e−(µ+1) and Hk = − λ

Sk−1
.

Example 1. Consider the symmetrical case: a = −α, b = 0, c = α with
α > 0. It follows from Theorem 1, that

p̃s =
√

pr

2
√

pr + q
, q̃s =

q

2
√

pr + q
, r̃s =

√
pr

2
√

pr + q
.

2. The reverse relative entropy Ir(Q,P ) of the probability measure Q
with respect to the probability measure P is defined as (see for example
[2])
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Ir(Q,P ) =





EP [−lndQ
dP ], if Q << P

+∞, otherwise.

The reverse minimal entropy martingale measure is the measure Q∗ for
which

Ir(Q∗, P ) = min
Q∈M(P )

Ir(Q,P ).

For our trinomial scheme (1) we get

Ir(Q,P ) = E[−lnZN ] = E[−ln
N∏

k=1

ξk] = −
N∑

k=1

E[lnξk] =

−NE[lnξ1] = −N [pln p̃
p + qln q̃

q + r · ln r̃
r ].

Consider the minimization problem of reverse relative entropy among
all martingale measures Q ∈ M(P ).

Now the Lagrangian has the following form

Φ(p̃, q̃, r̃) = −[pln
p̃

p
+ qln

q̃

q
+ r · ln r̃

r
]+

λ[ap̃ + bq̃ + cr̃] + µ[p̃ + q̃ + r̃ − 1]

and from the optimality conditions

∂Φ(p̃, q̃, r̃)
∂p̃

= 0,
∂Φ(p̃, q̃, r̃)

∂q̃
= 0,

∂Φ(p̃, q̃, r̃)
∂r̃

= 0,

we have

−p

p̃
+ λa + µ = 0, (18)

−q

q̃
+ λb + µ = 0, (19)

−r

r̃
+ λc + µ = 0. (20)

From these three conditions and from

ap̃ + bq̃ + cr̃ = 0, (21)

p̃ + q̃ + r̃ − 1 = 0, (22)
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we can determine p̃, q̃, r̃, µ, λ.
From (18)-(20) we have

p̃ =
p

λa + µ
,

q̃ =
q

λb + µ
, (23)

r̃ =
r

λc + µ
.

Rewrite (18)-(20) in the following form

λap̃ + µp̃ = p,

λbq̃ + µq̃ = q,

λcr̃ + µr̃ = r,

and after summation

λ(ap̃ + bq̃ + cr̃) + µ(p̃ + q̃ + r̃) = p + q + r.

Using (21) and (22), we obtain

µ = 1.

Then we substitute (23) with µ = 1 in (21) and obtain the following
equation for the determination of λ

ap

λa + 1
+

bq

λb + 1
+

cr

λc + 1
= 0. (24)

We consider this equation on the interval −1
c < λ < − 1

a , because in this
case p̃ > 0, q̃ > 0, r̃ > 0.

Let

G(x) =
ap

xa + 1
+

bq

xb + 1
+

cr

xc + 1
.

Then on the interval (−1
c ,− 1

a)

G′(x) = − a2p

(xa + 1)2
− b2q

(xb + 1)2
+

c2r

(xc + 1)2
< 0

for all x. Further,

lim
x→− 1

a

G(x) = −∞
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and

lim
x→− 1

c

G(x) = +∞

since a < 0 and c > 0.
So, it follows, that on the interval −1

c < λ < − 1
a there exists a unique

λ, which satisfies (24).
The equation (24) is equivalent to the following quadratic equation

λ2abc + λ[pa(b + c) + qb(a + c) + rc(a + b)] + Eρ1 = 0. (25)

It is clear, that on the interval −1
c < λ < − 1

a this quadratic equation has
a unique solution.

Thus, the following theorem is valid:
Theorem 2. The reverse minimal relative entropy martingale measure

Q∗ for trinomial scheme (1) is unique and is determined by p̃∗, q̃∗ and r̃∗,
which have the form

p̃∗ =
p

λa + 1
,

q̃∗ =
q

λb + 1
,

r̃∗ =
r

λc + 1
,

where λ ∈ (−1
c ,− 1

a) is the unique solution of the equation (24).
Example 2. Consider the case, when a = −α, b = 0 and c = α, (α > 0).
From (24) we have

−λα2(p + r) + Eρ1 = 0

and since

Eρ1 = α(r − p),

the representation of λ is the following

λ =
(r − p)
α(r + p)

.

Then from (25) we have

p̃ =
r + p

2
, q̃ = q and r̃ =

r + p

2
.
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3. Let ϕ : (0,∞) → R be a convex function. Then the ϕ-divergence
distance between Q and P is defined as

Iϕ(Q,P ) =





∫
ϕ(dQ

dP )dP, if the integral exists,

+∞, else,

where ϕ(0) = limx↓0 ϕ(x) (see [2]).
Assume that ϕ(x) satisfies the following conditions:
(A) limx↓0 ϕ′(x) = −∞;
(B) Eϕ(ZN ) = NEϕ(Z1).
Note, that the both of cases considered above (ϕ(x) = xln(x), ϕ(x) =

−ln(x)) and also the well-known symmetric divergence distance with ϕ(x) =
(x− 1)ln(x) satisfy the conditions (A) and (B).

The minimal ϕ-divergence distance martingale measure is the measure
Q∗, for which

Iϕ(Q∗, P ) = min
Q∈M(P )

I(Q,P ).

Using (3), (4) and (B) we have

Iϕ(Q, P ) = N

[
ϕ

(
p̃

p

)
p + ϕ

(
q̃

q

)
q + ϕ

(
r̃

r

)
r

]
.

Denote
f(p̃, q̃, r̃) = ϕ

(
p̃

p

)
p + ϕ

(
q̃

q

)
q + ϕ

(
r̃

r

)
r.

So, the problem of finding the minimal ϕ-divergence martingale measure
Q∗ is reduced to the minimization problem of f(p̃, q̃, r̃) under constraints:

ap̃ + bq̃ + cr̃ = 0,
p̃ + q̃ + r̃ − 1 = 0.

(26)

Lagrangian has the following form

Φ(p̃, q̃, r̃) = ϕ

(
p̃

p

)
p+ϕ

(
q̃

q

)
q+ϕ

(
r̃

r

)
r+λ(ap̃+bq̃+cr̃)+µ(p̃+ q̃+ r̃−1).

From the optimality conditions

∂Φ
∂p̃

= 0,
∂Φ
∂q̃

= 0,
∂Φ
∂r̃

= 0

we have

ϕ′
(

p̃
p

)
+ λa + µ = 0, ϕ′

(
q̃
q

)
+ λb + µ = 0, ϕ′

(
r̃
r

)
+ λc + µ = 0. (27)
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From (27)

λ =
ϕ′

(
p̃
p

)
− ϕ′

(
q̃
q

)

b− a
.

Using (26) we have

q̃ =
(a− c)p̃ + c

c− b
(28)

and therefore,

λ =
ϕ′

(
p̃
p

)
− ϕ′

(
(a−c)p̃+c

q(c−b)

)

b− a
. (29)

From (27)

µ =
cϕ′

(
p̃
p

)
− aϕ′

(
r̃
r

)

a− c

and from (26)

r̃ =
(a− b)p̃ + b

b− c
, (30)

so,

µ =
cϕ′

(
p̃
p

)
− aϕ′

(
(a−b)p̃+b

r(b−c)

)

a− c
. (31)

After substitution λ and µ from (29) and (31) in the first equation of (27)
we get the following equation for determination of p̃:

(b− c)ϕ′
(

p̃

p

)
− (a− c)ϕ′

(
(a− c)p̃ + c

q(c− b)

)
− (b− a)ϕ′

(
(a− b)p̃ + b

r(b− c)

)
= 0.

(32)
Let us show that this equation has a unique solution. Consider the function

g(x) = (b− c)ϕ′
(

x
p

)
− (a− c)ϕ′

(
(a−c)x+c

q(c−b)

)
− (b− a)ϕ′

(
(a−b)x+b

r(b−c)

)
,

x ∈
(

b
b−a , c

c−a

)
.

From definition of ϕ and (A) we have

lim
x↓b/(b−a)

g(x) = +∞, lim
x↑c/(c−a)

g(x) = −∞.

Further,
g′(x) = b−c

p ϕ′′
(

x
p

)
− (a−c)2

q(c−b) ϕ
′′

(
(a−c)x+c

q(c−b)

)
−

− (b−a)2

r(c−b) ϕ
′′

(
(a−b)x+b

r(b−c)

)

and, hence, a < b < c and ϕ is a convex function, g′(x) < 0. It follows that
there exists a unique p̃, which satisfies the equation (32). So, q̃ and r̃ are
also determined uniquely from (28) and (30).
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It is easy to check that the Hessian matrix (see [5], p.148) is positively
defined for our Lagrangian and therefore (p̃, q̃, r̃) is a point for which it
takes a minimum.

So, we have proved the following theorem:
Theorem 3. Let ϕ : (0,∞) → R be a convex function and (A), (B)

are fulfilled, then there exists a unique minimal ϕ-divergence martingale
measure Q∗ for trinomial scheme (1) which is determined by p̃∗, q̃∗ and r̃∗,
where p̃∗ is the unique solution of the equation

(b− c)ϕ′
(

p̃∗

p

)
− (a− c)ϕ′

(
(a− c)p̃∗ + c

q(c− b)

)
− (b−a)ϕ′

(
(a− b)p̃∗ + b

r(b− c)

)
= 0,

on the interval ( b
b−a , c

c−a) and

q̃∗ =
(a− c)p̃∗ + c

b− a
, r̃∗ = 1− p̃∗ − q̃∗.

Remark 1. From Theorem 3 in case when ϕ(x) = xln(x) as a conse-
quence follows the result of part II of Theorem 1. When ϕ(x) = −ln(x)
from Theorem 3 follows the result in the different form than the result of
Theorem 2.

Note, that the trinomial scheme (1) is popular model for description of
the evolution of a stock price. The trinomial financial market in contrast
to binomial is incomplete market with many martingale measures. Here
we do not give the application of our results in finances. The problem of
valuation of contingent claims and hedging we will consider in future.
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