SOME CLASSICAL PROBLEMS OF NONLINEAR MATHEMATICAL ELASTICITY

G. Devdariani
Vekua Institute of Applied Mathematics
Tbilisi State University
2 University Str., Tbilisi, 0143, Georgia

(Received: 05.04.02)

Abstract

In the paper two classical problems of nonlinear elasticity are considered: elastic body on a rigid support and body in an elastic hull (see [3]). The existence of solutions of stated problems is shown.

Key words and phrases: boundary value problem, nonlinear elasticity, rigid support, elastic hull.

AMS subject classification: 35G30, 74B20.
Combining the equations of equilibrium in the reference configuration Ω, expressed in terms of the first Piola-Kirchoff stress tensor with the definition of an elastic material and assuming that the boundary condition of the place is specified on the portion $\Gamma_{0}=\Gamma-\Gamma_{1}$ of the boundary Ω, we find that the deformation φ satisfies the following boundary value problem (see [2])

$$
\begin{array}{cc}
-\operatorname{div} \widehat{\mathbf{T}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x))=\widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)), & x \in \Omega, \\
\widehat{\mathbf{T}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \cdot \mathbf{n}=\widehat{\mathbf{g}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)), & x \in \Gamma_{1}, \\
\boldsymbol{\varphi}(x)=\boldsymbol{\varphi}_{0}(x), \quad x \in \Gamma_{0}, & \tag{3}
\end{array}
$$

where $\widehat{\mathbf{T}}: \quad \bar{\Omega} \times M_{+}^{3} \rightarrow M^{3}$ is the response function for the first PiolaKirchoff stress tensor; M_{3-} set of real square matrices of the third order; $M_{+}^{3}=\left\{\mathbf{F} \in M^{3} ; \operatorname{det} \mathbf{F}>0\right\} ; \mathbf{n}$ - unit outer normal vector along $\partial \Omega, \widehat{\mathbf{f}}-$ density of the applied body force per unit volume in the reference configuration; $\widehat{\mathbf{g}}$ - density of the applied surface force per unit area in the reference configuration (here and below we use the same definitions and notations as in book [2]).

The first and second equations together are equivalent, at least formally, to the principle of virtual work in the reference configuration, expressed by
the equations:

$$
\begin{align*}
& \int_{\Omega} \widehat{\mathbf{T}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)): \boldsymbol{\nabla} \boldsymbol{\theta}(x) d x=\int_{\Omega} \widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)) \cdot \boldsymbol{\theta}(x) d x \\
& +\int_{\Gamma_{1}} \widehat{\mathbf{g}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \cdot \boldsymbol{\theta}(x) d a, \tag{4}
\end{align*}
$$

valid for all sufficiently regular vector fields $\boldsymbol{\theta}: \bar{\Omega} \rightarrow R^{3}$, which vanish on Γ_{0}.

An elastic material with response function $\widehat{\mathbf{T}}: \bar{\Omega} \times M_{+}^{3} \rightarrow M^{3}$ is hyperelastic if there exists a function

$$
\widehat{W}: \bar{\Omega} \times M_{+}^{3} \rightarrow R,
$$

differentiable with respect to the variable $\mathbf{F} \in M_{+}^{3}$ for each $x \in \bar{\Omega}$, such that

$$
\widehat{\mathbf{T}}(x, \mathbf{F})=\frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \mathbf{F}) \quad \text { for all } \quad x \in \Omega, \mathbf{F} \in M_{+}^{3}
$$

i.e., componentwise

$$
\widehat{T}_{i j}(x, \mathbf{F})=\frac{\partial \widehat{W}}{\partial F_{i j}}(x, \mathbf{F}) .
$$

The function \widehat{W} is called a stored energy function.
If we consider conservative applied body forces and conservative applied surface forces, for which the integral appearing in the right-hand side of (4) can be written as G \widehat{a} teaux derivatives

$$
\begin{gathered}
\int_{\Omega} \widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)) \boldsymbol{\theta}(x) d x=F^{\prime}(\boldsymbol{\varphi}) \boldsymbol{\theta}, \\
\int_{\Gamma_{1}} \widehat{\mathbf{g}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \cdot \boldsymbol{\theta}(x) d a=G^{\prime}(\boldsymbol{\varphi}) \boldsymbol{\theta},
\end{gathered}
$$

of functionals F and G of the form

$$
\left.F(\boldsymbol{\psi})=\int_{\Omega} \widehat{F}(x, \boldsymbol{\psi}(x)) d x, \quad G(\boldsymbol{\psi})=\int_{\Gamma_{1}} \widehat{G}(x, \boldsymbol{\psi}(x)), \boldsymbol{\nabla} \boldsymbol{\psi}(x)\right) d a,
$$

then the equations

$$
\begin{gathered}
-\operatorname{div} \frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x))=\widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Omega, \\
\frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \mathbf{n}=\widehat{\mathbf{g}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Gamma_{1},
\end{gathered}
$$

are formally equivalent to the equation

$$
I^{\prime}(\boldsymbol{\varphi}) \boldsymbol{\theta}=0
$$

for all smooth maps $\boldsymbol{\theta}: \bar{\Omega} \rightarrow R^{3}$ that vanish on Γ_{0}, where the functional I is defined for sufficiently smooth mappings $\boldsymbol{\psi}: \bar{\Omega} \rightarrow R^{3}$ by

$$
I(\boldsymbol{\psi})=\int_{\Omega} \widehat{W}(x, \boldsymbol{\nabla} \boldsymbol{\psi}(x)) d x-\{F(\boldsymbol{\psi})+G(\boldsymbol{\psi})\}
$$

The functional W defined for any sufficiently smooth mapping $\boldsymbol{\psi}$ by

$$
W(\boldsymbol{\psi})=\int_{\Omega} \widehat{W}(x, \boldsymbol{\nabla} \psi(x)) d x
$$

is called the strain energy, and the functional I is called the total energy.
Let the assumptions and notations be as above. Then any sufficiently smooth mapping φ that satisfies

$$
\varphi \in \mathbf{\Phi}:=\left\{\psi: \bar{\Omega} \rightarrow R^{3}, \quad \psi=\varphi_{0} \quad \text { on } \quad \Gamma_{0}\right\}
$$

and $I(\boldsymbol{\varphi})=\inf _{\boldsymbol{\psi} \in \boldsymbol{\Phi}} I(\boldsymbol{\psi})$,
with $I(\boldsymbol{\psi})=\int_{\Omega} \widehat{W}(x, \boldsymbol{\nabla} \psi(x)) d x-\{F(\boldsymbol{\psi})+G(\boldsymbol{\psi})\}$,
solves the following boundary value problem

$$
\begin{gathered}
-\operatorname{div} \frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \varphi(x))=\widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Omega \\
\boldsymbol{\varphi}(x)=\boldsymbol{\varphi}_{0}(x), \quad x \in \Gamma_{0} \\
\frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \mathbf{n}=\widehat{\mathbf{g}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Gamma_{1}
\end{gathered}
$$

Let us now consider the following problem - an elastic body on a rigid support.

$$
\begin{gather*}
-\operatorname{div} \frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \varphi(x))=\widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Omega \tag{5}\\
\frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \varphi(x)) \mathbf{n}=\widehat{\mathbf{g}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Gamma_{1} \tag{6}\\
\frac{\partial \widehat{W}}{\partial F_{i j}}(x, \boldsymbol{\nabla} \varphi(x)) \mathbf{n}_{j}=\widehat{g}_{i}(x, \nabla \boldsymbol{\nabla}(x)), \quad x \in \Gamma_{0}, \quad i=1,2 ; \quad j=1,2,3, \tag{7}\\
\varphi_{3}(x)=\varphi_{03}(x), \quad x \in \Gamma_{0}, \tag{8}
\end{gather*}
$$

where $\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right), \widehat{\mathbf{g}}=\left(\widehat{\mathrm{g}}_{1}, \widehat{\mathrm{~g}}_{2}, \widehat{\mathrm{~g}}_{3}\right)$ (the repeated index means summation).

Problem (5)-(8) is formally equivalent to the principle of virtual work in the reference configuration

$$
\begin{align*}
& \int_{\Omega} \frac{\partial \widehat{W}}{\partial \mathbf{F}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \cdot \boldsymbol{\nabla} \boldsymbol{\theta}(x) d x=\int_{\Omega} \widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)) \boldsymbol{\theta}(x) d x+ \\
& \int_{\Gamma_{1}} \widehat{\mathbf{g}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \boldsymbol{\theta}(x) d a+\int_{\Gamma_{0}}\left(\widehat{g}_{1}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \theta_{1}(x)+\widehat{g}_{2}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)) \theta_{2}(x)\right) d a \tag{9}
\end{align*}
$$

valid for all sufficiently regular vector fields $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right): \bar{\Omega} \rightarrow R^{3}$, $\left.\theta_{3}\right|_{\Gamma_{0}}=0$.

Below we shall assume that applied body and surface forces are dead loads, i.e.,

$$
\begin{gathered}
\widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x))=\widehat{\boldsymbol{f}}(x), \\
\widehat{\boldsymbol{g}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x))=\widehat{\boldsymbol{g}}(x) .
\end{gathered}
$$

Problem (9) is formally equivalent to the following problem

$$
I_{1}(\boldsymbol{\varphi})=\inf _{\boldsymbol{\psi} \in \boldsymbol{\Phi}_{1}} I_{1}(\boldsymbol{\psi}),
$$

where

$$
\begin{gathered}
I_{1}(\boldsymbol{\psi})=\int_{\Omega} \widehat{W}(x, \boldsymbol{\nabla} \boldsymbol{\psi}(x)) d x-\left\{F(\boldsymbol{\psi})+G(\boldsymbol{\psi})+G_{1}(\boldsymbol{\psi})\right\}, \\
G_{1}(\boldsymbol{\psi})=\int_{\Gamma_{0}}\left(\widehat{g}_{1}(x) \psi_{1}(x)+\widehat{g}_{2}(x) \psi_{2}(x)\right) d a,
\end{gathered}
$$

$\boldsymbol{\psi}=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$, as to set $\boldsymbol{\Phi}_{1}$ we will define it below.
Theorem 1. Let Ω be a domain in R^{3}, and let $\widehat{W}: \Omega \times M_{+}^{3} \rightarrow R$ be a stored energy function with the following properties:
(a) Polyconvexity: For almost all $x \in \Omega$, there exists a convex function $\left.W(x, \cdot): M^{3} \times M^{3} \times\right] 0,+\infty[\rightarrow R$ such that

$$
W(x, \mathbf{F}, \quad \mathbf{C o f F}, \operatorname{det} \mathbf{F})=\widehat{W}(x, \mathbf{F}) \text { for all } \mathbf{F} \in M_{+}^{3},
$$

the function $W(\cdot, \mathbf{F}, \mathbf{H}, \delta): \Omega \rightarrow R$ is measurable for all $(\mathbf{F}, \mathbf{H}, \delta) \in M^{3} \times$ $\left.M^{3} \times\right] 0,+\infty[$;
(b) Behavior as $\operatorname{det} \mathbf{F} \rightarrow 0^{+}$: For almost all $x \in \Omega$

$$
\underset{\operatorname{det} \mathbf{F} \rightarrow 0^{+}}{\widehat{W}(x, \mathbf{F})}=+\infty ;
$$

(c) Coerciveness: There exist constants α, β, p, q, r such that

$$
\begin{gathered}
d>0, \quad p \geq 2, \quad q \geq \frac{p}{p-1}, \quad r>1 \\
\widehat{W}(x, \mathbf{F}) \geq \alpha\left(\|\mathbf{F}\|^{p}+\|\mathbf{C o f F}\|^{q}+(\operatorname{det} \mathbf{F})^{r}\right)+\beta
\end{gathered}
$$

for almost all $x \in \Omega$ and for all $\mathbf{F} \in M_{+}^{3}$.
Let $\Gamma=\Gamma_{0} \cup \Gamma_{1}$ be a da-measurable partition of the boundary Γ of Ω with area $\Gamma_{0}>0$, and let $\varphi_{0}: \Gamma_{0} \rightarrow R$ be a measurable function such that the set

$$
\begin{gathered}
\mathbf{\Phi}_{1}:=\left\{\boldsymbol{\psi}=\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \in W^{1, p}(\Omega) ; \boldsymbol{C o f} \boldsymbol{\nabla} \boldsymbol{\psi} \in L^{q}(\Omega), \quad \operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi} \in L^{r}(\Omega),\right. \\
\psi_{3}=\varphi_{0} d a-\text { a.e.on } \Gamma_{0}, \operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi}>0 \text { a.e.in } \Omega \\
\left.\int_{\Omega}\left(\psi_{1}, \psi_{2}\right) d x=\mathbf{e}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in R^{2}\right\}
\end{gathered}
$$

is nonempty. Let $f \in L^{\rho}(\Omega)$ and $g \in L^{\sigma}(\Gamma)$ be such that the linear form

$$
L_{1}: \quad \boldsymbol{\psi} \in W^{1, p} \rightarrow L_{1}(\boldsymbol{\psi})=F(\boldsymbol{\psi})+G(\boldsymbol{\psi})+G_{1}(\boldsymbol{\psi})
$$

is continuous, let

$$
I_{1}(\boldsymbol{\psi})=\int_{\Omega} \widehat{W}(x, \boldsymbol{\nabla} \boldsymbol{\psi}(x)) d x-L_{1}(\boldsymbol{\psi})
$$

and assume that $\inf _{\boldsymbol{\psi} \in \boldsymbol{\Phi}_{1}} I_{1}(\boldsymbol{\psi})<+\infty$.
Then there exists at least one function φ such that

$$
\boldsymbol{\varphi} \in \boldsymbol{\Phi}_{1} \quad \text { and } \quad I_{1}(\boldsymbol{\varphi})=\inf _{\boldsymbol{\psi} \in \boldsymbol{\Phi}_{1}} I_{1}(\boldsymbol{\psi})
$$

Proof. Let us find a lower bound for $I_{1}(\boldsymbol{\psi}), \quad \boldsymbol{\psi}=\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \in \mathbf{\Phi}_{1}$. For estimation of ψ_{1} and ψ_{2} we use the generalized Poincare inequality in the following form

$$
\begin{equation*}
\int_{\Omega}\left|\psi_{i}(x)\right|^{p} d x \leq c_{1}\left\{\int_{\Omega}\left|\operatorname{grad} \psi_{i}(x)\right|^{p} d x+\left|\int_{\Omega} \psi_{i}(x) d x\right|^{p}\right\}, \quad i=1,2 \tag{10}
\end{equation*}
$$

and for ψ_{3} - Friedrichs inequality

$$
\int_{\Omega}\left|\psi_{3}(x)\right|^{p} d x \leq c_{2}\left\{\int_{\Omega}\left|\operatorname{grad} \psi_{3}(x)\right|^{p} d x+\int_{\Gamma_{0}}\left|\psi_{3}(x)\right|^{p} d a\right\}
$$

i.e.

$$
\begin{equation*}
\int_{\Omega}\left|\psi_{3}(x)\right|^{p} d x \leq c_{2}\left\{\int_{\Omega}\left|\operatorname{grad} \psi_{3}(x)\right|^{p} d x+\int_{\Gamma_{0}}\left|\varphi_{0}(x)\right|^{p} d a\right\} . \tag{11}
\end{equation*}
$$

By the assumed coerciveness of the function \widehat{W} and by the assumed continuity of the linear form L_{1},

$$
\begin{align*}
& I_{1}(\boldsymbol{\psi}) \geq \alpha \int_{\Omega}\left\{\|\boldsymbol{\nabla} \boldsymbol{\psi}\|^{p}+\|\boldsymbol{C o f} \boldsymbol{\nabla} \boldsymbol{\psi}\|^{q}+(\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi})^{r}\right\} d x+\beta v o l \Omega \tag{12}\\
& -\left(\|\mathbf{F}\|+\|\mathbf{G}\|+\left\|\mathbf{G}_{\mathbf{1}}\right\|\right)\|\boldsymbol{\psi}\|_{1, p, \Omega} .
\end{align*}
$$

From inequalities (11)-(13) and from the relation $\int_{\Omega}\left(\psi_{1}, \psi_{2}\right) d x=e$, as $p>1$, we can infer that there exist c_{3} and d such that

$$
\begin{equation*}
I(\boldsymbol{\psi}) \geq c_{3}\left\{\|\boldsymbol{\psi}\|_{1, p, \Omega}^{p}+\left|\boldsymbol{\operatorname { o f }} \boldsymbol{\nabla} \boldsymbol{\psi}_{0, q, \Omega}^{q}+|\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi}|_{0, r, \Omega}^{r}\right\} d x+d\right. \tag{13}
\end{equation*}
$$

for all $\boldsymbol{\psi} \in \boldsymbol{\Phi}_{1}$.
Let (φ^{k}) be an infimizing sequence for the functional I_{1}, i.e., a sequence that satisfies

$$
\varphi^{k} \in \boldsymbol{\Phi}_{1} \quad \text { for all } k, \quad \text { and } \quad \lim _{k \rightarrow \infty} I_{1}\left(\boldsymbol{\varphi}^{k}\right)=\inf _{\psi \in \boldsymbol{\Phi}_{1}} I_{1}(\boldsymbol{\psi}) .
$$

By assumption, $\inf _{\psi \in \boldsymbol{\Phi}_{1}} I_{1}(\boldsymbol{\psi})<+\infty$, according to (14), the sequence

$$
\left(\varphi^{k}, \operatorname{Cof} \nabla \varphi^{k}, \operatorname{det} \nabla \varphi^{k}\right)
$$

is bounded in the reflexive Banach space $W^{1, p}(\Omega) \times L^{q}(\Omega) \times L^{r}(\Omega)$ (each number p, q, r is >1).

And now we must check that if $\varphi^{k} \rightharpoonup \varphi$ in $W^{1, p}(\Omega)$ then

$$
\int_{\Omega}\left(\varphi_{1}^{k}, \varphi_{2}^{k}\right) d x \rightarrow \int_{\Omega}\left(\varphi_{1}, \varphi_{2}\right) d x .
$$

It is true because $1 \in\left(W^{1, p}(\Omega)\right)^{*}$. The rest part of the theorem is proved analogously as in [2],[1].

Now we will consider the problem - a body in an elastic hull. For this we will introduce the following notations:

$$
\begin{gathered}
\widehat{T}_{N}:=\widehat{T}_{i j} n_{i} n_{j}, \quad \widehat{T}_{T}:=\left\{\widehat{T}_{i T}\right\}, \quad \widehat{T}_{i T}:=\widehat{T}_{i j} n_{j}-\widehat{T}_{N} n_{i}, \\
v_{N}:=v_{i} n_{i} ; \quad v_{T}=v-n v_{N} ; \quad n=\left\{n_{i}\right\}, \quad i=1,2,3 .
\end{gathered}
$$

Then

$$
\left(\widehat{T}_{i j} n_{j}\right) v_{i}=\widehat{T}_{T} v+\widehat{T}_{N} v_{N}=\widehat{T}_{T} v_{T}+\widehat{T}_{N} v_{N}
$$

The following problem

$$
\begin{gather*}
-\operatorname{div} \widehat{\mathbf{T}}(x, \boldsymbol{\nabla} \varphi(x))=\widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)), \quad x \in \Omega \tag{14}\\
\widehat{\mathbf{T}}_{T}(x, \nabla \boldsymbol{\nabla}(x))=0, \quad x \in \Gamma, \tag{15}\\
\widehat{T}_{N}(x, \nabla \boldsymbol{\nabla}(x))+k u_{N}=0, \quad k>0, \quad x \in \Gamma \tag{16}
\end{gather*}
$$

where $\mathbf{u}=\boldsymbol{\varphi}-i d$ is a displacement vector, represents the above mentioned one. Problem (14)-(16) can be rewritten in the following form

$$
\begin{gather*}
-\operatorname{div} \widehat{\mathbf{T}}(x, \nabla \varphi(x))=\widehat{\mathbf{f}}(x, \varphi(x)), \quad x \in \Omega \tag{17}\\
\widehat{\mathbf{T}}_{T}(x, \nabla \varphi(x))=0, \quad x \in \Gamma, \tag{18}\\
\widehat{T}_{N}(x, \nabla \varphi(x))+k \varphi_{N}-k x_{i} n_{i}=0, \quad x \in \Gamma . \tag{19}
\end{gather*}
$$

Problem (17)-(19) is formally equivalent to the following principle of virtual work in the reference configuration

$$
\int_{\Omega} \widehat{\mathbf{T}}(x, \boldsymbol{\nabla} \varphi(x)): \nabla \boldsymbol{\theta}(x) d x=\int_{\Omega} \widehat{\mathbf{f}}(x, \boldsymbol{\varphi}(x)) \cdot \boldsymbol{\theta}(x) d x+\int_{\Gamma} \widehat{T}_{N} \theta_{N} d a
$$

or, taking into account (19),

$$
\begin{align*}
& \int_{\Omega} \widehat{\mathbf{T}}(x, \boldsymbol{\nabla} \boldsymbol{\varphi}(x)): \boldsymbol{\nabla} \boldsymbol{\theta}(x) d x=\int_{\Omega} \widehat{\boldsymbol{f}}(x, \boldsymbol{\varphi}(x)) \cdot \boldsymbol{\theta}(x) d x \\
& -k \int_{\Gamma} \varphi_{N} \theta_{N}(x) d a+k \int_{\Gamma} x_{i} n_{i} \theta_{N}(x) d a \tag{20}
\end{align*}
$$

valid for all sufficiently regular vector fields $\boldsymbol{\theta}: \bar{\Omega} \rightarrow R^{3}$.
Let as consider the functional

$$
I_{2}(\boldsymbol{\psi})=\int_{\Omega} \widehat{W}(x, \boldsymbol{\nabla} \boldsymbol{\psi}(x)) d x+J(\boldsymbol{\psi})-F(\boldsymbol{\psi})-g(\boldsymbol{\psi})
$$

where

$$
\begin{aligned}
J(\boldsymbol{\psi}) & =\frac{1}{2} k \int_{\Gamma} \psi_{N}^{2}(x) d a \\
g(\boldsymbol{\psi}) & =k \int_{\Gamma} x_{i} n_{i} \psi_{N}(x) d a
\end{aligned}
$$

Then, if we assume that the material is hyperelastic, problem (20) is equivalent to the equation

$$
I_{2}^{\prime}(\boldsymbol{\varphi}) \boldsymbol{\theta}=0,
$$

and any sufficiently smooth mapping φ, that satisfies

$$
I_{2}(\boldsymbol{\varphi})=\inf _{\boldsymbol{\psi} \in \boldsymbol{\Phi}_{2}} I(\boldsymbol{\psi}),
$$

solves problem (17)-(19).
At first we prove the following
Lemma. If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right) \in W^{1, p}(\Omega), \quad p \geq 2$, then there exists such $c>0$, that

$$
\begin{equation*}
\int_{\Omega}|\nabla \boldsymbol{u}|^{p} d x+\int_{\Gamma}\left|\nabla \mathbf{u}_{N}\right|^{p} d a \geq c \int_{\Omega}|\mathbf{u}|^{p} d x . \tag{21}
\end{equation*}
$$

Proof. If instead of function u we will consider $u|u|_{0, p, \Omega}^{-1}$, then inequality (21) is equivalent to the relation

$$
\begin{equation*}
|\mathbf{u}|_{0, p, \Omega}=1, \quad \int_{\Omega}|\boldsymbol{\nabla} \boldsymbol{u}|^{p} d x+\int_{\Gamma}\left|\nabla \boldsymbol{u}_{N}\right|^{p} d a \geq c . \tag{22}
\end{equation*}
$$

Let us assume, that relation (22) is not valid. Then there exists such a sequence (\boldsymbol{u}_{α}), that

$$
\begin{equation*}
\left|\boldsymbol{u}_{\alpha}\right|_{0, p, \Omega}=1, \quad \int_{\Omega}\left|\nabla \boldsymbol{u}_{\alpha}\right|^{p} d x+\int_{\Gamma}\left|\nabla \boldsymbol{u}_{\alpha N}\right|^{p} d a \rightarrow 0 . \tag{23}
\end{equation*}
$$

From (23) it follows, that the sequence $\left(u_{\alpha}\right)$ is bounded in $W^{1, p}(\Omega)$. Therefore, we can say that

$$
\boldsymbol{u}_{\alpha} \rightharpoonup \boldsymbol{u} \quad \text { in } \quad W^{1, p}(\Omega) .
$$

As $W^{1, p}(\Omega)$ is compactly embedding in $L^{p}(\Omega)$, hence it follows, that

$$
\boldsymbol{u}_{\alpha} \rightarrow \boldsymbol{u} \quad \text { in } \quad L^{p}(\Omega) .
$$

Therefore $|\boldsymbol{u}|_{0, p, \Omega}=1$.
Since $|x|^{p}, \quad p \geq 2$, is a convex function, therefore the continuous functional

$$
\int_{\Omega}|\boldsymbol{\nabla} \boldsymbol{u}|^{p} d x+\int_{\Gamma}\left|\boldsymbol{u}_{N}\right|^{p} d a
$$

in $W^{1, p}(\Omega)$ is convex. Hence follows, that this functional is weakly continuous and

$$
\int_{\Omega}\left|\nabla \boldsymbol{u}_{\alpha}\right|^{p} d x+\int_{\Gamma}\left|\boldsymbol{u}_{\alpha N}\right|^{p} d a \rightarrow \int_{\Omega}|\boldsymbol{\nabla} \boldsymbol{u}|^{p} d x+\int_{\Gamma}\left|\boldsymbol{u}_{N}\right|^{p} d a=0 .
$$

From this relation we obtain that $\nabla \boldsymbol{u}=0$, i.e. $u=$ const. From the condition $\left.u_{N}\right|_{\Gamma}=0$, and as Γ cannot be a plane, it follows that $\boldsymbol{u} \equiv 0$. So, we have obtained a contradiction. Thus, the Lemma is proved (for $p=2$ this Lemma is proved in [3].)

Using this Lemma we will prove the following
Theorem 2. Let Ω be a domain in R^{3}, and let $\widehat{W}: \Omega \times M_{+}^{3} \rightarrow$ R be a stored energy that satisfies assumption (a),(b),(c) of Theorem 1 (polyconvexity, behavior as $\operatorname{det} \boldsymbol{F} \rightarrow 0^{+}$, coerciveness). Let

$$
\begin{aligned}
& \mathbf{\Phi}_{2}:=\left\{\boldsymbol{\psi}=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\} \in W^{1, p}(\Omega), \quad \operatorname{Cof} \boldsymbol{\nabla} \boldsymbol{\psi} \in L^{q}(\Omega)\right. \\
&\left.\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi} \in L^{r}(\Omega), \quad \operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi}>0 \quad \text { a.e.in } \Omega\right\}
\end{aligned}
$$

then $p=2$,

$$
\begin{gathered}
\mathbf{\Phi}_{2}:=\left\{\boldsymbol{\psi}=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\} \in W^{1, p}(\Omega), \quad \boldsymbol{C o f} \boldsymbol{\nabla} \boldsymbol{\psi} \in L^{q}(\Omega)\right. \\
\left.\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi} \in L^{r}(\Omega), \quad \operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi}>0 \text { a.e.in } \Omega, \quad\|\boldsymbol{\psi}\|_{L^{\infty}} \leq M, \quad M=\text { const }>0\right\}
\end{gathered}
$$

then $p>2$.
Let $\inf _{\boldsymbol{\psi} \in \boldsymbol{\Phi}_{2}} I_{2}(\psi)<+\infty$. Then there exists at least one function $\boldsymbol{\varphi} \in \mathbf{\Phi}_{2}$ such that

$$
\boldsymbol{\varphi} \in \boldsymbol{\Phi}_{2} \quad \text { and } \quad I_{2}(\boldsymbol{\varphi})=\inf I_{2}(\boldsymbol{\psi})
$$

Proof. First we will consider the case $p=2$. From the condition of coerciveness we obtain

$$
\begin{aligned}
& I_{2}(\boldsymbol{\psi}) \geq \alpha \int_{\Omega}\left\{\|\boldsymbol{\nabla} \boldsymbol{\psi}\|^{2}+\|\boldsymbol{C o f} \boldsymbol{\nabla} \boldsymbol{\psi}\|^{q}+(\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi})^{r}\right\} d x+\beta v o l \Omega \\
& \quad+\frac{1}{2} k \int_{\Gamma} \psi_{n}^{2} d a-\|\boldsymbol{F}\|\|\boldsymbol{\psi}\|_{1,2, \Omega}-\|\boldsymbol{g}\|\|\boldsymbol{\psi}\|_{1,2, \Omega}
\end{aligned}
$$

According to inequality (21)

$$
I_{2}(\boldsymbol{\psi}) \geq \alpha_{1}\left\{\|\boldsymbol{\psi}\|_{1,2, \Omega}^{2}+|\boldsymbol{C o f} \boldsymbol{\nabla} \boldsymbol{\psi}|_{0, r, \Omega}^{q}+|\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\psi}|_{0, r, \Omega}^{r}\right\}+d
$$

where $\alpha_{1}>0$. Hence we can state, that if $\left(\varphi^{k}\right)$ is an infimizing sequence for the functional I_{2}, then the sequence $\left(\varphi^{k}, \boldsymbol{C o f} \nabla \varphi^{k}, \operatorname{det} \boldsymbol{\nabla} \varphi^{k}\right)$ is bounded in the reflexive Banach space $W^{1, p}(\Omega) \times L^{q}(\Omega) \times L^{r}(\Omega)$. It remains to show, that if $\varphi^{k} \rightharpoonup \varphi$ in $W^{1, p}(\Omega)$, then

$$
\begin{equation*}
\int_{\Gamma}\left(\varphi_{N}^{k}\right)^{2} d a \rightarrow \int_{\Gamma} \varphi_{N}^{2} d a . \tag{24}
\end{equation*}
$$

This follows from the compactness of the trace operator $\operatorname{tr} \in L\left(W^{1,2}(\Omega), L^{2}(\Gamma)\right)$.
Now we will consider the case $p>2$. Let $\boldsymbol{u} \in \boldsymbol{\Phi}_{2}$ and $\boldsymbol{v}=\boldsymbol{u} / M$, then $\|\boldsymbol{v}\|_{L^{\infty}} \leq 1$. From inequality (21) and relation $\left|v_{N}\right|=|\boldsymbol{v}| \cdot|\boldsymbol{n} \| \cos \alpha| \leq|\boldsymbol{v}|$, i.e., $\left\|\boldsymbol{v}_{\boldsymbol{N}}\right\|_{L^{\infty}(\Gamma)} \leq 1$, we obtain that

$$
c \int_{\Omega}|\boldsymbol{v}|^{p} d x \leq \int_{\Omega}|\nabla \boldsymbol{v}|^{p} d x+\int_{\Gamma}\left|\boldsymbol{v}_{\boldsymbol{N}}\right|^{p} d a \geq \int_{\Omega}|\boldsymbol{\nabla} \boldsymbol{v}|^{p} d x+\int_{\Gamma}\left|\boldsymbol{v}_{\boldsymbol{N}}\right|^{2} d a .
$$

Hence

$$
c \int_{\Omega}\left|\frac{\boldsymbol{u}}{M}\right|^{p} d x \leq \int_{\Omega}\left|\nabla \frac{\boldsymbol{u}}{M}\right|^{p} d x+\int_{\Gamma}\left|\left(\frac{\boldsymbol{u}}{M}\right)_{N}\right|^{2} d a
$$

or

$$
\frac{c}{M^{p}} \int_{\Omega}|\boldsymbol{u}|^{p} d x \leq \frac{1}{M^{p}} \int_{\Omega}|\boldsymbol{\nabla} \boldsymbol{u}|^{p} d x+\frac{1}{M^{2}} \int_{\Gamma}\left|\boldsymbol{u}_{\boldsymbol{N}}\right|^{2} d a .
$$

Thus,

$$
\int_{\Omega}|\boldsymbol{\nabla} \boldsymbol{u}|^{p} d x+\int_{\Gamma}\left|\boldsymbol{u}_{\boldsymbol{N}}\right|^{2} d a \geq c_{1} \int_{\Omega}|\boldsymbol{u}|^{p} d x .
$$

Hence, in an analogous manner as above, we can state that if $\left(\varphi^{k}\right)$ is an infimizing sequence for the functional I_{2}, then the sequence ($\varphi^{k}, \operatorname{Cof} \boldsymbol{\nabla} \varphi^{k}$, $\left.\operatorname{det} \boldsymbol{\nabla} \boldsymbol{\varphi}^{k}\right)$ is bounded in the reflexive Banach space $\left.W^{1, p}(\Omega) \times L^{q}(\Omega) \times L^{(} \Omega\right)$.

Let $\varphi^{l} \rightharpoonup \varphi$ in $W^{1, p}(\Omega)$, then $\varphi^{l} \rightarrow \varphi$ in $L^{2}(\Omega)$. Therefore, there exists such subsequence $\left(\varphi^{l_{k}}\right)$ that converges almost everywhere to φ. As $\left\|\boldsymbol{\varphi}^{l_{k}}\right\|_{L^{\infty}(\Gamma)} \leq M$, so $\|\boldsymbol{\varphi}\|_{L^{\infty}(\Gamma)} \leq M$.

As to relation (24) it is proved in the same manner.

References

1. Ball J. M. Convexity Conditions and Existence Theorems in Nonlinear Elasticity. Arch. Rational Mech. Anal., v. 63, pp. 337-403.
2. Ciarlet P. G. Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. North-Holland, Amsterdam, 1988.
3. Duvaut G., Lions J.-L. Les Inequations en Mecanique et en Physique. Dunod, Paris, 1972.
