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Abstract

A method of finding the confidence interval for mathematical expectation of ran-
dom variable is suggested. The given result is compared with classical formulas. The
introduced auxiliary functions are studied and tabulated.
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Confidence intervals for parameters of probability distribution laws of
the studied phenomena are widely used when solving numerous theoreti-
cal and applied problems. The quality of a confidence interval is defined
by its width for a given confidence coefficient. There are three principal
methods of finding confidence intervals [1]; they are based on: 1) proba-
bility frequency theory; 2) fiducial distributions; 3) Bayes’ theorem. The
first method uses the asymptotic normality of the first derivative of the
likelihood function logarithm. According to Wilks’ theorem for great-size
samples, this method uses fiducial distributions corresponding to the dis-
tribution, being considered. In the third method the confidence interval
limits are determined on the considered parameter.

Below is given one of the methods of finding the confidence interval
for mathematical expectation of a random variable; it is based on usage
of ordinal statistics [2,3,5]. In contrast to the above-described ones, this
method doesn’t require knowledge of other parameters of distribution laws
(e.g., variance at normal probability distribution law) when constructing
the confidence of mathematical expectation.

Let x be a random variable defined in interval (—oo,+00) with math-
ematical expectation m and variance o?; ®(z) and p(z) - a function and
a distribbution density of the corresponding normalized random variable
& = (x —m)/o; [v1, 2, ...,xN] - N-size sample;
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Topin = min {x:}; @ = max {x;}.
min 1§j§N{ ]}7 max 1§j§N{ ]}
Theorem 1 The confidence interval for parameter m with confidence
probability 1 — « is

[xmin - hN(a) : (xmaa: - xmin)? Tmaz + HN(a) : (-Tmaw - xmzn)]:

where functions h = hy(«) and H = Hy(«) are defined by solving equa-
tions
Yv(h)=a/2 and Y(H)=a/2

at

N—-1

W(h) = /OON-p<u>- (@) = @(u-n/(1+ 1) du (1)
'0*00 N—-1
W(H) = /0 N () (B(—u- H/(U+H) () du.

Proof. let’s consider random variables
U= (Tmin —m)/o and (Tpaee —m)/0.
According to [2,4], density of their joint distribution is
Pul,0) = N(N = 1) - plu) - p(0) - (B(v) = @) 2, atu < v.
Confidence interval limits are defined by the following conditions

P{xmzn - hN(a) : (mmam - mmzn) > m} = a/2§

P{Zmaz + HN(Q) - (Timaz — Tmin) < m} = /2
(symbol P denotes probability of event). Inequalities
Tomin — b (Tmaz — Tmin) > m and  Tymee + H - (Tiaz — Timin) < M
are equivalent to inequalities
v-h/(1+h)<wu and v-(1+H)/H <u.

Regions D; and D9 on plane (uv), shown in fig.1, correspond to them.
Let’s denote probabilities of these inequalities (k) and ¥(H ), then
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Vi) = /o.OO (./v:/(l-i-h) Pult:?) du) o=

= ‘/O.OON -p(v) - (@(v) — ®(vh/(1+ h))) dv

and
0 wH/(14-H)
U(H) :/ / pw(u,v)dv | du =
00 N—-1
= / N - p(—u) - (<I>(—uH/(1 +H))— <I>(—u)) du,
J0
which was to be proved. U

Fig.1. Critical regions Dy, D2 and hypothesis-acceptance region Dy; tan 1 =
h/(14h); tany = H/(1+H). Axes of reference are denoted by u and v; region Dg
is bounded by straight lines v = - (1+h)/h and v = w- H/(1+ H); region Dy is in
the upper half-plane between straight lines v = v and v = u- (14 h)/h, and region
Dy - in the lower half-plane between straight lines v = v and v =u- H/(1 + H).

Note, that equations (1) do not contain parameter o. This takes place
because a change in ¢ corresponds to the change in plot scale in fig.1, when
each of regions Dy, D1 and Dy doesn’t change its position with respect to
axes of reference.

For positive arguments values, functions ¢ (h) and ¥(H) also may be
defined by formulas

N-1

P(h) = '/0'°°N~p<u>-(¢<u<1+h>/h>—<1><u>) du; (2)

88



Construction of Confidence Interval for... AMI Vol.4, No.2,1999

V(H) = ‘/O.OON-p(—u)-(@(—u)—@(—u(l—kH)/H)) du.

These relations may be obtained in the following way; let ¢)'(h) denote the
function, which is equal to the right side of the first equation of (2), then

p(h) = ¢'(h) =

— ‘/O’OON. <p(u) - % -p(uh/(1+ h))>.(<1>(u)—<1>(uh/(1+h)))N .

=0.
0

= ((u) — B(uh/(1 4 1))

If function p(u) is even, i.e. symmetric with respect to mathematical ex-
pectation, then v (h) = ¥(h) and, correspondingly, hy(a) = Hy ().

The results given below are true for symmetric densities of probability
distribution.

Let’s give values of hy(a) for confidence probability limiting values at
fixed N: at « = 0 hy(a) — oo; and at « — 1 hy(a) — —1/2.

The latter relation may be proved in the following way: at h = —1/2

h N-1 1 N|® 1
w1/ = [N -plu)- (280~ 1) du = 5 - o) - D[ = 3
Table 1 gives values of coefficients hy(a) = Hpy(a) for different N
and « for the normal and uniform probability distribution with a random
variance. As can be seen from the table, at the fixed a the function hy ()
decreases when sample size N grows, and becomes negative beginning from
a certain value of V.
The value of N, passing through which hy(«) changes its sign, may be

calculated in the following way: at h =0

.00 B ~ NN
w0 = [N pla) - (@0 - 2(0)" du = (@)~ 20)"|" = (5)
It is obvious, that ®(h) is an increasing function. Hence, when a/2 <
27N hy(a) > 0, and when a/2 > 27V hy(a) < 0; i.e. the function
hy (@) is negative at N > log,(2/a).

Let’s consider the limit of Ay (a) at N — oo for the fixed a.
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Table 0.1: Values of coefficients hy ()

Normal distribution Uniform distribution
N\a || 0.10 0.05 0.02 0.10 0.05 0.02
2 2.6569 | 5.8531 | 15.410 | 4.0000 | 9.0000 | 24.000
3 0.3968 | 0.8133 | 1.6172 | 0.5811 | 1.2361 | 2.5355
4 0.0538 | 0.2385 | 0.5409 | 0.0772 | 0.3572 | 0.8420
5 -0.0784 | 0.0388 | 0.2133 || -0.1109 | 0.0574 | 0.3296
6
7
8

-0.1485 | -0.0612 | 0.0609 | -0.2076 | -0.0897 | 0.0934

-0.1922 | -0.1213 | -0.0265 || -0.2661 | -0.1762 | -0.0403
-0.2224 | -0.1616 | -0.0830 || -0.3053 | -0.2329 | -0.1257
9 -0.2445 | -0.1906 | -0.1227 || -0.3332 | -0.2729 | -0.1847
10 -0.2616 | -0.2126 | -0.1521 || -0.3542 | -0.3025 | -0.2278
11 -0.2752 | -0.2300 | -0.1749 || -0.3705 | -0.3254 | -0.2606
12 -0.2863 | -0.2441 | -0.1932 || -0.3836 | -0.3435 | -0.2865
13 -0.2956 | -0.2557 | -0.2082 || -0.3942 | -0.3582 | -0.3073
14 -0.3035 | -0.2656 | -0.2207 || -0.4031 | -0.3704 | -0.3244
15 -0.3104 | -0.2741 | -0.2314 || -0.4106 | -0.3807 | -0.3388
16 -0.3164 | -0.2815 | -0.2406 || -0.4170 | -0.3895 | -0.3510
17 -0.3217 | -0.2880 | -0.2487 || -0.4226 | -0.3970 | -0.3615
18 -0.3264 | -0.2937 | -0.2558 || -0.4275 | -0.4037 | -0.3706
19 -0.3306 | -0.2989 | -0.2621 || -0.4318 | -0.4095 | -0.3786
20 -0.3345 | -0.3035 | -0.2678 || -0.4356 | -0.4146 | -0.3857
21 -0.3380 | -0.3078 | -0.2730 || -0.4390 | -0.4192 | -0.3920
22 -0.3412 | -0.3116 | -0.2777 || -0.4421 | -0.4233 | -0.3976
23 -0.3441 | -0.3152 | -0.2820 || -0.4448 | -0.4271 | -0.4027
24 -0.3468 | -0.3184 | -0.2859 || -0.4474 | -0.4304 | -0.4073
25 -0.3493 | -0.3214 | -0.2895 || -0.4497 | -0.4335 | -0.4115
26 -0.3516 | -0.3242 | -0.2929 || -0.4518 | -0.4363 | -0.4153
27 -0.3538 | -0.3268 | -0.2960 || -0.4537 | -0.4389 | -0.4188
28 -0.3559 | -0.3293 | -0.2989 || -0.4555 | -0.4413 | -0.4220
29 -0.3578 | -0.3316 | -0.3017 || -0.4571 | -0.4435 | -0.4250
30 -0.3596 | -0.3337 | -0.3042 || -0.4587 | -0.4456 | -0.4278
40 -0.3732 | -0.3499 | -0.3234 || -0.4696 | -0.4601 | -0.4472
50 -0.3821 | -0.3603 | -0.3356 || -0.4759 | -0.4685 | -0.4584
60 -0.3884 | -0.3678 | -0.3444 | -0.4801 | -0.4740 | -0.4657
70 -0.3933 | -0.3735 | -0.3510 || -0.4830 | -0.4778 | -0.4708
30 -0.3971 | -0.3781 | -0.3563 || -0.4852 | -0.4807 | -0.4746
90 -0.4003 | -0.3818 | -0.3606 || -0.4869 | -0.4829 | -0.4775
100 | -0.4030 | -0.3849 | -0.3643 || -0.4882 | -0.4846 | -0.4798
200 | -0.4176 | -0.4020 | -0.3839 || -0.4942 | -0.4924 | -0.4901
300 | -0.4243 | -0.4097 | -0.3929 || -0.4961 | -0.4950 | -0.4934
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Theorem 2 If distribution density p(u) is continuous, and there exists
a positive number ug, such that at w > up function p(u)/p(bu) decreases
and

lim p(w)/p(bu) =0 Vb, 0<b<1,

then 1
lim hy(a) = —3 (3)

N—oo
It is obvious, that the theorem conditions are valid for normal distribu-
tion.

Proof. In accordance with the conditions of the theorem, function p(u) is
strictly monotonic at u > up. Let’s denote

h (@)
1+ hn(a)
where ®~1(.) is the reverse function of ®(.). Assume that N > (1 —

CID(UB))_l/2 and, consequently, uy > up, and also assume that hy(a) < 0
and, consequently, 0 < sy < 1. Let’s divide the integration interval in the
expression defining ¢ (h) into two subintervals; we shall have

sy =1+ and uy = ® 11— N2,

a=2-1Phy(a)) = ‘/(;UN ON - p(u) - (B(w) + ®(u—u-sy) — 1)V dut

+ /'oo IN - p(u) - (®(u) + P(u—u-sy) — 1)V Tdu <

N

< /’UN IN - p(u) - (2B(u) — 1) dut
J0O

o0 2p(u) B we s ) — 1V du
+/uN p(u) + (1 —sy) - p((1 — sy) - u) du(CI)( )+ P( N)—1)" du <
< [ L) - 1) du

2p(uy) > d N B
+p(uN) + (1 —sy)-p((1 —sn) - un) '/JN @(‘I)(U)JF‘I’(U—MSN)—U du =

= (2®(uy) — D)V +
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2p(un) N
T T o) o o)y (L (@l +Bun—uy-sw)=1)") <

2
L4+ (1 =sn)-p((1—sn)-un)/plun)

The first summand in the right side of this equation

< (20(uy) = D)V +

20(un) —1D)N =1 =2N" YN 0 at N — oo.

Let’s consider the second summand. Taking into consideration that se-
quence uy infinitely increases when N — oo, we see, that, if sy has a
different from zero limit, the considered value tends to zero when N — oo.
However, parameter o must fulfil the condition 0 < a < 1. Hence, sequence
sy must converge to zero and

. . 1— sy 1
Iéglth(a)_]\}gnoo_Q—SN __57
which was to be proved. ]

Note, that the theorem condition is sufficient but not necessary, because
for some widely spread distributions, such as, for example, the uniform
distribution, the theorem condition is not filfilled, but (3) still holds.

For the uniform distribution, simple explicit expressions for functions
Yy (h) and hy(a) may be obtained:

_ 1
2-(1+ )V hy(a) = 3 a /=1
If value z is distributed normally, it is reasonable to use Laguerre

quadrature formula for calculation of function ¢(h) = W(h)

N[ =

Yn(h) =

v = | T fla)de = / T e (2) 2 f(/2g) dy ~

~ (V2
2w S

where

 (Borm(2) = uopm /(1 + h)))Nfl;

5~
3
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Dporm () — a function of standardized normal distribution; &, k =1, ....,n
— zeroes of Laguerre polynomial L7(10) (z) of degree n; wp = ——21— —

& (L8 (&)
weight coefficients of the quadrature formula.

If the number of nodal points n is taken to be equal to 16, it will give
the accuracy of calculation of function hy(«) negative values, with which
they are presented in table 1.

Figures 2 and 3 show the length of confidence interval, calculated ac-
cording to the classical method and the method given above, plotted versus,
correspondingly, the sample size at fixed variance of the observed results
and the standard deviation at fixed sample size for the normal distribu-
tion. Figures 4 and 5 show the analogous plots for the uniform probability

distribution law.

Fig.2. Length of confidence interval versus sample size for the normal prob-
ability distribution law, at m = 0, 0 = 1; 1 — the classical method; 2 — the new
method.

Fig.3. Length of confidence interval versus standard deviation for the normal
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probability distribution law, at sample size N = 50; 1 — the classical method; 2 —
the new method.

Fig.4. Length of confidence interval versus sample size for the uniform prob-
ability distribution law, at a = 0, b = 5; 1 — the classical method; 2 — the new
method.

Fig.5. Length of confidence interval versus length of the interval, on which a
random variable is defined, for the uniform probability distribution law, at sample
size N = 50; 1 — the classical method; 2 — the new method.

Calculation of length of one confidence interval value was performed by
averaging of three-fold calculation of its value on the base of three indepen-
dent samples of necessary size for the given parameters.

It may be seen from these plots, that the classical method gives a better
result for the normal distribution. This was bound to be so according to
Wilks theorem [1], as the likelihood function in this case is distributed
normally. On the other hand, this assumption does not correspond to
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reality in case of the uniform probability distribution law. On account of
this, the proposed method, in which coefficients hy () are calculated from
probability distribution laws of random variables, gives much better result

that the classical one.

Thus, the proposed method, besides simplicity of calculations, gives a
better result than the classical one for construction of confidence interval of
mathematical expectation of a random variable, if the latter has the prob-
ability distribution law other than the normal one.
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