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Abstract

In the paper two classical problems of nonlinear elasticity are considered: elastic
body on a rigid support and body in an elastic hull (see [3]). The existence of solutions
of stated problems is shown.
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Combining the equations of equilibrium in the reference configuration §2,
expressed in terms of the first Piola-Kirchoff stress tensor with the definition
of an elastic material and assuming that the boundary condition of the place
is specified on the portion I'g = I' — I'; of the boundary €2, we find that the
deformation ¢ satisfies the following boundary value problem (see [2])

—divT(z, V() = f(z, p(z)), =€, (1)
’i‘(w, V() n=g(x,Ve(x)), xely, (2)
(@) = po(x), x €Ty, (3)

where T : Qx M i — M3 is the response function for the first Piola-
Kirchoff stress tensor; Ms- set of real square matrices of the third order;
M3? = {F € M3;detF> 0}; n - unit outer normal vector along 9, f-
density of the applied body force per unit volume in the reference configu-
ration; g - density of the applied surface force per unit area in the reference
configuration (here and below we use the same definitions and notations as
in book [2]).

The first and second equations together are equivalent, at least formally,
to the principle of virtual work in the reference configuration, expressed by
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the equations:

f];’i‘(m, V(z)): VO(zx)ds = gj;?(x,go(x)) - 0(z)dx

(4)
+Ff g(x, Vp(z)) - 0(x)da,

valid for all sufficiently regular vector fields @ : € — R3, which vanish on
To.

An elastic material with response function T : € x M 3 — M?is
hyperelastic if there exists a function

W:QXM_?_HR,

differentiable with respect to the variable F € M i for each x € Q, such
that

- W
T(z,F) = %—F(:):,F) forall z€Q, Fe Mi,
i.e., componentwise .
~ ow

The function W is called a stored energy function.

If we consider conservative applied body forces and conservative applied
surface forces, for which the integral appearing in the right-hand side of (4)
can be written as Gateaux derivatives

[t p@)p)ds = F (g6,
Q

[ &l Ve(a)) - 6(w)da = G ().
I't

of functionals F' and G of the form

¥) = [ Fap@)ds, G) = [ Gla (), Vip()da
Q Iy
then the equations
d W \Y =T O
- lvaiF(‘r: Lp((E))— (CL’,QO(.%')), T € il
oW
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are formally equivalent to the equation
I' ()8 =0,

for all smooth maps 6 : Q — R? that vanish on Iy, where the functional
I is defined for sufficiently smooth mappings 1 : Q — R3 by

16) = [ Wia. Vip()dz — (F) + Gw)}
Q

The functional W defined for any sufficiently smooth mapping 1 by
W) = [ W, Via)da

is called the strain energy, and the functional I is called the total energy.
Let the assumptions and notations be as above. Then any sufficiently
smooth mapping ¢ that satisfies

ped: :{'(,b: Q — R, Y =@y on Fo}

and I(¢) = inf I(1),
PED

with I(v) = é‘ W (z, Vo(z))dz — {F () + G()},

solves the following boundary value problem

v (2, Vo)) = T, pla), we,

p(z) = po(z), x €T,

oW -
o (@ Ve(2))n =gz, ¢(2)), =l
Let us now consider the following problem - an elastic body on a rigid

support.

—div%v;(x, Vo(z)) =z, 0(x)), zeQ, (5)
(o Velo)n = gle,p(e)), # €T, )
%(gg, Ve(@)n, = i(a, Vo)), weTo, i=1,2% j=12,3, (7)

p3(z) = po3(x), z €Ty, (8)
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where ¢ = (1,92, ¢3), 8= (81,82,83) (the repeated index means summa-
tion).

Problem (5)-(8) is formally equivalent to the principle of virtual work
in the reference configuration

%‘g‘/(m, Ve(x)) VO(x)dr = /?(x, p(x))0(x)dz+
Q Q
[ &, Ve@)o()da+ [ (G Ve@)oh(@) + Gae, Vie(e))ba(w)da
I N0

(9)
valid for all sufficiently regular vector fields @ = (01,6, 603) : Q — R3,
(93’1“0 =0.

Below we shall assume that applied body and surface forces are dead
loads, i.e.,

~

B(z, () = f(x),
9(z, Vp(z)) = g(x).
Problem (9) is formally equivalent to the following problem

Ii(p) = inf Li(9),

Pped,

where

L) = [ Wia, Vip(a)dz — {F($) + @) + G1($)}

Q

G1(¥) = @@ (@) + Ba(@)n(w)da,

o

¥ = (¢1,v2,93), as to set @1 we will define it below.
Theorem 1. Let Q be a domain in R3, and let W : Q x Mi — R be
a stored energy function with the following properties:

(a) Polyconvezity: For almost all x € Q, there exists a convex function
W(x,-): M3 x M3x]0, +oo[— R such that

W(z, F, CofF,detF) =W (z,F) forall Fe M?,

the function W (-,F,H, ) : Q — R is measurable for all (F,H,5) € M3 x
M?3x]0, +o0];
(b) Behavior as detF — 0% : For almost all x €

W (z,F) = +o00;
detF—0+

21
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(c) Coerciveness: There exist constants «, 3,p,q,r such that

d>07 p227 QZL7 7’>1,
p

-1

W(z,F) > o||F||” + |CofF||? + (detF)") + 3
for almost all x € Q and for all F € Mi

Let ' = T'g U1 be a da-measurable partition of the boundary I' of Q

with area T'g > 0, and let pg: T'o — R be a measurable function such that
the set

o, = {¢ = (1h1,1b2,1b3) € WHP(Q); CofVap € LI(Q), detVp € L' (),

3 = g da — a.e.on Ty, detVip >0 a.e.in €,
/(wl, wQ)dZC =e= (el,eg) S RQ}
Q
is nonempty. Let f € LP(Q) and g € L (I") be such that the linear form

Li: ¢ e WP — Li(y) = F(¢) + G(¢) + G1(4)

s continuous, let

L) = [ W, Ve(o))ds — Li(w)

Q

and assume that inf I(¢) < +oo.
Pedy

Then there exists at least one function ¢ such that

pe® and Li(p) = inf Li(¢).
PpedPy

Proof. Let us find a lower bound for I1(v), 1 = (¥1,12,93) € Py.

For estimation of 11 and 12 we use the generalized Poincare inequality in
the following form

P

} , 1=1,2,

(10)

/ | Yi(z) [P do < ¢ {/ | grady;(x) |P dx +
0 O

Q

and for 13 - Friedrichs inequality
[ s 7 de < 2§ [ | gradus(e) [P do+ [ vs(e)pda,
Q Q To

22
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i.e.

[los@) P do <o [ gradus(e) P do+ [ o) P dap. (1)
Q To

Q

By the assumed coerciveness of the function W and by the assumed
continuity of the linear form L1,

Li(Y) = o [{IIVP|P + [[Cof V|7 + (detVep)"} d + Bvol{ (12
Q
—(IFIT+ G+ GaDIl1.p.0-
From inequalities (11)-(13) and from the relation [(v1,v2)dz = e, as
Q

p > 1, we can infer that there exist c3 and d such that

1) 2 e {[$l} . + |COfVIG o+ detViply 0} do+d  (13)

for all ¢ € ;.
Let (%) be an infimizing sequence for the functional I, i.e., a sequence
that satisfies

P e ®, forall k, and lim I(¢") = inf I(a).
k—o0 Ppedy

By assumption, inf I(1) < +o0, according to (14), the sequence
Ppedy

(0", CofVe", detVeh)

is bounded in the reflexive Banach space W1P(Q)) x LI(Q) x L"(f) (each
number p,q,r is > 1).
And now we must check that if % — ¢ in WHP(Q) then

/(<P’f,tp’§)dx o /(wl,m)dl‘-
Q

Q

It is true because 1 € (W1P(Q))*. The rest part of the theorem is proved
analogously as in [2],[1].

Now we will consider the problem - a body in an elastic hull. For this
we will introduce the following notations:

Ty = Tijning, Tr:= {Tz }, Tir = Tijn; — Tnng,

Uy =g, vr =v—noy; n={n;}, i=1,23.

23
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Then
(Tijnj)vi =Trv+Tyvy =Trvr +Thon.

The following problem

—divT(z, Vo(z)) = f(z,@(z)), z€Q, (14)
Tr(z, Veo(z)) =0, zel, (15)
Tn(z, Vo(z)) 4+ kuy =0, k>0, zeT, (16)

where u = ¢ —id is a displacement vector, represents the above mentioned
one. Problem (14)-(16) can be rewritten in the following form

—divT(z, Vo(z)) = f(z,@(z)), z€Q, (17)
Tr(z, Vo(z)) =0, zel, (18)
Tn(z, V() + kon — kzing =0, zeT. (19)

Problem (17)-(19) is formally equivalent to the following principle of virtual
work in the reference configuration

/ T(e, V() : VO(x)dz — / (e, p(2)) - O(x)dz + / TOnda,
Q Q T

or, taking into account (19),
/T 2, V(z)) : VO(x dx_/f 2, p(x)) - O(x)de

*k‘/(,DNeN dCLJrk/xZTLZQN )d

valid for all sufficiently regular vector fields 8 : @ — R3.
Let as consider the functional

() = [ Wiz, Vip(a)dz +J(@) - F@) - g(#),
Q

where

P) = k/ﬁfmﬂﬁjv(%)d@
r

24
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Then, if we assume that the material is hyperelastic, problem (20) is
equivalent to the equation

‘[2((10)0 = 07
and any sufficiently smooth mapping ¢, that satisfies

I(p) = inf I(¢),

Peds

solves problem (17)-(19).

At first we prove the following

Lemma. If u = (ui,uz,u3) € WHP(Q), p > 2, then there exists such
c >0, that

/|Vu|pd:13—|—/|VuN|pda20/|u|pdfn. (21)
Q r Q

Proof. If instead of function u we will consider u|ul, ;Q, then inequality
(21) is equivalent to the relation

ulopq = 1, / VulPds + / Vun|Pda > c. (22)
Q I

Let us assume, that relation (22) is not valid. Then there exists such a
sequence (uq), that

alop = 1, / Vg Pdz + / Wty |Pda — 0. (23)
Q I

From (23) it follows, that the sequence (u,) is bounded in W1P(€).
Therefore, we can say that

Uq —u in WHP(Q).
As WP(Q) is compactly embedding in LP(2), hence it follows, that
u, —u in LP(Q).

Therefore |ulgp0 = 1.
Since |z|P, p > 2, is a convex function, therefore the continuous func-

tional
/]Vu|pdx+/]u1v|pda
Q r

in W1P(Q) is convex. Hence follows, that this functional is weakly contin-
uous and

/\Vua\pdx+/\ua]v|pda—>/]Vu\pdm—i—/]umpdazo.
Q T Q T

25
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From this relation we obtain that Vu = 0, i.e. u = const. From the
condition uy|r = 0, and as I' cannot be a plane, it follows that u = 0. So,
we have obtained a contradiction. Thus, the Lemma is proved (for p = 2
this Lemma is proved in [3].)

Using this Lemma we will prove the following

Theorem 2. Let Q be a domain in R3, and let W: Qx M_?; —
R be a stored energy that satisfies assumption (a),(b),(c) of Theorem 1
(polyconvezity, behavior as detF — 0T, coerciveness). Let

By = {9 = {1, 42,05} € WP(Q), CofVe L),
detVp € L™ (), detVip >0 a.ein Q}
then p = 2,
By = {9 = {1, 42,05} € WHP(Q), CofVepe LUQ),

detVp € L™(Q), detVip > 0a.e.inf), ||[¢|p~ < M, M = const > 0}

then p > 2.

Let inf Iy(1p) < +oo. Then there exists at least one function ¢ € Po
Pedo
such that

pe Py and IQ(CP) = ’LTLfIQ('l/J)

Proof. First we will consider the case p = 2. From the condition of
coerciveness we obtain

) = o [ {IV4]? +|Cof Vel + (detvy) | do + fuols

Q
1 2
+§k/¢nda = [Ellll%[l12.0 = lgll#l20-
r

According to inequality (21)
L) > a1 {[|3 20 + |COf VYIS . o + [detVaplg .0} +d,

where oy > 0. Hence we can state, that if (") is an infimizing sequence for
the functional I, then the sequence (¢, CofVe*, dethpk) is bounded
in the reflexive Banach space WP (Q) x L(2) x L™(Q). It remains to show,
that if @* — ¢ in WP(Q), then

[kt~ [ Gda (24
r

r

26
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This follows from the compactness of the trace operator tr € L(W12(Q), L2(T)).
Now we will consider the case p > 2. Let u € ®9 and v = u/M, then

lv]|L~ < 1. From inequality (21) and relation |vy| = |v]| - |n||cosa| < |v|,

i.e., [lun|pee(r) < 1, we obtain that

c/|v|pdx < /|V'v]pdx+/|vN|pda 2/\Vv|pdm+/|vN|2da.
Q Iy Q T

Q
Hence ) )
u u u
el d el
_/’vM QH—/‘(M>N
r
or
c
m/ lul? dz < —/]Vu\pdx—i— MQ/]UN\Zda.
Q r
Thus,

/|Vu|pd:v—|—/|uN|2da > 01/\u|pdx.
Q T Q

Hence, in an analogous manner as above, we can state that if (o*) is an in-
fimizing sequence for the functional I, then the sequence (¢*, Co ngok,
detV ) is bounded in the reflexive Banach space WP (Q) x LI(Q) x L(Q).
Let ¢! — ¢ in WIP(Q), then ¢' — ¢ in L?(Q2). Therefore, there
exists such subsequence (') that converges almost everywhere to ¢. As
@l oxqr) < M. s0 [y < M.
As to relatlon (24) it is proved in the same manner.
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