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Abstract

A problem for the first order abstract hyperbolic equation with a non-constant
unbounded operator coefficient in Hilbert space is considered. Exact and approximate
solutions are constructed. It is shown that the error estimate for the approximate
solution has exponential rate of convergence.
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1. Introduction

We consider a problem:

ou(z,t) ou(z,t)
ot Ta Ox

+ B(z, t)u(z,t) = f(z,1), (1)
u(z,0) = ¢(x), x€led],

where u : [¢,d] x [0,T] — H is an unknown vector-valued function in a
Hilbert space H, f : [c,d] x [0,T] — H, ¢ : [c,d] — H are given vector-
valued functions, a is a nonnegative constant, B(x,t) for all fixed (z,t) is
a linear, selfadjoint, positive operator with a domain D(B), that does not
depend on (x,t) and is densely defined in H.

The case when H = Ls((¢,d) x (0,7")) was considered in [1] on the ba-
sis of FD-method (functional-difference). Another case a = 0, B(x,t) = B
was studied in [2] by means of CT-method (Cayley transform), and on the
basis of Fourier-Chebyshev series in [3]. The case a = 0,B(z,t) = B(t)
was considered in [4] by means of FD-method and CT-method under the
assumption that B(t) is a bounded operator. This work is a generalization
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of the works [1]-[4]. Here we have obtained a constructive representation of
the solution of the problem (1) without assumption about boundedness of
the operator B(x,t) (see Theorem 1). On the basis of this representation
we have built an approximate solution, whose error estimation has an ex-
ponential rate of convergence. The basis of our work is combination of the
FD-method and Fourier-Chebyshev series method.

2. A constructive representation of the problem (1) solu-
tion

By analogy with the ordinary hyperbolic equation we will find the solution
of the problem (1) in the determined domain:

Q={(z,t):0<t<T,c<x—at<d}.

With accounting (1) we can consider its integral analogy:

u(x,t) = p(z—at) +/ r—a(t—s),s)—B(x—a(t—s),s)u(x—a(t—s), s)|ds.
0

(2)

Definition 1 If u(x,t) has strong derivatives from x and t in Q0 and
it belongs to the domain of the operator definition B : D(B), satisfies the
equation and initial condition (1), then u(x,t) is called a strong solution of
the problem (1).

Definition 2 If u(x,t) € D(B), when (z,t) € Q and it satisfies the
equation (2), then u(x,t) is called weak solution of the problem (1).

Remark. It’s easy to check that if u(x,t) is a strong solution, then it
satisfies the equation (2).

We shall find a weak solution of the problem (1).

Let us introduce a grid wy, = {x; =ih+c:i=0,N1,h = (d —¢)/N1},
on [¢,d] and a grid w; = {t; = j7 : j = 0,Na,7 = T/N2} on [0,T]. Let
us put through the points xz;,7 = 0, N7 characteristics and through the
tj,j = 0, N, straight lines that are parallel to the z—axe. A cross of these
lines gives us a covering of the domain Q by a grid:

Whr = {(mi,j;tj) 1Xq 5 = T4 —+ atj,i = O,Nl,j = O,NQ.

Let us use FD-method for the problem (1) solution. At first this method
was proposed in [5] and for the partial cases of the problem (1) it was
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developed in [1], [2], [4], that was mentioned in the introduction. Therefore
we approximate B(x,t) by piecewise-constant operator By(x,t) as follows:

Bo(x,t) = B(i)z + afj,tj) V(J),t) S Qi,ja

where (Z;,t;) is a fixed point, that satisfies the following conditions:

wio1 <& <, tjio <t <t

Qi,j = {(.Z',t) . tj—l S t S tj,ibi_l S r —at S mi},i = O,Nl,j = O,NQ.

We look for the solution of the problem (2) in the form:

u(z,t) = Zuk(m,t), (3)
k=0

where ug(x,t) are solutions of the recurrent sequence of problems:

Oug(x,t) Oug(x,t)
ot T Ox

+ Bo(z, t)ug(z,t) = f(z,t), (x,t)€Q, (4)

ug(x,0) = p(x).

Ouy(x,t) Oug(x,t)
ot Ta Ox

+ Bo(z, t)ug(x,t) = (Bo(x,t) — B(,t)) x (5)
Xug_1(x,t), (x,t) € Q,
ug(z,0) = 0, kE=1,2,....

We can represent a middle solution of the problem (1) (in the sense [6]),
if B(x,t) = B is a constant operator, f(x,t) =0, a =0, p(x) € H in the
form [3]:

u(z, t) = T(t; B)p(x) = Y ap(®) T (B~ e (), (6)
k=0

where T} (1) = cos(k arccos(2t — 1)) are shifted Chebyshev polynomials of
the first type (see i.e. [7]), k € N,

1
2 [ ot vy _
ak_ﬂ_‘/ p{ M}Tk(/’é)(u(lu_l))og)a k 1727'--7
1
1 t d
ap = ;v/eXP{—;}Tg(M)W,
0

T'(t; B) is a Cy-semigroup with a generator B.

3
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Lemma 1 Let B(z,t) = B,B = B* > \l,X\ > 0, D(B) = H. If
f(z,t), p(z) € D(B), then for the weak solution of the problem (1) the
following constructive representation is held

¢
u(x,t) =T(t; B)p(x — at) +/Tt—sB flx—a(t—s),s)ds, (7)
0

where Co-semigroup T'(t; B) is defined by formula (6).

Proof. Let us substitute representation (7) into the right hand side of
(2). Then one can get

u(x,t) = p(z — at) +/ x—a(t—s),s) — BT (s; B)p(x — at)—
0

-B / T(s—s1;B)f(x —a(t—s1),s1)ds1]ds.
0
Let us use the equality (see [8]):
@ + BT(s;B) = 0.
s

It gives us a possibility to perform the above equality to the following form:

L

dsT s; B)dsp(x — at)+

¢ ¢
u(x,t) = J:—at+/ (x —a(t—s), ds—i—/
0 0

t.

g
0

t.

g
0

T(s—s1;B)f(x —a(t—s1),s1)ds1ds = T(t; B)p(x — at)+

o’\m
Pl

/.T(S —s1;B) f(x — a(t — s1), s1)ds1ds = T'(t; B)e(x — at)+
0

Fle

¢
+ /T (t—s1;B)f(x —a(t — s1),s1)ds;.
0

This equality confirms that representation (7) is a weak solution of the
problem (1). O
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Let us look for the solutions of the problems (4),(5) in the domain €,
by using their solutions in subdomains €); ;. We have:

t
ug? (2,1) = Tt — tj_1; Big)ug’ (x — alt — tj_1), tj-1) + / [Tt — s; Bij)

tj i
Xf(x —a(t—s),s)ds;

t
uyd (@, t) = T(t — tj1; Biguy’ (w — a(t — tj_1), ;1) + / T(t — s;Bij )X

X[Bo(x—a(t—s),s)—B(x—a(t—s),s)}u?(m—a(t—s),s)ds, E=1,2,....

Thus we obtain

ug(z,t) = U(t,0)p(x — at) + / U(t,s)f(x —a(t —s),s)ds, (8)
0

ug(z,t) = / U(t,s)[Bo(x—a(t—s),s)—B(x—a(t—s), s)|uk—1(x—a(t—s), s)ds,
0

(9)
k=1,2,...
where U(t, s) is evolution operator, which has a form:
T(t—s;B; ), if j =p,
j—p-1
Ult,s) =< T(t—tj—i;Bij)[ II T(tj-k — tj—s—1;Bijk)]x
xT(ty — 5;Bip), if j > p,
(10)
te [tjfl,tj}, S € [tpfl,tp}.

If the operator A: H — H, A=A*> A ,\>0,D(A) = H and (—A)
is a generator of semigroup 7'(¢t; A), then this semigroup is compression,
ie.(see [8]) ||T(t; A)|] < 1. So we find from (10) inequality:

U@, )|l < 1. (11)

5
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Let us find estimations for ug(x,t), wug(z,t), k=1,2,... . By using
(11) we get

Jluala, 1)) < 1000t = at)[+ [ 11Ut 5)5 (o = alt = ), )lds <

< llpte —at)ll+ [ 115~ alt - ) 5)ds <

< — — — =
< llp(e = at)l| + s, [ 117 = als = s1),0)]ldss = Uit

from (8). By analogy with (9) one can get
g (2, )] < / |U(#, 5)[Bo(z — alt — s),5)—
—B(z —a(t —s),s)]uk_1(x — a(t — s),s)||ds <

t
[ llu-s(a = ae = 5).)llds
0

where

g= s |[Bole—alt—s).5)~ B —alt—s).5)].
z€[c,d],0<s<t,t€[0,T]

It’s easy to check by substituting x to  — a(t — s), ¢t to s, that one can
transform the above inequality in the following form:

[lug(x — alt = s), 5)[| < q’/ lug—1(x — als — s1), 51)||ds1.

Thus, by continuation of the chain of inequalities, we can get

t
[lug (2, D)]| < C.I/ |lug—1(x — a(t = 1), 51)]|ds1 <
0

t s1

§q2//|\uk o(x —a(t — s2),82)||ds2 <
0
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< / / / [|luo(x — a(t — sg), sg)||dsk . ..ds1 =
0
qk/ Huo( —a(t—s),s)||ds <
0
k
< O (e — att — 51,5 = Lty 1)

Let us use these estimations for the majoration of the series (3)
|lu(z,t) H<Z|\ukxtH<Z o(x,t) = eTUp(z, t). (12)

If we cut the series (3) on the m—th step, then one can get the following
estimation for the approximation

o0 m-+1

) ()™

o) = a0l < 3 st 0ll < (2

k=m-+1

Theorem 1 Let B(z,t) : H — H V(x,t) € Q, B(z,t) = B*(z,t) >

Xol, Ao > 0, D(B(z,t)) = D(B) does not depend on (x,t), D(B) = H

f(z,t),p(z) € D(B), ¢ < co. Then FD-method converges to the weak solu-
tion of the problem (1) and estimation (12) is valid.

e®Up(x,t).  (13)

Proof. Inequality (12) shows, that the series (3) is convergent in the
norm of Hilbert space H. Let us show that its sum is a weak solution of
the initial-value problem (1).

Indeed, ug(x,t), that are defined by (9), are solutions of equations:

ug(x,t) = '/I{[Bo(x —a(t—s),s)— Bz —a(t—s),s)|up_1(x —a(t—s),s)—

—Bo(z —a(t — s), s)ug(x — a(t — s), s) }ds kE=1,2,... (14)
(see Lemma 1), and ug(x,t), that is defined by equality (8), is a solution of
equation:
t.
ug(z,t) = go(ac—at)+/[f(a:—a(t—s),s)—Bo(x—a(t—s), s)ug(x—a(t—s), s)]ds.
0
Thus, by summing (14) with respect to k = 0, to oo, using convergence of

the series (3) in the norm of the space H and dense of the operator B(z, 1),
one can get a necessary affirmation.

O
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3. Combining FD- and Fourier-Chebyshev series method

For solving the equations of the problems (4), (5) in €;; let us use the
representation 7'(¢; B; j)u in the form (6), that was obtained in [3].

Let
N

TN(t; BZ'J)U = Z akT,;k (B;JI)U,
k=0

Un(t,s) be a corresponding operator that one can get from the evolution
operator by means of substitution T'(t; B; ;) for T (t; B; ;).
Let us estimate the approximate error:

Zk(mut):uk,N(mut)_uk(mut)u k:071727"' -

By using representation ug(x,t) (see (8)), we get
t
2ol 1) = [Un (t,0)~U (¢, 0)] o (x—at) +/ Un(t, )—U(t, ) f(w—alt—s), s)ds.
0

For zo(x,t) estimation we have to evaluate [Un(t,0) — U(¢,0)]. Let us see
at first ||Tw(t; B;;)||, by using inequalities obtained in [3]. We have

Tn(t; — tj—1; Bij)ll = [T (73 Biy)l| < |IT(7; Bij)l|+

+|Tw (7; Big) = T(73 Biy)|| < 1+ Cexp{—8(rN?)'/%}.

Then if ¢t € [tj_1,t;], s € [tp—1,tp] for the approximation Un(t,s) of the
evolution operator we get

J—p—1
WUt < 1Tt =ty 15Big)[ [ T (ms Bijoi)lTn(ty — 5 Bip)l| <
k=1

—p—
(1+C)? H T (73 Bij i)l < (14 C)2(1 + Ceap{—6(rN?)L/3})N2 <

< (14 C)2exp(CNyexp{—5(TN?)1/3). (15)
Let us suppose that
N > N. (16)
Thus from (9) we have
|Un (¢, 9)]| < (1 + C)2exp(CNexp{—6(TN)/3}) = M(N). (17)

8
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By increasing N we can make the quantity of the right hand side in (17) as
close to (1 + C)? as we want. Further we’ll look for an estimation for the
approximation error of evolution operator:

j—p—1
UN (2, 8)=U(t, s)|| = [|Tn (t=tj—1; Bij)l H Tn(7; Bij—)| T (tp—5; Bip)—
k=1
J—p—-1
—T(t—tj—1;Bij)[ [[ T(riBij—i)|T(tp — 53 Bip)l| =
k=1
Jj—p-1
I[Tn(t = tj1; Bij) = T(t — tj—1; Big)ll [[ T(75Bij #)T(tp — 5; Bip)+
k=1
Jj—p—1
T (t=tj-1; Bij) [T (75 Bij—1)=T(7; Bij-1)l[ [] (73 Bij )T (tp—s; Bip)+
k=2
Jj—p-1
+o TN (=t Big)l [] Tw(ri Bijw)l[Tn(tp=s; Bip) =T (tp—s; Bip)]l| <
k=1
j—p-1 k
<(1+0) Y (TT1Tw (s Bijmrs) DT (7: Bij) = T(7s Bij )| <
k=0 r=1
No
< (1+C) Y (1 + Ceap{—8(rN) Ay Ceap(~5(rN?)1/?) =
k=0

1+ Cemp{—6(7N2)1/3})N2 B
—Cexp(—6(TN?)1/3) B

=(1+ C)Cexp(—(ﬁ(TN?)l/S) 1—(

= [(1+ Cexp{—86(rNHY3HN2 —1)(1 + C).

It follows from the assumption (17) and above inequality that:

|Un(t,8) = U(t, s)|| < (14 C)(exp(CNewp{—6(TN)/?}) — 1) = Ml(f(\’)-)
18
Then

[lzo(z, )] < [[Un(2,0) = U (2, 0)][[[o(z — at)] +'/I Un(t,5) = Ut 5)[| %
0

X|If (z = a(t = 5), s)||ds < My(N)(|le(x — at)|[+

9
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+ / 1f(x — alt — s),5)|\ds) < My(N)Up(x, 1),
0

One can get by using estimation for Uy (¢,s) and Un(t,s) — U(t,s) (17),
(18), for zg(x,t) that

len(e, 01 < [ 10N Sl1Bote — alt = 5).5) = Bla = alt ~ 5),5)]|x

oo = aft = 9),5)llds + [ [Un(t,s) = Ut s)[[Boe — alt - 5),5)-

—B(z—a(t—s), s)||||ux_1(x—a(t—s),s)||ds < M(N)q'/. l|zk—1(x—a(t—s), s)||ds+
0

Mg [ Nl (o= aft = ),5)ds) <

t

s k
< Mg [ Nl = ate = ), 9)las + (N O (w0 < . <
k— 1
< W(‘Zi')qt)le(N)Uo(x,t) + (q];)k N)Us(, t)
| | 2.
(M(N)qt)*

= o My(N)Ua(x, 1) 1+quM

Just as p= 0,k — 1, so M*~1 > MP, Vp. And thus M—* < M~P~!. That’s
why

p=0

k—1 k—
Y MNP < ZQ/M
p=0

The fulfillment of the following inequality can always be reached by reduc-

ing q:
q
M(N)

< 1. (19)

10
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And that’s why

So we have:

k-1
(M(NV)gt)” (JZ! )qt)le(N)Uo(x,t) (1 + quM(N)pk) < MMl(N)UO(xat)X

Then
(M(N)qt)*

k!
Let us estimate the full approximation error of FD-method:

2k (2, )] < My (N)Up(z,t)Ch. (20)

llu(z, t) — a5 (@, 8)]] < Ju(z, t) — ™ (@, )] + |[u™ (2, ¢) — u§? (2, 8)]| <

< ula, t) — ul™ (2, 1) + Z ||z (z,t)]] <
k=0
(qt)™+?

¢ " (M(N)qt)*
< meq Uo(z,t) + kz %U@(@,i)Ml(N)Cl <

o

(qt)erl

< (m + 1)!eth0(a:, t) + Mi(N)Up(x,t)Crexp(M(N)qt) =

(qt)m+1 qt
ik + My (N)Crexp(M(N)qt)]. (21)

So we can formulate the following statement:

Up(z,t)]

Theorem 2 Let conditions of the theorem 1 and inequality (19) be
valid. The solution of problem (2) is found by the following algorithm

won (@, t) = Un(t,0) (e — at) + / Un(t,8)f(@ — al(t — 5), 5)ds,
o

up n(x,t) = / Un(t,s)[Bo(v—a(t—s),s)—B(x—a(t—s),s)|up_1 n(x—a(t—s), s)ds,
0

11
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k=1,2,...,m,
m
ux,n) = Zuk,N(l’,t)-
k=0

Then the algorithm has an exponential rate of convergence and estimation

(21) is valid.

Proof. It remains to show that estimation (21) has an exponential rate
of convergence.

Indeed, if m = N, then it easy to check that the first part of the esti-
mation (21) has an exponential rate of convergence. Let us show that the
second part of the estimation (21) has an exponential rate of convergence
too. We have

lim Mj(N)N* = lim (14 C)(exp(CNexp{—6(TN)"/3}) — 1)N*.

N—oo N—co

It’s obviously that e* — 1 < xze®. So we get
(exp(CNexp{—6(TN)/3})—1) < CNeap{—86(TN)/3}exp(CNexp{—6(TN)'/3}).
Thus one can get

lim M;(N)N* = lim CN*lexp{—§(TN)"/3}eap(CNexp{—86(TN)/3}) =0,

N—co N—co
Vk € N.
This completes the proof.
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